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ABSTRACT

Chen, W., Zhang, D. and Chen, Y., 2017. Random noise reduction using a hybrid method based
on ensemble empirical mode decomposition. Journal of Seismic Exploration, 26: 227-249.

We have proposed a novel hybrid random noise reduction method based on ensemble
empirical mode decomposition (EEMD) and wavelet threshold filtering. Firstly, the frequency band
ranges of effective signal and noise in the initial seismic data set are studied by Fourier spectrum
analysis method. Secondly, we make use of EEMD method to obtain the intrinsic mode functions
(IMFs) of each original noisy trace. Wavelet threshold filtering is then applied to the high frequency
IMFs of each trace to acquire the new denoised high frequency IMFs. Finally, by stacking the
filtered high frequency IMFs with the low frequency IMFs and the trend item, we can obtain the
ultimately denoised seismic data set. The proposed approach is confirmed via two synthetic data
examples and one field data example. The results demonstrate that the proposed approach can
achieve much cleaner denoising performance without harming most useful signals.

KEY WORDS: ensemble empirical mode decomposition (EEMD), wavelet threshold filtering,
seismic data, random noise reduction.

INTRODUCTION

Reducing random noise is extremely important in almost every aspect of
seismic exploration including data processing, inversion and interpretation
(Huang et al., 2016; Li et al., 2016; Chen et al., 2016). Because of the
challenges and economic saving in currently popular simultaneous-source
acquisition techniques, advanced random noise attenuation for prestack seismic

0963-0651/17/$5.00 © 2017 Geophysical Press Ltd.



228 CHEN, ZHANG & CHEN

data is becoming even more demanded (Beasley et al., 1998; Berkhout, 2008;
Xue et al., 2016; Gan et al., 2016¢).

During the last several decades, various random noise reduction methods
have been proposed. The simplest random noise attenuation approach is the
mean filter based approach, e.g., stacking (Liu et al., 2009; Yang et al.,
2015b). Meanwhile, Median filter method is often used to attenuate spike-like
random noise (Liu, 2013; Gan et al., 2016b). The most classic method is f-x
deconvolution proposed by Canales (1984), which is capable of enhancing the
vertical resolution through denoising while losing the effective signal obviously.
A forward and backward prediction filter is used in Wang (1999) for obtaining
better denoising performance. Singular value decomposition (SVD) proposed by
Ulrych et al. (1988) can preserve effective signal at most, but the signal-to-noise
ratio of denoised data is lower. Gan et al. (2015) applied SVD along the
geological structure in order to utilize the spatial pattern structure of seismic
data and reduce the damages of useful signal caused by SVD. Also, a variety
of time-frequency transform methods (Liu et al., 2016¢,b) are introduced to
ramdom noise attenuation. Methods such as spectral decomposition presented
by Yang et al. (2015a), local signal and noise orthogonalization introduced by
Chen and Fomel (2015), and compressive sensing based on curvelet transform
(Liu et al., 2016a; Zu et al., 2016) can separate the noise and signal effectively,
but all of them have negative effect when facing the complex seismic data.

Wavelet transform is a traditional high resolution time-frequency method,
and is often used to reduce random noise in seismic data by selecting accurate
threshold. Physical wavelet frame denoising method proposed by Zhang and
Ulrych (2003) applied a new wavelet frame for noise suppression based on the
characteristics of seismic data, which is effective even for seismic signals
contaminated by strong coherent noise, such as ground roll or air waves. Mao
and Gao (2006) proposed a denoising method for prestack seismic data based
on wavelet transform and Monte Carlo simulation. However, wavelet transform
method strongly depends on soft or hard threshold, and the denoising result is
not desired when facing rapid trace-by-trace variation. Recently, some novel
methods have been proposed to suppress the random noise, such as Bayesian
inversion (Yuan et al., 2012) or Bayesian inversion with directional difference
constraints (Yuan and Wang, 2013). These two methods can extract noise from
seismic data effectively based on inversion theory, however, they are time-
consuming. Another interesting and effective method is waveform shaping
method (Chen and Jin, 2016), which separates the noise and useful signal by
shaping the estimated wavelet and the inverted model to a more admissible
model. Nevertheless, the waveform shaping method cannot preserve the weak
signal.

Furthermore, most methods mentioned above need to subdivide the data
into small local windows where the events are linear, however, we cannot well
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analyse local characteristics of non-linear and non-stationary signals. Huang et
al. (1998) proposed empirical mode decomposition (EMD) to solve non-linear
and non-stationary problems in geophysics and other fields. EMD can nearly
decompose a signal which contains various frequency components into
corresponding frequency signals adaptively. Thus, EMD can resolve the
non-linear and non-stationary problems effectively. The dominant frequency of
the intrinsic mode function (IMF) decomposed by EMD monotonically
decreases, and we can remove the high-frequency components to obtain the
denoised data considering the dominant frequency of random noise is higher
than useful signals (Chen et al., 2014; Chen, 2016; Gan et al., 2016a).

EMD (Huang et al., 1998; Chen et al., 2014; Gan et al., 2016a) and f-x
EMD (Chen and Ma, 2014) are used to remove random noise adaptively, and
the residual data hardly contains useful signal. Although EMD can solve most
seismic data denoising problems with non-linear and non-stationary signals, Wu
and Huang (2009) found EMD cannot overcome mode mixing due to signal
interruption. Because of lack of robustness, the mode mixing problem is one of
the biggest drawback for EMD. Specifically, mode mixing has been defined as
any IMF consisting of oscillation frequencies of dramatically disparate scales.
When mode mixing problem exists, different frequency components are mixed
in one or more IMFs, which causes difficulties in interpreting the time
frequency distribution. For this reason, Wu and Huang (2009) superposed
signals with white noise to avoid mode mixing, which is the so-called ensemble
empirical mode decomposition (EEMD). Considering seismic data are always
non-linear and non-stationary, EEMD is widely applied to the field of noise
reduction. But the conventional EEMD cannot reduce the noise contained in the
high frequency IMFs effectively. Especially when suppressing the noise in
multichannel seismic data, selecting the same high-frequency components for all
the traces inevitably results in the loss of useful signals.

In this paper, we introduce wavelet threshold filtering to first reduce noise
in the high frequency IMFs in order to separate noise more accurately during
the subsequent EEMD. Comparing to f-x deconvolution method, wavelet noise
reduction method and EEMD method, the proposed method shows better
performance. The rest of the paper is organized as follows: firstly, we present
brief reviews of principles of the EMD and EEMD algorithms, and then we
point out the intrinsic disadvantage and put forward our proposed algorithm. In
this part, we also review wavelet transform which is of highly importance in our
proposed denoising method, and we discuss the advantage of combination of
wavelet threshold filtering and EEMD compared to only using EEMD or
wavelet threshold filtering. Secondly, we compare both the synthetic and field
experiments using EEMD method, wavelet noise reduction method, f-x
deconvolution method and our proposed method, respectively. Finally, we
conclude our proposed approach and give some perspectives and insights about
our method.
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METHOD

The denoising method proposed in this paper combines EEMD method
and wavelet thresh old filtering. The theoretical basis of EEMD is EMD, and
its aim is to adaptively decompose a non-linear and non-stationary signal into
a set of band-limited signals, which are called intrinsic mode functions (IMFs)
and are considered to be stationary. The IMFs have two characteristics: (1) the
number of extrema and the number of zero crossings must either be equal or
differ at most by one; (2) at any point, the mean value of the envelopes defined
by the local maxima and the local minima is nearly close to zero (Huang et al.,
1998). The two characteristics are necessary to ensure that each IMF has a
narrow frequency band by preventing frequency spreading due to asymmetric
waveforms (Han and Mirko, 2013). EMD is able to separate the signal
according to the data characteristics. The IMFs computed recursively represent
the initial components from the signal. The separation method uses the
envelopes defined by the local maxima and the local minimums of the signal.
Cubic splines are utilized to interpolate all the local maxima and minimums
respectively, and then the average of the upper and lower envelopes is obtained.
When subtracting the average, the quasi-IMF appears. If this quasi-IMF is the
IMF we desire, we can import the Cauchy criterion (Huang et al., 1998). If the
quasi-IMF is not the IMF, the circulation continues. The sifting process
terminates when the average of the upper and lower envelopes is nearly zero
everywhere. EMD can analyse complicated signals effectively, however, mode
mixing problem exists. Wu and Huang (2009) proposed the EEMD to eliminate
the mode mixing effect, which is a auxiliary noise analysis method based on
EMD via adding a certain extent Gaussian noise to the initial signals. Here, we
give the general workflows of EEMD according to Wu and Huang (2009).

1. Superposition of initial signal s(t) with w(t) yields S(t):
S(t) = s(t) + w(t) . (1)

2. Decompose S(t) by EMD method:

S =Y ¢ +r, , )
i=1

where ¢; (i = 1,-,n) is the i-th intrinsic mode function; r, is the trend

item; the above algorithm of EMD is according to Wang (2001).

3. Add different white noise w;(t) to signal s(t) and repeat the steps (1) and
2):
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S0 = s(t) + wi(t) , )
SO =Y ey + 1 @)
i=1

4. Take corresponding average IMFs as the final IMFs:

N
¢ =N Y . (5)
i=1

5. Take corresponding average r, as the final trend item:

N
=N Yc, . 6)
i=1

EEMD is actually a noise-assist method, which is capable of eliminating
the mode mixing and displaying a better separation performance compared to
EMD. The principle of EEMD is as follows: when added white noise which is
uniformly distributed throughout the time-frequency space, the time-frequency
space splits into different components by the filter group. When the background
white noise with uniform distribution is added to the signal, the IMFs of
different scales can be automatically mapped to the appropriate scale associated
with the background white noise. Each individual test may produce a very noisy
result because each additive noise component includes both the signal and the
additional white noise. Since noise is different in each individual test, the noise
can be eliminated when using enough sampling points in EEMD. The average
of all the test results is considered to be the last result, and the mean result of
the persistent part is the initial signal itself. In general, the frequency of IMFs
in eq. (6) almost decreases by negative powers of 2. Thus, the noise intensity
of each IMF is becoming weaker so that the low frequency IMF is almost the
low frequency component of the desired denoised signal. The high frequency
IMFs are time-varying but stationary noisy signals, which are suitable to be
reduced by wavelet threshold filtering. Using the relationship between modulus
maximum and local singularity of seismic signal, noise reduction by wavelet
threshold filtering detects the modulus maximum position and amplitude of
wavelet transform coefficients. Due to negative singularity, the amplitude of
noise decreases as the scale increases. So if the amplitude of local modulus
maximum increases quickly as the scale decreases, it means the singularity is
mainly controlled by noise, which however should be removed. In this paper,
we adopt the algorithm of wavelet threshold filtering as follows:
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Transform the high frequency IMFs using wavelet transform.

Search the modulus maximum points corresponding to wavelet transform
coefficient at each scale.

Search the largest amplitude of extreme points and set it to A. We choose
the following filtering threshold:

T, = {[log,(1 + 2¥N)J/J + Z)}A . (7

where N is presupposed noise power; J is the selected largest scale; Z is
a constant and usually set to 2.

Search the maximum line and remove the points that are off the maximum
line.

Reconstruct signal corresponding to modulus maximum points, and the
signal reconstructed is the denoised IMF components.

The complete workflows of the proposed random noise reduction method

in this paper are summarized as follows:

1.

Transform the high frequency IMFs using Fourier transform and analyse
the frequency band distribution of useful signal and noise.

2. Transform the seismic data by EEMD.

3. According to the frequency range of noise, select the high frequency
IMFs for wavelet threshold filtering and preserve the low frequency IMFs
and the trend item.

4. Reconstruct the desired denoised seismic data set by adding the new high
frequency IMFs, the low frequency IMFs and the trend item together.
The detailed workflows of the proposed noise reduction method are shown

in Figs. 1 and 2.
EXAMPLES

In this section, we use two synthetic data examples and one field example

to test the denoising performance of the proposed approach, which is EEMD
combined with wavelet threshold filtering. In order to test the performance of
our proposed method, we firstly make the noise-free synthetic seismic data as
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Fig. 1. The workflows of EMD.
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Fig. 2. The detailed workflows of the proposed noise reduction method.

shown in Fig. 3(a), which consist of 21 traces and 501 time samples with a
sample interval of 1 ms. This is a very simple model, which only contains a
horizontal event and a set of cross events. Specifically, a horizontal event and
a sloping axis form the cross events. There is a break point in the cross events,
which can be used to test the end effect of the proposed algorithm.

In order to numerically test the denoising performance, we define the
criterion for comparison as noise-to-signal ratio (NSR):
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NSR = lOloglO[ ” Snoise ”22 / " Ssignal "%] ’ (8)
where S, denotes the noise and S, denotes the signal.

By adding 50% (NSR = 0.5) Gaussian noise to the noise-free profile, we
generate a noisy profile as shown in Fig. 3(b). Obviously, it is easy to identify
the break point in the noisy profile, but the resolution of three events is lower
than the clean profile. Next, we compare the proposed denoising method with
EEMD method, wavelet noise reduction method and f-x deconvolution method.
Relative standard deviation of Gaussian noise in EEMD is 0.6 with the total
number of 300. The denoised results and removed noise of four methods are
shown in Figs. 4 and 5, respectively. Unlike the other noise reduction method,
our proposed method adaptively matches its decomposition to the smoothness

of the data [Fig. 4(d)]. This offers the opportunity to implement different
schemes for different events .

The proposed strategy is the simplest one and has led to good
performance on nearly all data sets we have tested.
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Fig. 3. The first synthetic example. (a) Clean data. (b) Noisy data.
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Fig. 4. Denoised results of the first synthetic example using (a) EEMD, (b) wavelet noise reduction,
(c) f-x deconvolution, and (d) the proposed method.
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Fig. 5. Removed noise of the first synthetic example using (a) EEMD, (b) wavelet noise reduction,
(c) f-x deconvolution, and (d) the proposed method.
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From the comparison of four methods, it can be seen that our proposed
method is better than the other three methods. Firstly, from the point of
removed noise, the proposed method is very random, which is consistent with
the added noise [Fig. 5(d)]. Although the removed noise of EEMD method is
also very random [Fig. 5(a)], the corresponding denoised section remains some
obvious useful signal [Fig. 4(a)]. The denoised section of f-x deconvolution
[Fig. 4(c)] is relatively better than wavelet noise reduction method [Fig. 4(b)],
especially the removed noise of wavelet noise reduction method [Fig. 5(b)] is
random except for the three break points. In other words, the break point in the
denoised section by wavelet noise reduction method is hard to identify, thus the
lateral resolution is lower than the other three methods. However, the vertical
resolution of f-x deconvolution [Fig. 4(c)] and wavelet noise reduction methods
[Fig. 4(b)] is lower than our proposed method [Fig. 4(d)]. Secondly, the seismic
traces of our proposed method are much closer to the initial noise-free synthetic
data in Fig. 3(a). The EEMD is not a recursive spatial filtering method,
therefore, no signal energy is passed to the next sample. By changing the
parameters of EEMD or wavelet threshold filtering, our proposed method can
produce the better results.
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Fig. 6. The second synthetic example. (a) Clean data. (b) Noisy data.
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Next, we make a complicated synthetic data set consisting of 64 traces
and 765 samples with a sample interval of 1 ms as shown in Fig. 6(a). Except
for one dip event and one horizontal event, there are two fault structures with
three break points and two anticline structures.

Like the first example, we generate a noisy profile as shown in Fig. 6(b)
by adding 50% (NSR = 0.5) Gaussian noise to the noise-free profile. As
displayed in the noisy profile, it is hard to identify the three break points
especially for the break point on the dip event, meanwhile, the boundary
between useful signal and noise is blurring. In order to compare with EEMD
method, wavelet noise reduction method and f-x deconvolution method, we
display four corresponding denoising results in a fair manner. That is to say, the
best results are shown in this paper. Relative standard deviation of Gaussian
noise in EEMD is also 0.6 with the total number of 300. The denoised results
and - removed noise are shown in Figs. 7 and 8, respectively. From the
performances of four noise reduction methods, we can see the removed noise
of the proposed method is the most random comparing to the other three
methods, which is consistent with the added noise. Although the removed noise
of f-x deconvolution method is also very random, the corresponding denoised
section obviously remains some random noise. The denoised section of f-x
deconvolution is relatively better than the wavelet noise reduction method,
especially the removed noise of wavelet noise reduction method is random
except for the three break points. However, the vertical resolution of both f-x
deconvolution and wavelet noise reduction methods is lower than our proposed
method. Moreover, the seismic traces of proposed method are closer to the
initial noise-free synthetic data in Fig. 6(a). Obviously, the proposed method
enhances the signal-to-noise ratio of any coherent energy and is therefore more
appropriate for this test data set, and also our method is better in protecting
edges and break points than the other three methods.

From the two synthetic examples, it can be seen that my our proposed
method is actually more efficient than the conventional methods.

To further test the denoising performance, our method is applied to a real
post-stack seismic data set consisting of 501 traces with a sample interval of 2
ms as shown in Fig. 9. The data set mainly includes discontinuous events,
non-stationary events and faults. In other words, we face the challenges of the
non-linear and non-stationary signals in this data set. From Fig. 9, it is obvious
that the useful signal is blurred by noise. The signal is no longer mapped to a
superposition of simple harmonics but rather a superposition of non-linear and
non-stationary ones. In order to compare with EEMD method, wavelet noise
reduction method and f-x deconvolution method, we display the corresponding
denoising results. The denoised results and the removed noise are shown in
Figs. 10 and 11, respectively. In this test, relative standard deviation of
Gaussian noise in EEMD is 0.8 with the total number of 600. Comparing with
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Fig. 7. Denoised results of the second synthetic example using (a) EEMD, (b) wavelet noise
reduction, (c) f-x deconvolution, and (d) proposed method.
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Fig. 8. Removed noise of the second synthetic example using (a) EEMD, (b) wavelet noise
reduction, (c) f-x deconvolution, and (d) proposed method.
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Field data

Fig. 9. Field data example.

the noisy and the denoised sections, the latter reflects the strata structure more
clearly, especially the obvious fault at 0.75 s in Fig. 10. The overall random
noise in Fig. 10 is weaker than the original section.

Our method attenuates some of the background noise but leaves the
crossing artifacts untouched (Fig. 11(d)). It also causes amplitude distortion by
partially removing useful reflector energy. The denoised section also attenuates
some background noise but very little amplitude distortion occurs. More
importantly, our method is able to remove the crossing artifacts, which leads to
a superior result [Fig. 11(d)]. Especially the removed noise of our method is
more random than the other three methods. Besides, the removed noise of the
proposed method hardly displays useful structure signal. The removed noise of
EEMD method is also very random [Fig. 11(a)], but the corresponding denoised
section is not very clean and the resolution is poor [Fig. 10(a)]. The denoised
section of f-x deconvolution [Fig. 10(b)] is relatively better than wavelet noise



RANDOM NOISE REDUCTION 243

reduction method [Fig. 10(c)], especially the removed noise of wavelet noise
reduction method [Fig. 11(c)] is random except for the faults and discontinuous
structures. However, the vertical resolution of f-x deconvolution and wavelet
noise reduction methods is much lower than our proposed method. It is obvious
that our method enhances the signal-to-noise ratio of all the coherent energy.
The denoised section of the proposed method is easier to be interpreted. In
general, although all four methods accurately retrieve curved events or
quasi-linear events, our proposed method has the least signal loss. We then
zoom some parts from the noisy field data, the denoised data, and the removed
noise for better comparison. The zoomed noisy field data is shown in Fig. 12.

FX Decon Proposed

200 300
Trace

(©) (@

Fig. 10. Denoised results of the field data example using (a) EEMD, (b) wavelet noise reduction,
(c) f-x deconvolution, and (d) the proposed method.
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The zoomed area is highlighted by the red frame box in Fig. 9. The zoomed
denoised data is shown in Fig. 13. The corresponding zoomed areas are
highlighted in Fig. 10. It is obvious that the denoised results are much cleaner
than the noisy field data, and most importantly the denoised data using the
proposed approach obtains the cleanest result. The zoomed datasets that
correspond to the blue frame boxes shown in Fig. 11 are displayed in Fig. 14.
It is salient that the proposed approach can remove the most noise while
preserve useful signals very well.

(a) (b)

Trace Trace

(©) ()

Fig. 11. Removed noise of the field data example using (a) EEMD, (b) wavelet noise reduction, (c)
f-x deconvolution, and (d) the proposed method.
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Fig. 12. Zoomed field data example.

Both the synthetic and the real seismic data examples display our method
moves more background noise compared to the conventional wavelet noise
reduction method. Unfortunately, not all steeply dipping energy is unfavourable
and removal of some IMFs could eliminate desired reflections. Thus, when the
random noise are very low, our method might remove steeply dipping
reflections.

DISCUSSION AND CONCLUSIONS

We have developed a new random noise reduction approach based on
wavelet threshold filtering and EEMD which is suitable for non-linear and
non-stationary signals. The key idea is to build more pure IMFs than EEMD
method to denoise the signal. Wavelet threshold filtering is applied to the high
frequency IMFs of each trace to obtain new high frequency IMFs so that our
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method can reduce the noise in the high frequency IMFs effectively. Application
of the proposed method to both synthetic and real seismic data shows good
results. Comparing to EEMD method, wavelet noise reduction method and f-x
deconvolution method, our proposed method shows better denoising
performances.

However,the proposed method is implemented trace by trace, thus, the
lateral continuity of denoised section is not optimal. The key factor is that the
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Fig. 13. Zoomed sections of denoised results using (a) EEMD, (b) wavelet noise reduction, (c) f-x
deconvolution, and (d) the proposed method.
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Fig. 14. Zoomed new sections of removed noise using (a) EEMD, (b) wavelet noise reduction, (c)
f-x deconvolution, and (d) the proposed method.

number of empirical modes for each trace is different trace by trace, but the
high frequency IMFs we selected in our method are fixed. When the structure
in the data is complicated, the fixed high frequency IMFs will cause lateral
discontinuity. In the future, we plan to investigate how to select the high
frequency IMFs according to the trace characteristic, which can improve the
adaptivity of the proposed method in this paper.
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