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ABSTRACT

Zhang, H., Liu, Q. and Hao, J., 2017. Least-squares reverse-time migration toward "true"
reflectivity. Journal of Seismic Exploration, 26: 183-198.

Conventional least-squares reverse time migration (LSRTM) usually aims to improve the
quality of seismic image, by removing the acquisition footprint, suppressing migration artifacts, and
enhancing resolution. We find that the conventional reflectivity defined in the LSRTM is related to
the normal-incidence reflection coefficient and the background velocity . Compared with the defined
reflectivity, our inverted result is approximate. With reflected data, LSRTM is mainly sensitive to
impedance perturbations. According to an approximate relationship between them, we reformulate
the perturbation-related system into a pseudo reflection-coefficient related one. Then, we seek the
inverted image through linearized iteration. With the assumption that the density varies gradually
compared to the migration velocity, only the knowledge of the velocity is required, although the

reflected waves are produced at impedance discontinuities. We validate our scheme using the 2D
Marmousi synthetic dataset.

KEY WORDS: LSRTM, linear inversion, normal-incidence reflection coefficient.

INTRODUCTION

Reverse-time migration (RTM) is recognized as a state-of-the-art
technology to image increasingly complicated subsurface structures. However,
RTM is often implemented as an adjoint operator (Claerbout, 1992), which
produces images of insufficient quality. Least-squares migration (LSM) can
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significantly improve the image quality, including suppressing migration
artifacts, removing the acquisition footprint, balancing the source illumination,
and enhancing resolution.

By linearized iterations, LSM attempts to seek the appropriate inverse
operator. The LSM method was first applied to Kirchhoff migration (Nemeth
et al., 1999; Duquet et al., 2000), then adapted to phase-shift migration (Kuehl
and Sacchi, 2002; Clapp et al., 2005; Kaplan et al., 2010; Huang and Schuster,
2012) and one-way wave equation migration (Wang et al., 2005; Wang and
Sacchi, 2007; Tang, 2008), and is now implemented with RTM (Dai and
Schuster, 2010; Wong et al., 2010; Dai and Schuster, 2013; Tan and Huang,
2014; Dutta and Schuster, 2014; Zhang et al., 2015).

Governed by the two-way wave-equation, least-squares reverse-time
migration (LSRTM) is able to handle complicated reflected waves. Under the
acoustic assumption, according to the Born approximation, the true velocity and
density models can be separated into the corresponding low-wavenumber
backgrounds and high-wavenumber perturbations. The background velocity
provides the kinematic information required to focus the waves to the scattering
points. LSRTM aims to seek the high-wavenumber reflectivity, which may
differ in physical definitions. Plessix and Li (2013) present a scheme to estimate
the "relative impedance perturbation”, assuming the velocity and impedance
models are known. Zhang et al. (2014) estimate impedance and velocity
perturbations, with the knowledge of background velocity and density. Because
our scheme aims to improve the quality of stacked image rather than angle
domain common image gather (Kuehl and Sacchi, 2002), the reflectivity defined
here is related to the normal-incidence reflection coefficient model (Claerbout,
1992), which can be regarded as a relative reflectivity. In this paper, we find
that although the reflected waves are generated at the impedance discontinuities,
our inversion result is independent of the background density model. That is,
only a kinematically correct background migration velocity is required as the
starting model in our reflectivity inversion. In this paper, "kinematically
correct” means that the background velocity should correctly predict the
traveltimes of reflected waves (Virieux and Operto, 2009) within a half
wavelength (Mora, 1987; Mora, 1989; Dai and Schuster, 2013) to prevent
cycle-skipping.

The paper is arranged as follows. Firstly, we formulate the forward
operator, and the reverse-time demigration (RTDM) system, where the defined
reflectivity is related to the normal-incidence reflection coefficient model. Then,
the adjoint operator, the reverse-time migration (RTM) system, is introduced.
Then, the linearized inversion is reviewed, followed by the numerical
implementation. Finally, we demonstrate our proposed scheme using the 2D
Marmousi synthetic dataset.
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METHODOLOGY

A forward operator, its adjoint operator, and the linearized inversion are
required in LSRTM. In this section, we first formulate our forward operator,
RTDM, in which the effective reflectivity is related to the normal-incidence
reflection coefficient scaled by the background velocity and thus can be regarded
as a relative reflectivity; then, we give the expression of the corresponding
adjoint operator, RTM; finally, we briefly review the linearized inversion.

Reverse-time demigration formulations
In the time domain, the acoustic wave equation is
{[1/vx)’](0*/08) — p(x)V[1/p(x)]-V}p(x,0) = s(t;x,) (1)

where v(x) denotes the velocity, p(x) denotes the density, and p(x,t;x,) denotes
the pressure created by the source s(t;x,) at x,. A true model can be separated
into a background vy(x) and a perturbation 6v(x). If we define 6v(x) =
V(X) —Vy(x), and 6p(x) = p(x)—p,(X), the velocity and density terms in eq. (1)
can be expanded as

Vve(x) + sv®))’ = [1/vy(x)’] — [26v(x)/vy(x)’] + O[6v(x)]] , )
and

Uloo(x) + 6p(x)] = [1/py(x)] — [8p(x)/0o(x)*] + Oldp(x)’] . €)

Then, the zero-order and first-order approximation equations, obtained
from eq. (1), can be, respectively, expressed as

{[1/Vo(x)%)(0*/08%) = po(X)V[1/po(X)]-V}po(x.1) = s(t;x) “4)
{[1/vo(x)%1(8*/8%) — po(X)V[1/py(X)] V}8p(x,1)
= {[26v(x)/vy(x)°1(8*/3) — VI[6p(x)/py(X)]'V}py(x,t) | ©)

where p,(x) is the incident wavefield, op(x) = p(x) — py(x) is the secondary
reflected wavefield caused by model perturbations év(x) and 6p(x). The
demigration operator consists of egs. (4) and (5). The wavefield perturbation
op(x) recorded at x; is the demigrated data: d(xg,t) = 0p(xg,t). Because the
background density py(x) is continuous and varies more gradually than the
background velocity v,(x), the term py(x)V[1/p,(x)]-V approximately reduces to
V2. However, there are still two different perturbations 6v(x) and §p(x) and two
different backgrounds v,(x) and p,(x) existing in the right-hand side of eq. (5).
It is more challenging to estimate the density model p,(x) than the migration
velocity vy(x).
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Our LSRTM is proposed here to improve the quality of the stacked
image rather than to obtain angle-domain common imaging gathers. As shown
in Appendix A, assuming the background density is continuous, we prove that
egs. (4) and (5) can be rewritten as

{[1/vo(x)*](0*/0t*) — V}py(x,t) = s(t;x,)
(6)
{[1/v(x)1(8*/01%) — V2op(x,t) = m(x)[Apy(x,)/0t] .

The reflectivity model defined here is m(x) = 4r(x)/v,(x), where r(x)
denotes the normal-incidence reflection coefficient model. Like the amplitude,
it is a relative conception rather than the true reflectivity model. We call this the
relative reflectivity or scaled reflectivity. The demigration system (6) looks
similar to the demigration system in Zhang et al., (2015), except for an
additional scaling of 4/vy(x). System (6) indicates that although the reflected
waves are generated at impedance discontinuities, it is reasonable to seek m(x)
even without the knowledge of py(x). Moreover, because the observed data are
generated from eq. (1) and the density term is neglected in system (6), the
inverted result is relatively correct in the linearized inversion using LSRTM
rather than FWI. That is the reason that we use the so-called "true" reflectivity.
For simplicity, the solution of the demigration system (6) can be represented in
a compact matrix form d = Lm, where d denotes the demigrated data 6p

recorded at receivers Xz, L denotes the demigration operator, m denotes the
reflectivity model.

Reverse-time migration formulations

According to the adjoint-state method (Claerbout, 1992; Plessix, 2006),
as shown in Appendix B, the reverse-time migration system, i.e., the adjoint of
system (6), can be expressed as

{[1/vy(x)!]1(8%/0t%) — V2pg(x,t) = s(t;x,)

(7)
{[1/V(x1(/91) — V2Ipa(x,t) = —dd(xg,0)/3t |

where pg(x,t) denotes the forward propagated source wavefield, and pr(X,t)

denotes the backward propagated receiver wavefield. Applying the
cross-correlation imaging condition yields

m0) = | [ pax.tixgps(x,tixg)dxdxs ®)

Then, the stacked image m(x) is normalized by smoothing the sum of
source illumination (Guitton et al., 2007), rather than by the source illumination
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shot-by-shot, to compensate for the geometric spreading. In this case, the
near-incidence imaging energy is enhanced (Beylkin et al., 1985), and it is
reasonable to approximate the near-incidence reflection coefficient with the
normal-incidence reflection coefficient. For simplicity, the solution of the
migration system (7) can be represented in a compact matrix form m = L'd,
where d denotes the observed data d recorded at receivers xz, LT denotes the
migration operator, and m denotes migrated image.

Linearized inversion

LSRTM aims to solve the reflectivity model m(x) by minimizing the
least-squares function:

F(m) = */zZ |Lm - a3 +<a/2>Z Im]3 , ©)

where L represents the forward modeling operator describing the demigration
system in system (6), m is defined as the stacked migration image, Ng denotes
the number of shots, (a/2) ¥, 2 is the regularization term and « is chosen
empirically. To minimize F(m) in eq. (9), we pursue the negative direction of
the gradient

NS S
9F(m)/dm = Y, L'(Lm — d) + Y, om , (10)

i=1 i=1

where L' denotes the adjoint of the forward modeling operator (Claerbout,
1992) describing the migration system (7), Lm — d denotes the residual
between predicted data and observed data. Then, the inverted reflectivity can be
approached by migrating the residuals iteratively. The numerical solution of
LSRTM can be found using the conjugate gradient algorithm (Nemeth et al.,

1999).

NUMERICAL IMPLEMENTATION

The proposed scheme that handles LSRTM toward the "true" reflectivity
can be performed as follows:

1. Demigrate the formerly inverted image to produce the demigrated data.

2. Backward propagate the residual between the observed data and the
demigrated data and cross-correlate with the source wavefield.
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3. Stack the migration results over shots to produce a gradient.

4. Perform an update of the inverted image using the conjugate gradient
method to minimize the objective function.

5. Check the objective function and the stopping criterion. Either stop here
or repeat steps from one to four.

NUMERICAL EXAMPLES
Four-layer model

A simple model is used to illustrate our scheme. The true velocity model
contains four layers with velocities of 1500 m/s, 2000 m/s, 1750 m/s, and 2250
m/s (Fig. 1a). The true densities of the same four layers are 850 kg/m?, 800
kg/m’, 1050 kg/m’, and 1000 kg/m* (Fig. 1b). The corresponding impedance
model is shown in Fig. 1c. Synthetic data are generated with single acquisition
geometry for one source in the center of the acquisition aperture. 301 receivers
are located on the surface of the model with a 5-m interval. A Ricker wavelet
with a peak-frequency of 20 Hz is the source function.

In our LSRTM, only the migration velocity (Fig. 2a) is required.
Compared with the conventional RTM image in Fig. 2b, the quality of the
LSRTM image in Fig. 2c is significantly improved. Moreover, as shown in Fig.
3, the LSRTM image approaches the "true" reflectivity.

Distance (km) Distance (km) Distance (km)
a) o 1 b) o 1 c) 0 1

1500 m/s 850 kg/m? 1.275*10°Nsm3

2000 m/s

Depth (km)
Depth (km)
Depth (km)

b
ied

1.8375%10°Nsm™?

Fig. 1. (a) The four-layer velocity model. (b) The four-layer density model. (c) The corresponding
impedance model. The observed data in our LSRTM is generated using (a) and (b).
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Fig. 2. (a) The background velocity used in our LSRTM. (b) The conventional RTM image. (c) The
LSRTM image. In part (c), the imaging amplitudes are balanced, and the resolution is enhanced.

Marmousi model evaluation

We evaluate our scheme using the 2D Marmousi model. The true
velocity and density models are illustrated in Figs. 4a and 4b. The synthetic
dataset is generated using an O(dt’,dx*) staggered-grid finite-difference stencil
(Virieux, 1987). In the acquisition geometry, 150 shots are excited at an interval
of 50 m, and 801 receivers are deployed with a 5-m interval for each shot. A
synthetic dataset at shot location 3 km is shown in Fig. 5a. A Ricker wavelet
with a 20 Hz peak frequency is used, and the recording duration is 4 s. The
smoothed migration velocity (Fig. 4c), is achieved by a two-sided exponential
smoothing filter with a window length of 100 m to blur the subtle details of true
velocity. Fig. 6a depicts the true reflectivity related to the normal-incidence
reflection-coefficient model and the background velocity.

After 20 iterations, we obtain the inverted LSRTM image in Fig. 6c.
Compared to the conventional RTM image in Fig. 6b, the amplitudes of the
reflectors are balanced, and the image resolution is enhanced. The demigrated
data at the shot location at 3 km, from the final inverted image, is shown in Fig.
5b. The data residual is depicted in Fig. 5c. We observed that the demigrated
data approaches the synthetic data well. However, since LSRTM aims to invert
the high-wavenumber reflectivity, there are some low-frequency data residuals
in Fig. Sc.
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Fig. 3. The comparison between the computed reflectivity curves (a) and (b) from Figs. 2b and 2¢
at distance (.75 km, respectively. The dashed lines are the reflectivity curves defined as m(x) =
r(x)/vo(x) for reference. Here, r(x) is the normal-incidence reflection coefficient estimated from
Fig. lc, and vy(x) is the background velocity in Fig. 2a. Although the reflected waves are generated
at the impedance discontinuities of Fig. lc, only vy(x) is used to produce the relative scaled
reflectivity.

v

In Fig. 6, we compare the initial stacked RTM image in Fig. 6b with the
inverted LSRTM image after 20 iterations in Fig. 6c. Obviously, because
least-squares solution implicitly aims to seek the inverse operator rather than the
adjoint operator, LSRTM can gradually suppress the side lobes of RTM to
achieve a high-resolution amplitude-balanced inversion result in Fig. 6¢c. Weak
energies around the target reservoir at the depth of 2500 m are remarkably
recovered and focused. More fine subsurface details are revealed.
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Fig. 4. (a) The true Marmousi velocity model. (b) The true Marmousi density model. (¢) Smooth
background velocity used in our LSRTM.
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Fig. 5. (a) The observed data in our LSRTM is generated using the models in Figs. 4a and 4b. for
a source at 3 km in Fig.4. (b) The demigrated data from the inverted reflectivity after 20 iterations.
(¢) Residual data between parts (a) and (b).

In Fig. 7, we compare the detailed traces extracted from Fig. 6c at
distance 4 km, with the true reflectivity curve from Fig. 6a. The two curves
look similar. This implies that our LSRTM is also a useful tool to compute the
"true" reflectivity, which may help interpreters to characterize the reservoirs.
Moreover, we demonstrate that although the reflected waves are produced at
impedance discontinuities, it is reasonable to estimate the normal-incidence
reflection coefficient related reflectivity model m(x) = 4r(x)/vy(x) even without
the knowledge of the background density model.

CONCLUSIONS

LSRTM is an effective technique for improving the imaging quality of
RITM. o (his paper, we find that the inverted high-wavenumber image
approaches the "true" reflectivity. The stacked inverted image is closely related
to the normal-incidence reflection coefficient model. Moreover, assuming the
background density being continuous and varying more gradually, and that does
not contribute to much to the reflectivity inversion, we demonstrate that
although the reflected waves are generated at impedance discontinuities, only an
accurate migration velocity model is required in our reflectivity inversion. Two
numerical experiments have verified our scheme.
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Fig. 6. (a) The true Marmousi reflectivity model defined as m(x) = r(x)/vy(x) for reference. (b) The
conventional stacked RTM image. (¢) Our LSRTM inverted image. By comparing at the arrows. the
image quality in part (c) is significantly improved.
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Fig. 7. (a) The detailed inverted reflectivity by our LSRTM. (b) The true detailed reflectivity m(x)
= 1(x)/vy(x). Both they are extracted at the same location of distance 4 km from Figs. 6a and 6c.

ACKNOWLEDGEMENT

The authors are grateful to the National Natural Science Fund of China
(under Grant No. 41574135) and to the National Major Project of China (under
Grant No. 2016ZX05008-007) for supporting this work. We thank the reviewer
Peter Mora for his constructive comments and textual suggestions that greatly
improved the manuscript.



REVERSE TIME MIGRATION 195

REFERENCES

Beylkin, G., Oristaglio, M. and Miller, D., 1985. Spatial resolution of migration algorithms.
Acoust. Imag., 14: 155-168.

Claerbout, J.F., 1992. Earth Soundings Analysis. Processing Versus Inversion. Blackwell Science
Pubications, Oxford.

Clapp, M.L., Clapp, R.G. and Biondi, B.L., 2005. Regularized least-squares inversion for 3-D
subsalt imaging. Expanded Abstr., 75th Ann. Internat. SEG Mtg., Houston: 1814-1817.

Dai, W. and Schuster, G.T., 2013. Plane-wave least-squares reverse-time migration. Geophysics,
78(4): S165-S177.

Dutta, G. and Schuster, G.T., 2014. Attenuation compensation for least-squares reverse time
migration using the visco-acoustic wave-equation. Geophysics, 79(6): S$251-S262.
Guitton, A., Valenciano, A., Bevc, D. and Claerbout, J., 2007. Smoothing image condition for

shot-profile migration. Geophysics, 72(3): S149-S154.

Huang, Y. and Schuster, G.T., 2012. Multisource least-squares migration of marine streamer data
and land data with frequency-division encoding. Geophys. Prosp., 60: 663-680.

Kaplan, S.T., Routh, P.S. and Sacchi, M.D., 2010. Derivation of forward and adjoint operators for
least-squares shot-profile split-step migration. Geophysics, 75(6): S225-S235.

Kuehl, H. and Sacchi, M.D., 2002. Robust AVP estimation using least-squares wave-equation
migration. Expanded Abstr., 72nd Ann. Internat. SEG Mtg., Salt Lake City: 281-284.

Mora, P.. 1987. Nonlinear two-dimensional elastic inversion of multi-offset seismic data.
Geophysics, 52: 1211-1228.

Mora, P., 1989. Inversion = migration + tomography. Geophysics. 54: 1575-1586.

Lailly, P., 1984. The seismic inverse problem as a sequence of before stack migrations. Conf.
[nverse Scatter., Theory and Application. Soc. Industr. Appl. Mathemat., 15: 206-220.

Nemeth, T., Wu, C. and Schuster, G.T.. 1999. Least-squares migration of incomplete reflection
data. Geophysics, 64: 208-221.

Plessix, R.E., 2006. A review of the adjoint-state method for computing the gradient of a functional
with geophysical applications. Geophys. J. Internat., 167: 495-503.

Plessix, R.E. and Li, Y., 2013. Waveform acoustic impedance inversion with spectral shaping.
Geophys. J. [nternat., 195: 301-314.

Schuster, Gi.T., 1993. Least-squares crosswell migration. Expanded Abstr., 63rd Ann. Internat. SEG
Mig., Washington D.C.: 110-113.

Tan, S. and Huang, L., 2014. Least-squares reverse-time migration with a wavefield-separation
imaging condition and updated source wavefields. Geophysics, 79(5): $195-S205.

Tang, Y., 2008. Wave-equation Hessian by phasc encoding. Expanded Abstr., 78th Ann. Internat.
SEG Mtg., Las Vegas: 2201-2205.

Ten Kroode, F., 2012. A wave-equation-based Kirchhoff operator. Inverse Probl., 28: 1-28.

Virieux, J., 1986. P-SV wave propagation in heterogeneous media, velocity-stress finite difference
method. Geophysics, 51: 889-901.

Virieux. J. and Operto. S., 2009. An overview of full-waveform inversion in exploration geophysics.
Geophysics, 74(6): WCCI127-WCC152.

Wang, J.. Kuehl, H. and Sacchi, M.D., 2005. High-resolution wave-equation AVA imaging:
Algorithm and tests with a data set from the Western Canadian Sedimentary Basin.
Geophysics, 70(5): S91-S99.

Wang, J. and Sacchi, M.D., 2007. High-resolution wave equation AVP imaging with sparseness
constraints. Geophysics, 72(1): S11-S18.

Zhang, Y., Ratcliffe, A., Roberts, G. and Duan, L., 2014. Amplitude-preserving reverse time
migration: From reflectivity to velocity and impedance inversion. Geophysics, 79(6):
S271-§283.

Zhang, Y.. Duan, L. and Xie, Y., 2015. A stable and practical implementation of least-squares
reverse time migration. Geophysics, 80(1): V23-V31.



196 ZHANG, LIU & HAO

APPENDIX A
REVERSE-TIME DEMIGRATION SYSTEM
According to the Fredholm integral equation, from egqs. (4-5), the

wavefield perturbation of shot xg recorded at receiver position x; can be
expressed as

dxgwixs) = | {180(0/0,(0) 17 [6G (xy, 1) VGo(X,wix5)]
— 2020V (X)/V(X)’ Gy, ;%8G (X 03X b (A-D)

Asymptotically, the background and perturbation waves, respectively, can
be expressed as

1w7(X:Xg)

Gy(x,w;xg) = A(X;x4)e (A-2)
and

8G (X, w:X) = A(xgixge TN (A-3)
The gradients of eqs. (A-2) and (A-3) are

VGy(X.w;Xs) = 1wVT(X;Xg)A(X;Xg)e WTXXs) (A-4)
and

VG (X, w3X) = 10V 7(Xg:X)A(Xg:X)e T (A-5)
Substituting eqs. (A-4) and (A-5) into eq. (A-1), at near-offset,

d0%) = = | eV + [/ pu(0)]}

X A(xiX)A(X;xg)e ClTXx) 7] gy (A-6)

which denotes the relationship between the data perturbation and the model
perturbation. A concrete form of the model perturbation ém(x) is

om(x)

[6v(x)/vo(x)] + [8p(x)/0y(x)]

SOV [py(X)Vy(X)] = SIZ(X)/Z\(x) (A-7)
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where Z(x) = 6(x)v(x) denotes the impedance model. Ten Kroode (2012)
introduces an approximate relationship between the model perturbation ém(x)
and the reflection coefficient r(x), for the near-offsets case, which can be
expressed as

1(X) = [iw/2vy(X)|[0Z(x)/Zy(x)] = [iw/2vy(X)]om(x) . (A-8)
Substituting eq. (A-8) into eq. (A-6), we have
d(xpwiXg) = | i6l4(0/N(0IAX AKX e T TN gy (A9)

Finally, from eq. (A-9), the reverse-time demigration system, eqs (4-5),
can be written as

{[I/Vo(x)z](az/alz) - Vz}p(,(x,t) = s(t:x,)
{[1/v0(x)2](aﬁ/at3) - VZ}(Sp(x,l) = [4r(x)/vy(x)]|dpy(x,0)/at] (A-10)
d(xg,t) = Op(Xg,t) .

Here, the reflectivity related to the normal-incidence reflection coefficient is
defined as

m(x) = 4r(x)/vy(x) . (A-11)

APPENDIX B
REVERSE-TIME MIGRATION SYSTEM

Eq. (A-10) is the forward operator defined as d(xg,t;Xs) = L[m(x)]. Now
we try to find the transpose operator ny(x) = L'[d(xg,t;Xg)]. According to the

dot product test (Claerbout, 1992), for a function d(xg,t;Xs) in the data domain,
the transpose operator m(x) is defined as

| meomedx = § [ doewixg-doc,wixgdxdodsg (B-1)
Eq. (A-10) can be written as

d(xg,w;xg) = SSiwm(x)GR(xR,w;x_)GS(x,w;xS)dwde , (B-2)
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where Gg(xg,w;X) and Gg(x,w;Xs) denote the receiver and source wavefields,
respectively. Substituting eq. (B-2) into eq. (B-1),

m) = | || —iod0o,wx) Ge(x, 0% Gex,0ix)dodxedxs . (B-3)

Finally, the transpose operator, the reverse-time migration system, can be
written as

{[1/vo(x)*1(8%/3t%) — V}ps(x,t) = s(t;x,)
{[1/vo(x)*1(0*/0t%) — VZpg(x,t) = —[dd(xg,t;x,)/3t] . (B-4)

Applying the cross-correlation imaging condition for all shots yields

M0 = §§ e tixgpsx tixg)didxg (B-5)





