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ABSTRACT

Guo, P. and McMechan, G.A., 2017. Evaluation of three first-order isotropic viscoelastic
formulations based on the generalized standard linear solid. Journal of Seismic Exploration, 26: 199-
226.

Stress and strain relaxation times in the generalised standard linear solid (GSLS) define the
Q behavior as a function of frequency. Given Q, and Qg models, strain relaxation times are different
for P- and S-waves; P- and S-wave stress relaxation times within each mechanism can be the same,
when the 7 method is used to estimate relaxation times from Q with multiple relaxation mechanisms,
but can also be different (for example, when a single relaxation mechanism is used for both P- and
S-waves). Both Robertsson’s and Carcione’s viscoelastic formulations are based on the GSLS. In
Robertsson’s formulation, the same stress relaxation times are used for both P- and S-waves; in
Carcione’s formulation, P- and S-wave stress relaxation times can be different. Moreover, the
physical meanings of the P-wave stress and strain relaxation times in these two formulations are not
the same. They are calculated from the P-wave quality factor, and the bulk quality factor,
respectively; i.e., Robertsson’s and Carcione’s formulations have different parameterisations. To
demonstrate that they are equivalent when the P- and S-stress relaxation times are the same, we
derive the second-order viscoelastic equations in the frequency domain. We then generalise
Robertsson’s formulation to allow different stress relaxation times for P- and S-waves, by
reformulating the memory variable equations. The generalised Robertsson’s formulation is equivalent
to Carcione’s formulation. The seismograms modelled by Carcione’s, Robertsson’s and the
generalised Robertsson’s formulations are identical, when the input stress relaxation times are the
same for P- and S-waves. With different P- and S-wave stress relaxation times in the input model,
seismograms produced by Carcione’s and the generalised Robertsson’s formulations are
indistinguishable, while there are obvious differences with seismograms produced by Robertsson’s
formulation. The limitation of using the same stress relaxation times for P- and S-waves in
Robertsson’s formulation produces the differences, and leads to errors in the effective Q modelled
in the seismograms. Considering the accurate inclusion of intrinsic attenuation, Carcione’s and the
generalised Robertsson’s formulation are equivalent choices as they both allow different P- and S-
wave stress relaxation times. Robertsson’s original formulation is equivalent only when the P- and
S-wave stress relaxation times within each mechanism are the same. The three formulations have
comparable computational cost.
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INTRODUCTION

Seismic intrinsic attenuation can be significant, especially for reservoirs
with fluid saturated fractures and pores, or with gas clouds (Maultzsch et al.,
2007; Mangriotis et al., 2013). Velocity dispersion and amplitude loss (Q
effects) strongly affect the waveforms (Kang and McMechan, 1994; Yang et al.,
2015). Without properly including Q effects, errors may be introduced during
seismic modeling, imaging and inversion (Liao and McMechan, 1996; Tiwari
and McMechan, 2007; Prieux et al., 2013; Guo et al., 2016).

Q effects can be included using different rheological or mathematical
models during wavefield extrapolations (Liu et al., 1976; Kjartansson, 1979;
Ferry, 1980; Mozco and Kristek, 2005; Carcione, 2007; Moczo et al., 2007),
including the generalized standard linear solid (GSLS) and the generalized
Maxwell body (GMB). To incorporate intrinsic attenuation in time domain
seismic modeling, the time convolution in the stress-strain relation of the
attenuative media is removed by the introduction of memory variables (Day and
Minster, 1984; Emmerich and Korn, 1987; Carcione et al., 1988a; Day, 1998;
Kristek and Moczo, 2003). Day and Minster (1984) approximated the
viscoelastic modulus with a low-order rational function of frequency, the
coefficients of which can be determined by a Padé approximant method.
Emmerich and Korn (1987) proposed to use the GMB to approximate the
viscoelastic modulus, with improved accuracy compared to the Padé
approximation. Following Liu et al. (1976), Carcione et al. (1988a,b), used the
GSLS to approximate constant Q. Moczo and Kristek (2005) proved that GSLS
and GMB are equivalent. In this study, we focus on the viscoelastic
formulations based on the GSLS. Different formulations have been developed
with superposition of relaxation mechanisms using the GSLS, including
Carcione (1993); Robertsson et al. (1994); Xu and McMechan (1995);
Hestholm, (2002) and recently, Yang et al. (2015).

In the following sections, the first-order viscoelastodynamic equations
published by Carcione (1993) and Robertsson et al. (1994), are referred to as
Carcione’s formulation and Robertsson’s formulation, respectively. Xu and
McMechan (1995) introduced composite memory variables in a second-order
displacement-memory variable formulation to improve the computational
efficiency of Carcione’s formulation. Hestholm (2002) gave the velocity-stress
formulation for a curved grid based on Robertsson’s formulation. The first-order
formulation of Yang et al. (2015) is equivalent to Robertsson’s formulation. The
stress and strain relaxation times in the GSLS define the effective Q modelled
in the viscoelastic formulations. When multiple relaxation mechanisms are used
to fit constant Q behaviour as a function of frequency, they can be calculated
by the 7 method (Blanch et al., 1995; Hestholm et al., 2006), or by nonlinear
optimization with a positivity constraint (Blanc et al., 2016). When only one
relaxation mechanism is used, the stress and strain relaxation times can be
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calculated analytically from formulations of a standard linear solid (Carcione et
al., 2007).

Yang et al. (2015) compared the viscoelastic formulation that they
proposed, with Carcione’s formulation, using common P and S-wave stress
relaxation times. They showed there are obvious differences between
seismograms calculated by the two viscoelastic formulations. They reformulated
Carcione’s algorithm to a form similar to theirs, compared the two formulations,
and ascribed the seismogram differences to the asymmetry of the normal Z-
component stress with the normal X- and Y-component stress in Carcione’s
formulation. However, it is not correct to directly compare Carcione’s
formulation and the first-order equations in Yang et al. (2015), since the
physical meanings of the P-wave stress and strain relaxation times are not the
same. In Carcione’s formulation, the P-wave stress and strain relaxation times
are calculated from the bulk quality factor Q, (Carcione et al., 1988c), and in
Robertsson’s formulations and the equations in Yang et al., (2015), they are
calculated from the P-wave quality factor Q, (Robertsson et al., 1994; Yang et
al., 2015). The relation between Q, and Q, is given by Savage et al. (2010).

One of the main limitations in the formulations of Robertsson et al. (1994)
and Yang et al. (2015) is that the same stress relaxation time is used, within
each mechanism, for both P- and S-waves. This assumption is valid, when the
7 method (Blanch et al., 1995; Hestholm et al., 2006)) is used to calculate the
relaxation times, which is common for viscoelastic modeling with multiple
relaxation mechanisms, in which a Q(w) behaviour is fitted across
logarithmically-spaced frequencies. The stress relaxation time for the [-th
mechanism 7, = 1/w, where each w, is a selected representative angular
frequency (Blanch et al., 1995). However, when using the recently proposed
positivity preserving method (Blanc et al., 2016) for estimating relaxation times
with multiple relaxation mechanisms, or when only one relaxation mechanism
is used, both the stress and strain relaxation times depend on Q, and thus the P-
and S-stress relaxation times are usually not the same. With different P- and S-
stress relaxation times as the input model, Robertsson’s formulation is no longer
applicable. Using one relaxation mechanism is common when approximating

constant Q, in a narrow frequency band, to improve computational efficiency
(Carcione, 2007).

In this study, we demonstrate, when using the same stress relaxation times
for P- and S-waves, that Carcione’s formulation is equivalent to Robertsson’s
formulation, by deriving the second-order viscoelastic equations in the frequency
domain. We generalise Robertsson’s formulation to allow different P- and S-
wave stress relaxation times, by which we wish to provide correct viscoelastic
modeling results when the P- and S-wave stress relaxation times are different
in the model. Separate memory variables associated with P- and S-wave
modulus, respectively, are used in each stress component, instead of composite
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memory variables. Numerical examples are given for viscoelastic modeling with
the same (multiple relaxation mechanisms for P- and S-waves), and different,
P- and S-wave stress relaxation times (one relaxation mechanism for P-waves,
and one for S-waves) in the model, for approximating Q, and Qg. We compare
the seismograms calculated by Carcione’s, Robertsson’s, and the generalized
Robertsson’s formulations. Qp and Qg are measured as a function of frequency
(logarithmically-spaced) using the spectral ratio method (Bath, 1974; Kang and
McMechan, 1994) from the direct waves in the seismograms. Computational
cost is also considered. The aim of this study is to resolve the apparent
inconsistencies between the three viscoelastic formulations, and to understand
their consequences, and thus be able to use each of them appropriately.

ROBERTSSON’S AND CARCIONE’S VISCOELASTIC FORMULATIONS

The viscoelastic equations of Robertsson and of Carcione are shown in
Appendices A and B, respectively. The formulation in Carcione (1993) cannot
be directly reduced to 2D, since a linear combination of normal X- and Y-
component memory variables [e,;, and e,,, in Carcione et al. (1988a)] is used to
introduce the Q effects in the normal (Z)-component stress equation. We
introduce the Z-component memory variable (e;;), and replace the linear
combination of e,;, and e,,, with e,y in the Z-component stress-strain equation
(Xu and McMechan, 1995).

In this section, we derive the second-order vector displacement equations
in the frequency domain for both Robertsson’s and Carcione’s formulations, and
use them to discuss the equivalence of the two formulations. Throughout this
paper, in (the generalized) Robertsson’s formulation, we use ‘P’ and ‘S’ labels
to denote P- and S-waves, respectively; and we use ‘1’ and ‘2’ labels to denote
P- and S-waves in Carcione’s formulation.

Robertsson’s formulation

For Robertsson’s formulation, to derive the second-order viscoelastic
equations, with displacement instead of particle velocity, we reformulate egs.
(A-1) to (A-5) as

L

o; = 7'V-u — 2u%Veu — duy) + Z rj, fori=j, (1
=1

Q
I

L
i = 1o@u + du) + Y1, fori = j, 2)
=1
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iy = —(Uryry — (Ut ){(@/L)[(3/7,)— 1]V u
- Z(M/L)[(TE,/TU,)—l](V'u—ajui)}, fori =j,and/ = 1,...,L, 3)
féj = _(I/Tal)rgj - (1/701)(#/L)[(7§l/701)_1](aiuj + ajui)»

fori # j,and ! = 1,...,L, 4)
and

pu, = ajou, (5)

where oy are stress components, r{j is the memory variable component for the
[-th relaxation mechanism, i,j = X,y,z, and u is the displacement vector with
components u;, for i = x,y,z; 7¥ = {1 + (VL)EL_ [(B/r)— 11}, w¥ = p{[1
+ (1/L)ZY_,[(73/7,) — 1]}, and the letter ‘U’ refers to ‘unrelaxed’ (viscoelastic)
parameters. m = N + 2u, A\ and p are relaxed (elastic) Lamé constants, and p
is mass density. L is the number of relaxation mechanisms for both P- and
S-waves, 7,, s the stress relaxation time for the /-th mechanism for both P- and
S-waves, and 7%, and 73, are strain relaxation times for the /-th mechanism for
P- and S-waves, respectively. The values of the relaxation times are space
dependent. The dot and double-dot over variables indicate first-order and
second-order time derivatives, respectively.

Applying a Fourier transform over time to the memory variable egs. (3)
and (4), we get

(wr, + DF; = {=(@/L)[(5/7,)—1]V-i
= 273/ 1) —11(V-u—9;0)} , fori=j,and/ = 1,...L, (6)
and
(iwry, + DFy = —W/D)[(73/7,)—11(8;0,+ 3,1,
fori #j,and/ =1,...,L, (7)

where @, §; and fj; are the Fourier transforms of u, u; and rf, w is the angular
frequency, and i = +/—1.

Egs. (6) and (7) have structures similar to eqgs. (1) and (2). Fourier transforming
egs. (1), (2) and (5), and with algebraic operations to eliminate f{j and a;, we
obtain the second-order derivative displacement version corresponding to
Robertsson’s first-order particle velocity and stress formulation [egs. (A-1) to

(A-5)]
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L
—peti = V{x[1l + (L) ¥, [(F/r.)—1]
=1

L
— (L) Y. {11/ Gor,+ DI 7,0 — 11}V -}
(=1

L
— vx{ull + QL) Y (7370 —1]
=1

L
— (/L) ¥ {I(1/Gwr,+ DG 7,) — 113V xa)

=1

L
= V{x(1/L) Y, [(1 +iwr?)/(1 +iwr,)]V i}
=1

L
— Vx{u(1/L) Y, [(1 +iwr$)/(1 +iwr, )]V X@} . (8)

I1=1
From eq. (8), the P- and S-wave components can be projected as

L
—paly = V{r(1/L) Y, [(1 +ier")/(1 +iwr,)]V-d} , 9)

=1
and

L

—paliiy = —Vx{u(1/L) Y. [(1+iwrs)/(1 +iwr, )]V X0} . (10)

=1

If we select 7,, = 75, = 75, in eq. (8), and inverse Fourier transform eq. (8) to
the time domain, we have

pii = V(7V-u) = V X (uV X u) , (11)
which is the second-order wave equation in an elastic medium (Aki and
Richards, 1980).

Carcione’s formulation
The difference between Carcione’s and Robertsson’s formulation is in

their parameterizations. Carcione (1993) uses the bulk quality factor Q,, instead
of Qp, to introduce P-wave attenuation. Thus the P-wave stress and strain



ISOTROPIC VISCOELASTIC FORMULATIONS 205

relaxation times in Carcione’s formulation have different physical meanings than
those in Robertsson’s formulation. To evaluate the equivalence of the two
formulations, we now derive the second-order displacement equation
corresponding to Carcione’s first-order formulation [egs. (B-1) to (B-6) in
Appendix B].

We use the equations of motion [eq. (A-10)] and the stress-strain relation
[eq. (A-12)] in Appendix A of Carcione et al. (1988c), which are

and
5;] = (1/D)(M$ - Mg)‘sijékk + M(z:g'ij s (13)
where o ; is the derivative of oy in the j space direction, ¢; are the normal (i=j))

and shear (i # ) strain components, and &;, G and &; are the Fourier
transforms of oy, u;, and ¢;, respectively. 6; = 1, wheni = j, and 6; = 0,
when i # j. M{ and MS are complex moduli, associated with P- and S-waves,
respectively.

With the definition of the complex Lamé constants \© = (1/D)(M{ — MS)
and u© = 1AMS (Carcione et al., 1988c), eq. (13) can be transformed into

3y = N°5,0u; + p@y, + ou) . (14)

=)

Substituting eq. (14) into eq. (12), we obtain the second-order derivative version
of Carcione’s first-order formulation [egs. (B-1) to (B-6)]

—pw’t = V[(\® + 2u)V-ii] — V X (uV X @) , (15)

where \© + 2u® is the complex P-wave modulus, and uC is the complex S-wave
modulus.

Conditional equivalence of Robertsson’s and Carcione’s formulations

From eqs. (9) and (10), the complex moduli for Robertsson’s formulation
are

L
M§ = M, {(1/L) E [(1+iwr™)/(1+iwT,)]} , for m = p,s, (16)

=1
where M, = N + 2u and M = p, are the relaxed moduli for P- and S-waves.
Eq. (16) is the same as the complex modulus formulation (obtained by Fourier

transforming the stress relaxation function) in Carcione (2007). Setting 7!} =
70 =7 and Ly = L, = L, MJ = A® + 2u€, and M$ = u€, the second-order
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version [eq. (15)] of Carcione’s first-order formulation is equivalent to the
second-order version (equation 8) of Robertsson’s first-order formulation. Under
the assumption that 7{) = 7% = 7, and L, = L, = L, Robertsson’s
formulation (Appendix A) is equivalent to Carcione’s formulation (Appendix B).
The effective quality factors of the P- and S-waves can be obtained using Q,, =
Re(M$)/Im(MY), for m = p,s. Refer to Savage et al. (2010) for the relation
between Q, and Q.

THE GENERALIZED ROBERTSSON’S FORMULATION

Carcione’s formulation is more general than Robertsson’s formulation,
since the former allows different stress relaxation times for each P and S-wave
relaxation mechanism. For Robertsson’s formulation, the assumption of 7}, =
75, = 7, is fine when multiple relaxation mechanisms are superimposed to
approximate constant Q, using the 7 method to estimate relaxation times, but not
when using only one relaxation mechanism, or when the other methods (for
example, the positivity preserving method (Blanc et al., 2016) are used to
estimate relaxation times from Q, where the P- and S-stress relaxation times are
Q-dependent. When only one relaxation mechanism is used to approximate
constant Q around frequency w,, the equations for calculating the stress and
strain relaxation times are (Carcione, 2007)

7y = Qu/ll + V1+QD]w, (17

o= 1T (18)

and

where Q,,, for m = p,s are the quality factors of P- and S-waves, and wj is the
dominant frequency of the source wavelet. Both the stress and strain relaxation
times are functions of quality factor Q.

Generalization of Robertsson’s formulation

The purpose of generalising Robertsson’s formulation is to introduce
different P- and S-wave stress relaxation times into the formulation, so it can be
used when the P- and S-stress relaxation times are different in the input model.

The constitutive equation for the normal stress component (Robertsson et
al., 1994) is
oy =I % V-u—-2M % (Vu—du) , fori=}, (19)

J

and for the shear stress component (Robertsson et al., 1994) is
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Uij = M * (ajui + a'luj') , for i # j, (20)

where we introduce different stress relaxation times, and define the relaxation
functions for P- and S-waves as

LP

I = {1 + (1/L) ), (/) —1le "™ H() , 1)
=1
L,

M = u{l + (I/L) Y, [(5/75)—1]e "V }H() 22)
[=1

T=N+2un, (23)

and 7Y, where m = p,s, are the stress relaxation times of the /-th mechanism
for P- and S-waves, respectively. * is the convolution operator, H(t) is the
Heaviside function, and L, and L are the numbers of P- and S-wave relaxation
mechanisms, and thus can be set to be different or the same (Carcione, 1993).
Usually in viscoelastic modeling, we set L, = L, but this is not necessary.

To introduce different stress relaxation times for Q, and Qg, we define
separate memory variables ' associated with II, and rY} for M, where i,j =

X,y,z, by evaluating the convolution. Taking the time derivatives of egs. (19)
and (20), we obtain

L, L.

Gy = TV = 2u9(Vov — Q) + (L = Y M) fori =], (24)
Ls =1 =1

a; = pl@y, + dyv) + E Y, fori # j, (25)
=1

™ = —(7r/L)[(7§,/7’§,’,)~1](1/75’,,)e_‘/751H(t) *V-y , for I=1,....L,, (26)
and

Y = —2WDI(ri/r) —111/re” T HE + (Vv = 3y
fori =j,and! = 1,...,L, (27)
and for the off-diagonal memory variable components,
M = = @D/~ UU/r)e” ™ HE© * @y, + dv)
fori # j,and/ = 1,...,L,. (28)

Taking a time derivative, egs. (26)-(28) become
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W= —/2)r™ — (x/L)[(2/78) —11(1/7)V v , for [=1,....L,, (29)

_,.
Il

",")’ —(I/Tf,,)ri = 2w/D)(ry/75) — 11T (Vv — 0vy)
fori =j,and/ = 1,....,L;, (30)

and

M= —(l/rf,,)r“fj — (WD)[(r3/75) — 1A /T)(0v; + 0v)

')

fori # j,and!/ = 1,...,L,, (31)

where v is the particle velocity vector, and v;, for i = x,y,z are the particle
velocity components. The equation of motion is

v, = 30 - (32)

With the introduction of separate memory variables related to viscoelastic
relaxation functions (II and M in the isotropic elastic case), instead of using
composite memory variables for each stress component, we generalise
Robertsson’s formulation into a viscoelastic formulation with different stress
relaxation times for P- and S-waves. We refer to eqs. (24), (25) and (29)-(32)
as the generalized Robertsson’s formulation. When T = TU[ 7., and using the
composite memory variable rf instead of rYj and ", the generalized
Robertsson’s formulation reduces to Robertsson’s formulation.

In 2D, the viscoelastic generalized Robertsson’s equations are

vy = p7'[(30,,/3%) + (30,,/32)] , (33)

v, = p '[(30,,/0%X) + (30,,/07)] , (34)
LP s

G = 7YV — 2uY0v,/0z) + (Y, — Y MY 35)
=1 =1
L,

5, = TV-v — 2uY(dv,/9x) + (Z - Z ™My (36)
LS

&, = uU[(dv,/0x) + (3v,/02)] + Z ™M 37)

W= — /)™ — (w/L)[(2/72)—1])(1/7)V-v , for [=1,...,.L (38)

p>

B = —(U/rrks = 2W/D(ry/7) —11(1/73)(3v,/02)

for/ =1,...,L, 39
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iy, = —Urry, — 2W/L)(r3/75) — 11(1/75)(8v,/0x)

for/ = 1,....L,, (40)
and

..1.
Il

Yo = —(Wrry — WD) — N(1/73)[(0v,/0%) + (3v,/92)]

for/ =1,...,L,. (41)

Equivalence of Carcione’s and generalized Robertsson’s formulations

It is straightforward to extend the derivation of the second-order
derivative viscoelastic equation [eq. (8)] to obtain the second-order form of the
generalized Robertsson’s formulation. The second-order derivative generalized
Robertsson’s equation is

L

—pe’ii = V{m(1/L,) Y. [(1 +iwm)/(1+iwr)]V &}
=1

LS
— Vx{u(1/Ly) Z [(1+iwrs)/(1+iwrs)]V X1} . (42)
=1
The complex moduli are
LI“
M = M {(1/L) Y [(1+iwr™)/(1+iwr™)]} , form = ps. 43)

=1

Note that, compared with eq. (16), eq. (43) allows individual stress relaxation
times and numbers of relaxation mechanisms. We usually set the number of
relaxation mechanisms of P- and S-waves to be equal. The generalized
Robertsson’s formulation is equivalent to Carcione’s formulation without the
limitation of having the same stress relaxation times for P- and S-waves.

NUMERICAL EXAMPLES

In this section, we first consider P- and S-wave stress relaxation times that
are the same within each mechanism, and the strain relaxation times are
calculated using the 7 method (Blanch et al., 1995) with three mechanisms, from
a given Q model. Then we consider different P- and S-wave stress relaxation
times, by using a single relaxation mechanism, with P- and S-wave stress and
strain relaxation times calculated from eqs. (17) and (18). All the numerical
examples in the following sections are calculated using the first-order equations,
eqgs. (A-1) to (A-5) (for Robertsson’s formulation), eqgs. (B-1) to (B-6) (for
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Carcione’s formulation), and egs. (24), (25) and (29)-(32) (for the generalized
Robertsson’s formulation).

A homogeneous isotropic viscoelastic model

We start with a simple homogeneous model, with the relaxed P-wave
velocity Vp = 3000 m/s, S-wave velocity Vg = V,/1.7, Qp = 40, and Qg = 20.
The source is at (x, z) = (2.05, 2.03) km, and we use a composite explosive
P-wave and shear S-wave source, with a Ricker wavelet of 25 Hz dominant
frequency. The receivers are at depth z = 0.03 km.

Fig. 1 shows the X- and Z-components of particle velocity seismograms
calculated by Carcione’s and by Robertsson’s formulations using three relaxation
mechanisms, and the seismogram differences. The generalized Robertsson’s
formulation reduces to Robertsson’s formulation when the P- and S-wave stress
relaxation times are the same, and thus the seismograms for the generalized
Robertsson’s formulation are not shown. The first arrival is the direct P-wave,
and the second arrival is the direct S-wave. The seismograms computed by
Carcione’s (Figs. 1a and 1d) and by Robertsson’s (Figs. 1b and 1le) formulations
are visually identical (Figs. lc and 1f). When using multiple relaxation
mechanisms, the P- and S-wave stress relaxation times share the same values

a) Position (km) b) Position (km) c) Pasition (km)
: 2 24 24

6 0.0 1.2 36

0.56-4

d) o .. " L {oses

Fig. 1. X- (a-c) and Z- (d-f) components of particle velocity viscoelastic seismograms calculated by
Carcione’s and Robertsson’s formulations, and their differences, from left to right, respectively.
Three relaxation mechanisms (L = 3) are used, P- and S-stress relaxation times are the same.
Relative amplitude is scaled the same in all panels.
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(the reciprocals of the reference angular frequencies), which meets the
conditions for the equivalence of Carcione’s and Robertsson’s formulations.
Because Carcione’s and Robertsson’s formulations have different
parameterizations of the P-wave attenuation, the corresponding effective Q
values over frequency are not exactly the same; thus, after magnification of
Figs. 1c and 1f (not shown here), small differences in the P-wave seismograms
are detectable. However, as the S-wave attenuation parameterization is the same
in both formulations, the S-waves match exactly.

Fig. 2 shows Qp and Qg measured from the seismograms in Fig. 1. We
use the spectral ratio method (Béath, 1974; Kang and McMechan, 1994) to
measure Q as a function of frequency. Q, and Qg from the seismograms
calculated by Carcione’s formulation overlap with those measured from the
seismograms by Robertsson’s formulation. The measured Q, and Qg approach
the constant Qp, and Qg and the SLS approximations for frequencies ~ 6-50
Hz. The minor deviations of measured Q from the SLS approximation come
from the measurement error in the spectral ratio method.

a) 40 e b) g0 r—————
P Constant Qp P Constant Qs
Qp, Carcione Qs, Carcione O
,,,,, ; Qp, Robertsson 60 IS - Qs, Robertsson + n
30 L Qp, SLS L Qs, SLS ---=---
& STE e é T T me ey
B 20 - ""/‘ """ FE a 40 - "',"" A B f_
o S o .
=} g [ =1 S
10 Pl ek - 20 b -
0 I I I S N Nt I i 0 I I I S N Nt 14
1 10 100 1 10 100

Frequency (Hz) Frequency (Hz)

Fig. 2. (a) Qp and (b) Qg measured from the seismograms in Fig. 1. Solid line: constant Q; dashed
line: SLS approximation with three relaxation mechanisms; o: Q measured from seismograms
modelled by Carcione’s formulation; +: Q measured from seismograms modelled by Robertsson’s
formulation.

When using one relaxation mechanism, seismograms modelled by
Carcione’s, Robertsson’s, and the generalized Robertsson’s formulations are
shown in Fig. 3. Fig. 4 shows the differences between the seismograms
calculated by the Carcione’s and Robertsson’s formulations, and between those
of the Carcione’s and the generalized Robertsson’s formulations. The S-waves
simulated by Robertsson’s formulation (Figs. 3b and 3e) are different from those
modelled by Carcione’s (Figs. 3a and 3d) or the generalized Robertsson’s
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formulation (Figs. 3c and 3f). Obvious seismogram differences are observed in
Figs. 4a and 4c. There is no visible difference (Figs. 4b and 4d), between the
seismograms calculated by Carcione’s, and by the generalized Robertsson’s,
formulations.

With one relaxation mechanism to introduce P- and S-wave attenuation,
respectively, the P- and S-wave stress relaxation times are not the same
[eq.(17)]. To use Robertsson’s formulation, we set the stress relaxation time
equal to the P-wave value, which produces an error in the effective Qg modelled
during wavefield extrapolation, and thus affects the S-waveforms (Figs. 4a and
4c). Fig. 5 shows the measured Q, and Qg from seismograms of the three
formulations. For Robertsson’s formulation, there is an obvious deviation of the
measured Qg (the symbol +) from the SLS approximation (the dashed line) in
Fig. 5b, while the measured Q, (the symbol +) matches the SLS approximation
well in Fig. 5, and approximates the constant Q around the dominant
frequencies. If we set the stress relaxation times equal to the corresponding S-
wave value, the direct S-wave will be correctly modelled, and error will be
introduced into the P-wave attenuation. Both Carcione’s and the generalized
Robertsson’s formulations allow different values of P- and S-wave stress
relaxation times, which makes the Q, and Qg correctly modelled in the
seismograms, and the measured Q, and Qg are consistent with the SLS
approximation. Both 1000/Q, and 1000/Qg associated with Carcione’s and the
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Fig. 3. X- (a-¢) and Z- (d-f) component viscoelastic seismograms calculated by Carcione’s,
Robertsson’s, and the generalized Robertsson’s formulations, from left to right, respectively. One
relaxation mechanism (L = 1) is used, P- and S-stress relaxation times are different. Relative
amplitude is scaled the same in all panels.
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generalized Robertsson’s formulations decrease away from the dominant
frequency; the approximation to constant Q using one relaxation mechanism is
not as good as when using three relaxation mechanisms (Fig. 2), as expected
(Blanch et al., 1995), However, a single relaxation can still provide a reasonable
approximation to constant Q at the dominant frequency, if the seismic data have
a narrow bandwidth (Blanch et al., 1995).

An isotropic viscoelastic version of the Hess VTI model

The second numerical example uses the vertical P-wave velocity and
density of the 2D Hess VTI model as the relaxed P-wave velocity and density
in the isotropic viscoelastic model. We resample the model by keeping every
third grid point, and set the grid increment to 6.0 m. The relaxed S-wave
velocity Vg = V,/1.7. When V, < 4500 m/s, we set Q, = 100X V,/(1524
m/s), and when V, = 4500 m/s, we set Q, = 800. Qg = Qp/2. The resulting
V;, density, and the constructed Q, models are shown in Fig. 6. We use an
explosive P-wave source with a Ricker wavelet of 25 Hz dominant frequency.
The time step is 5.0E-4 s, and the total recording time is 3.0 s. The source is
at (x, z) = (3.0, 0.03) km, and the receivers are at depth z = 0.03 km.
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Fig. 4. X- (a, b) and Z- (c, d) component seismogram differences using one relaxation mechanism
(L = 1), P- and S-stress relaxation times are different; (a, c) seismogram differences between
Carcione’s and Robertsson’s formulations; (b, d) seismogram differences between Carcione’s and
the generalized Robertsson’s formulations. Relative amplitude is scaled the same as in Fig. 3.
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Fig. 5. (a) Qp and (b) Qg measured from seismograms in Fig. 3. Solid line: constant Q; dashed line:
SLS approximation with one relaxation mechanism; o: Q measured from seismograms modelled by
Carcione’s formulation; +: Q measured from seismograms modelled by Robertsson’s formulation;
x: Q measured from seismograms modelled by the generalized Robertsson’s formulation. ‘G in the
legends denotes ‘generalized’.

Fig. 7 shows the X- and Z-component seismograms without attenuation,
calculated by first-order elastic velocity-stress equations (Virieux, 1986). Fig.
8 shows the seismograms calculated using Carcione’s and Robertsson’s
formulations with three relaxation mechanisms, and their differences. When
compared with elastic seismograms without attenuation (Fig. 7), there is an
obvious amplitude decrease when attenuation is included (Fig. 8). Fig. 9 shows
X and Z component seismic traces at the representative position 2.4 km in Fig.
8. There is no visible difference between the seismograms computed by
Carcione’s and Robertsson’s formulations (Figs. 8 and 9), which are equivalent
when the P- and S-wave stress relaxation times are the same.

Fig. 10 shows the X- and Z-component seismograms using one relaxation
mechanism, using Carcione’s (Figs. 10a and 10d), Robertsson’s (Figs. 10b and
10e), and the generalized Robertsson’s (Figs. 10c and 10f) formulations. Fig.
11 shows the seismogram differences. Representative X- and Z-component
seismic traces from position 2.4 km are shown in Fig. 12. Obvious differences
are observed for the X- (Figs. 11a and 11c) and Z-component (Figs. 12c and
12d) seismograms of Carcione’s and Robertsson’s formulations using one
relaxation mechanism, obtained by setting the stress relaxation time in
Robertsson’s formulation equal to the P-wave stress relaxation time. Qg is not
correctly incorporated into Robertsson’s formulation. The difference in Qg will
influence both the P- and S-wave reflection and transmission coefficients (Sidler
et al., 2008), and thus there are differences in both reflected P- and S-waves in
Fig. 11. The seismograms are visually identical for Carcione’s and the
generalized Robertsson’s formulations (compare Figs. 11b and 11d, and Figs.
12a and 12b).
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Fig. 6. (a) P-wave velocity; (b) P-wave quality factor Q,; (c) density of the modified Hess model,

Vg = Vo/1.7, and Qg = Q,/2.
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Fig. 7. X- (a) and Z- (b) component elastic seismograms without attenuation.
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Fig. 8. X- (a-c) and Z- (d-f) component viscoelastic seismograms calculated by Carcione’s and (the
generalized) Robertsson’s formulations, and their differences, from left to right, respectively. Three
relaxation mechanisms (L = 3) are used, P- and S-stress relaxation times are the same. Relative
amplitude is scaled the same.
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Fig. 9. X- (a) and Z- (b) component seismic traces for the position 2.4 km of Fig. 8.
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Fig. 10. X- (a-c) and Z- (d-f) components of viscoelastic seismograms calculated by Carcione’s,
Robertsson’s, and the generalized Robertsson’s formulations, from left to right, respectively. One
relaxation mechanism (L = 1) is used, P- and S-stress relaxation times are different. Relative
amplitude is scaled the same in all panels, and are the same as in Fig. 8.
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Fig. 11. X- (a, b) and Z- (c, d) components of seismogram differences using one relaxation
mechanism (L = 1), P- and S-stress relaxation times are different; (a, c) seismogram differences
between Carcione’s and Robertsson’s formulations; (b, d) seismogram differences between

Carcione’s and the generalized Robertsson’s formulations. Relative amplitude is scaled the same as
in Fig. 8.
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Fig. 12. X- (a, c) and Z- (b, d) component seismic traces for the position 2.4 km of Fig. 10. (a, b)
seismic traces of Carcione’s and the generalized Robertsson’s formulations for one relaxation
mechanism (L = 1). (c, d) seismic traces of Carcione’s and Robertsson’s formulations.

Now consider the computational cost, of viscoelastic modeling by
Carcione’s, Robertsson’s, and the generalized Robertsson’s formulations, in
Table 1; with the number of model grid points 1000 in the X-, and 520 in the
Z-direction and 6000 time steps, the three formulations have comparable cost.
Although there is one more memory variable in the generalized Robertsson’s
formulation than in the traditional Robertsson’s formulation, the corresponding
increase in computational cost is offset because, compared with eq. (A-4), there
is less computational cost in each of the egs. (29) and (30).
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Table 1. Computational time (wall clock time multiplied by the number of threads used) for
Carcione’s, Robertsson’s, and the generalized Robertsson’s formulations. For comparison, for the
elastic modeling, L = 0, and the computational time is 1548 s.

Equation Carcione Robertsson G Robertsson
Computation time (s) L = 1 2136 2016 2076
Computation time (s) L = 3 2880 2692 2796

DISCUSSION
Extension to general anisotropic viscoelastic media

The generalized Robertsson’s formulation can be extended to general
anisotropic viscoelastic media [for anisotropic attenuation with the same
geometry as the anisotropic velocity (Zhu and Tsvankin, 2006)]. With Einstein
notation, the viscoelastic constitutive stress-strain relation in general anisotropic

viscoelastic media is (Christensen, 1982; Hestholm, 1999; Ruud and Hestholm,
2005).

Uij = C.jijmn * €mn > (44)

and

Cim(®) = Chnfl + (1/L) E [(rif/zim) — e~ =" YH(@) (45)
where o;; and €, are stress and strain components, respectively, and Cj,,(t) is
a fourth order time-dependent tensor called the relaxation function (Carcione et

, 1988c; Rudd and Hestholm, 2005). C%,,, is the relaxed modulus, 7™ and

‘Jm“ are the [-th strain and stress relaxation times for the Q tensor. Applying a
tlme derivative to eq. (44), we obtain

L
— ClIJJmn é + Z rfjmn , (46)
=1
where C‘f)mn is the unrelaxed modulus, and
Fhn = = (Cu/ L™/ = 1](1/7Ime V7 H) * gy

for/ =1,...,L. 47)
Applying a time derivative to eq. (47),

B = — (U™, — (U™ (Cn/ D™ 7™ = e

for/ =1,...,L. (48)
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Ruud and Hestholm (2005) derived similar anisotropic viscoelastic
equations, but with composite memory variables for each stress component,
which requires less memory than our approach, but with the limitation that the
same stress relaxation times have to be used for all Q values.

In the numerical examples, when using multiple relaxation mechanisms
for P- and S-waves, the stress relaxation times of P- and S-waves are the same;
both are the reciprocals of the selected angular frequencies, as 7, = l/w,
(Blanch et al., 1995). The P- and S-wave stress relaxation times can also be
different, when using other methods such as the positivity preserving method
(Blanc et al., 1995) to estimate relaxation times from Q. The fact that the P- and
S-wave stress relaxation times can be different for one relaxation mechanism,
or multiple relaxation mechanisms in the positivity preserving method, makes
the inclusion of different P and S-wave stress relaxation times in the viscoelastic
propagators necessary to obtain physically consistent results.

On the 1/L in the relaxation function of viscoelastic media

The generalized standard linear solid (GSLS) model has been widely used
for incorporating intrinsic attenuation into seismic modeling. However, apparent
inconsistencies have been observed in the definitions of the GSLS model; 1/L
is included, or not included, in the viscoelastic modulus and relaxation
functions. Later publications (Mozco and Kristek, 2005; Carcione, 2007)
indicate that there is a missing of 1/L in the GSLS model when Liu et al. (1976)
generalized the standard linear solid (L. = 1) model to include more than one
relaxation mechanisms (L = 1, the GSLS model), and thus suggest that an error
is introduced by omission of 1/L. However, here we prove that both definitions,
with and without 1/L, are correct. The formulation difference is caused by
different definitions of the strain relaxation times.

For the stress-strain relation in a viscoelastic medium based on the GSLS,
o=C % ¢, (49)
the relaxation function C(t) is defined [with 1/L, as by Moczo and Kristeki

(2005), Carcione (2007), Moczo et al. (2014), Yang et al. (2015), and Blanc et
al. (2016)], as

L
CH = C¥{1 + (L) Y, [(ru/7,) — 1]e” V™ H(®) , (50)
=1

or [without 1/L, as by Carcione (1993), Robertsson et al. (1994), Blanch et al.
(1995), Xu and McMechan (1995), Hestholm (1999) and Hestholm (2002)], as
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L

CH) = CY{1 + Y, [(rL/7) — 1le” V™ H(@) . (51)
=1

Note that, to differentiate between the relaxation times in egs. (50) and (51), we
use 7, and 7, for strain and stress relaxation times in eq. (51). In the
viscoelastic formulations of the previous sections, we adopt the definition of
relaxation function in eq. (50). Now we prove that these two definitions are
equivalent.

Fourier transforming eq. (50) and applying some algebraic operations,

L
(MR/L) Y [(1 +iwr,)/(1 +iwr,)]

=1

M(w)

L
MR Y {[(1 +iwr,) /LI +iwr,)} . (52)
=1

Similarly with eq. (51), we obtain

L
M) = MX{1 = L + Y, [(1+ier)/(1 +iwr)]
=1

L
= MR Y {liw(rl,—7l) + (1+ier,)/LI/(1+iwr))} . (53)
=1
Setting M (w) = M(w)', and 7,, = 7, we have
Ty — 1l = Lzl—1l) . (54)

Thus we have proved that these two definitions of relaxation function in egs.
(50) and (51) are equivalent; both of them are correct, and the difference in
appearance comes from different definitions of strain relaxation times. In other
words, the formulations for estimating relaxation times from a given Q model
has to be consistent with the definition of the relaxation function in the
stress-strain relations for the wavefield modeling.

CONCLUSIONS

We derive the second-order displacement equations for viscoelastic media
based on the GSLS, and use it to demonstrate that, with the same stress
relaxation times for P- and S-waves, Robertsson’s formulation is equivalent to
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Carcione’s formulation. Robertsson’s formulation is generalized to include
different P- and S-wave stress relaxation times, which improves the physical
consistency of Qp and Qg modelled in the seismograms. The generalized
Robertsson’s formulation is equivalent to Carcione’s formulation. With regard
to computational efficiency, the three formulations have comparable cost.
Considering both the accuracy and computational cost of intrinsic attenuation,
the generalized Robertsson’s and Carcione’s formulation are recommended,
since they contain the flexibility of different P- and S-wave stress relaxation
times, and have almost the same computational cost as Robertsson’s
formulation. The main difference between the generalized Robertsson’s and
Carcione’s formulation is in the parameterization. P-wave attenuation is directly
introduced by the P-wave quality factor (Qp) in the generalized Robertsson’s
formulation, and indirectly introduced by the bulk quality factor (Q,) in
Carcione’s formulation.

ACKNOWLEDGEMENTS

The research leading to this paper was supported by the Sponsors of the
UT-Dallas Geophysical Consortium. This paper is Contribution No. 1294 from
the Department of Geosciences at The University of Texas at Dallas.

REFERENCES

Aki, K. and Richards, P.G., 1980. Quantative Seismology: Theory and Methods. Sausalito, CA.

Bith, M., 1974. Spectral Analysis in Geophysics. Elsevier Science Publishers, Amsterdam.

Blanc, E., Komatitsch, D., Chaljub, E., Lombard, B. and Xie, Z., 2016. Highly accurate
stability-preserving optimization of the Zener viscoelastic model, with application to wave
propagation in the presence of strong attenuation. Geophys. J. Internat., 205: 427-439.

Blanch, J.O., Robertsson, J.O.A. and Symes, W.W., 1995. Modeling of a constant Q: Methodology
and algorithm for an efficient and optimally inexpensive viscoelastic technique. Geophysics,
60: 176-184.

Carcione, J.M., 1993. Seismic modeling in viscoelastic media. Geophysics, 58: 110-120.

Carcione, J.M., 2007. Wave fields in real media: Wave propagation in anisotropic, anelastic, porous
and electromagnetic media. Elsevier.

Carcione, J.M., Kosloff, D. and Kosloff, R., 1988a. Viscoacoustic wave propagation simulation in
the earth. Geophysics, 53: 769-777.

Carcione, J.M., Kosloff, D. and Kosloff, R., 1988b. Wave propagation simulation in a linear
viscoacoustic medium. Geophys. J. Internat., 93: 393-401.

Carcione, J.M., Kosloff, D. and Kosloff, R., 1988c. Wave propagation simulation in a linear
viscoelastic medium. Geophys. J. Internat., 95: 597-611.

Christensen, R., 1982. Theory of Viscoelasticity: An Introduction. Academic Press, San Diego.

Day, S.M., 1998. Efficient simulation of constant Q using coarse-grained memory variables. Bull.
Seismol. Soc. Am., 88: 1051-1062.

Day, S.M. and Minster, J.B., 1984. Numerical simulation of attenuated wavefields using a Padé
approximant method. Geophys. J. Internat., 78: 105-118.

Emmerich, H. and Korn, M., 1987. Incorporation of attenuation into time-domain computations of
seismic wave fields. Geophysics, 52: 1252-1264.



224 GUO & MCMECHAN

Ferry, J.D., 1980. Viscoelastic Properties of Polymers. John Wiley & Sons, New York.

Guo, P., McMechan, G.A. and Guan, H., 2016. Comparison of two viscoacoustic propagators for
Q-compensated reverse time migration. Geophysics, 81: S281-S297.

Hestholm, S., 1999. Three-dimensional finite difference viscoelastic wave modelling including
surface topography. Geophys. J. Internat., 139: 852-878.

Hestholm, S., 2002. Composite memory variable velocity-stress viscoelastic modeling. Geophys.
J. Internat., 148: 153-162.

Hestholm, S., Ketcham, S., Greenfield, R., Moran, M. and McMechan, G.A., 2006. Quick and
accurate Q parameterization in viscoelastic wave modeling. Geophysics, 71: T147-T150.

Kang, I.B. and McMechan, G.A., 1994. Separation of intrinsic and scattering Q based on frequency
dependent amplitude ratios of transmitted waves. J. Geophys. Res., Solid Earth, 99: 23875-
23885.

Kjartansson, E., 1979. Constant Q wave propagation and attenuation. J. Geophys. Res., Solid Earth,
84: 4737-4748.

Kristek, J. and Moczo, P., 2003. Seismic-wave propagation in viscoelastic media with material
discontinuities: A 3D fourth-order staggered-grid finite-difference modeling. Bull. Seismol.
Soc. Am., 93: 2273-2280.

Liao, Q. and McMechan, G.A., 1996. Multifrequency viscoacoustic modeling and inversion.
Geophysics, 61: 1371-1378.

Liu, H.-P., Anderson, D.L. and Kanamori, H., 1976. Velocity dispersion due to anelasticity;
implications for seismology and mantle composition. Geophys. J. Internat., 47: 41-58.

Mangriotis, M., Rector III, J.W., Herkenhoff, E.F. and Neu, J.C., 2013. Scattering versus intrinsic
attenuation in the vadose zone: A VSP experiment. Geophysics, 78: B49-B63.

Maultzsch, S., Chapman, M., Liu, E. and Li, X., 2007. Modelling and analysis of attenuation
anisotropy in multi-azimuth VSP data from the Clair field. Geophys. Prosp., 55: 627-642.

Moczo, P. and Kristek, J., 2005. On the rheological models used for time-domain methods of
seismic wave propagation. Geophys. Res. Lett., 32: L01306.

Moczo, P., Kristek, J. and Gélis, M., 2014. The Finite-Difference Modelling of Earthquake
Motions: Waves and Ruptures. Cambridge University Press, Cambridge.

Moczo, P., Kristek, J., Galis, M., Pazak, P. and Balazovjech, M., 2007. The finite-difference and
finite-element modeling of seismic wave propagation and earthquake motion. Acta Phys.
Slovaca, 57: 177-406.

Prieux, V., Brossier, R., Operto, S. and Virieux, J., 2013. Multiparameter full waveform inversion
of multicomponent ocean-bottom-cable data from the Valhall field. Part 1: imaging
compressional wave speed, density and attenuation. Geophys. J. Internat., 194: 1640-1664.

Robertsson, J.O.A., Blanch, J.O. and Symes, W.W., 1994. Viscoelastic finite-difference modeling.
Geophysics, 59: 1444-1456.

Ruud, B.O. and Hestholm, S., 2005. Modeling seismic waves in orthorombic, viscoelastic media
by finite-differences. Expanded Abstr., 75th Ann. Internat. SEG Mtg., Houston: 1771-1774.

Savage, B., Komatitsch, D. and Tromp, J., 2010. Effects of 3D attenuation on seismic wave
amplitude and phase measurements. Bull. Seismol. Soc. Am., 100: 1241-1251.

Sidler, R., Carcione, J.M. and Holliger, K., 2008, On the evaluation of plane-wave reflection
coefficients in anelastic media. Geophys. J. Internat., 175: 94-102.

Tiwari, U.K. and McMechan, G.A., 2007. Effects of incomplete parameterization on full-wavefield
viscoelastic seismic data for petrophysical reservoir properties. Geophysics, 72: 09-017.

Virieux, J., 1986. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference
method. Geophysics, 51: 889-901.

Xu, T. and McMechan, G.A., 1995. Composite memory variables for viscoelastic synthetic
seismograms. Geophys. J. Internat., 121: 634-639.

Yang, R., Mao, W. and Chang, X., 2015. An efficient seismic modeling in viscoelastic isotropic
media. Geophysics, 80: T63-T81.

Zhu, Y. and Tsvankin, I., 2006. Plane-wave propagation in attenuative transversely isotropic media.
Geophysics, 71: T17-T30.



ISOTROPIC VISCOELASTIC FORMULATIONS 225

APPENDIX A

VISCOELASTIC FORMULATION BASED ON THE GENERALIZED
STANDARD LINEAR SOLID (SGLS): ROBERTSSON’S APPROACH

The first-order velocity, stress and memory variable equations are
(Robertsson et al. 1994)

p\'/i == BJG,J . (A'l)
L
oy = Vv — 2u9(V-v — 8v) + Y1, fori = j, (A-2)
=1
L
Gy = pl@v; + dv) + Yt , fori = j, (A-3)

=1

r[ = —(I/Tcrl)rgj - (1/7'[,[){(7F/L)[(Tgl/7'a[)“l]V'V
= 2w/ /1) = 1(V'v — dv)}

fori =jand/ = 1,....L, (A4)
and
f{j = _(I/Tal)r{j - (I/Tal)(u/L)[(TZI/ToI)_1](ajVi + aiVj) )

fori # jand/ =1,....L, (A-35)

where v is the particle velocity vector; v, for i = x,y,z, are particle velocity
components; o; and rj, for i,j = x,y,z are the stress components and memory
variables, respectively, for the [-th relaxation mechanism. 7¥ = (A + 2u)M",
and p¥ = uM" are the unrelaxed P- and S-wave moduli, where MY = 1 +
(/DY (/1,0 =11, MY = 1 + (1/L)EY_,[(+3/7,)—1], and 7%, and 7}, are the
strain relaxation times of the /-th relaxation mechanism for P-waves (Qp) and
S-waves (Qg), respectively. 7,, is the stress relaxation time for the /-th relaxation
mechanism. L is the number of relaxation mechanisms used in the GSLS model.
The stress relaxation times for P- and S-waves are assumed to be the same.
Note that, throughout this paper, we use the relaxation function with the 1/L
factor. Compared with the original equations in Robertsson et al. (1994) (which
used the relaxation function without 1/L), the 1/L factor is added into the
memory variable equations and unrelaxed moduli. Please refer to the discussion
for more details.
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APPENDIX B

VISCOELASTIC FORMULATION BASED ON THE GENERALIZED
STANDARD LINEAR SOLID (SGLS): CARCIONE’S APPROACH

The first-order velocity, stress and memory variable equations are
(Carcione, 1993; Xu and McMechan, 1995)

,OVi = aJUU . (B—l)

a; = W\ + 2uYoy; + )\U(V-v — a‘Vi)

Il

L
+ [\ + @/D)p Z 4+ 2#2 o, fori=j, (B-2)
=1
L,
;= ul@yv, + dv) + M;r{j , fori # j, (B-3)
i = O(/L) — (ti/7)) , forl=1,...L, (B-4)

i, = [, — (O/DNGPIL,) — (third) |

fori =jand/ = 1,....L,, (B-5)
and
rfJ = (Qyv; + 6v)(¢><2)/L2) - (r /Ty, forl =1,...,L,, (B-6)

where v, for i = x,y,z, is the i- component of the vector particle velocities, oy,
for i,j = x,y,z is the stress component, rj;, for i,j = 1,2,3 and r{ are memory
variables for the /-th relaxation mechanism. © = (dv,/0x) + (dv,/dy) +
(0v,/0z). L, and L, are the numbers of relaxation mechanisms for P- and S-
waves. p is density, AV = (A + 2u)MY! — (2/D)wMY?, and ¥ = uMY? where
\ and p are relaxed Lamé constants, M = 1 + (1/LOL2,[(%/7%) — 1], and
o = [1 — X1/, for k = 1,2. 7% and 7% are the strain and stress
relaxation times for the P-wave (k = 1), and the S-wave (k = 2), the letter ‘U’
refers to ‘unrelaxed’, and D is the spatial dimension. Note that 7'} and 7V will
also affect S-waves, since they are calculated from the bulk quahty factor Q,;
following Carcione (1993), we call these the P-wave strain and stress relaxation
times. Note that, throughout this study, we use the relaxation function with the
1/L factor. Compared with the original equations in Carcione (1993) and Xu and
McMechan (1995) (which used the relaxation function without 1/L), the 1/L
factor is added into the memory variable equations and unrelaxed moduli. Please
refer to the discussion for more details.





