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ABSTRACT

Chen, G., Fu, L.-Y., Chen, K.F., Sun, W., Wei, W. and Guan, X., 2017. Calculation of the
seismic imaging complexity of complex geological structures. Journal of Seismic Exploration, 26:
81-104.

Quantitative analysis of geological complexity in terms of seismic imaging is an important
way to measure the coherent interaction of geological heterogeneity spectra with the migrator used.
Based on previous studies, we introduce several new strategies to evaluate the complexity of
subsurface heterogeneous media, the main features of which are use of a velocity co-occurrence
matrix for velocity variations and use of the Hough transform for dip-angle calculations. First, the
velocity co-occurrence matrix is created by statistically classifying adjacent-point velocity contrasts,
after which the scaling characteristics of migrators are directly incorporated into the matrix for
presenting seismic imaging complexity. Second, vertical velocity variations are also taken into
account using a depth-velocity co-occurrence matrix. Third, we apply the high-precision Hough
transform to locate geological interfaces and estimate the dip angle of each point before calculating
angular complexity. Finally, considering the indivisibility of the effect of both lateral/vertical
velocity variations and dip angles, we define a comprehensive coefficient to assess the seismic
imaging complexity of complex geological structures. Tests on the 2D SEG slat model and field data
demonstrate that the new strategies proposed for evaluating geological complexity are reliable and
applicable to different degrees of geological complexity due to the sensitivity of the method for
detecting small and large velocity contrasts as well as dip-angle variations.

KEY WORDS: velocity co-occurrence matrix, Hough transform, geological complexity,
relative error function, seismic imaging.
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INTRODUCTION

The majority of hydrocarbon-bearing formations in China are located in
the northwestern basins and eastern plains. After multiple stages of tectonic
activity, the northwestern compressional basins display extremely complex
geological structures, such as steeply dipping reverse thrusts; salt-pierced
conformations; and high, steep faults. In contrast, in the eastern plains, the
subsurface structures are mainly dominated by numerous tensile fracture belts
comprising tilted faults and torsional deformation. All these complex structures
are challenging for seismic imaging because of their strong lateral heterogeneity
and dip angles. The interactions of imaging wavefields with heterogeneous slabs
in seismic migration has been addressed in several geophysical studies: imaging
accuracy, velocity variations, and dip angles are closely correlated at various
scales. Quantitative evaluation of geological complexity as well as seismic
imaging complexity is important for optimizing seismic data acquisition;
improving seismic processing and interpretation; and, in particular, selecting an
optimal migration method for a given seismic dataset to achieve the best
compromise between imaging quality and computational efficiency.

Over the past few decades, numerous migration methods have been
developed to image complex structures with varying degrees of complexity at
different computational costs. There are various methods available for data
processing, many of which may be more than adequate to the task. There is no
quantifiable criterion to guide the choice of methods in terms of geological
complexity. For a given seismic dataset, the ideal migration method should
exactly fit the geological complexity to ensure imaging accuracy at a minimal
computational cost. Geological complexity is a relative concept in seismic
migrators, i.e., a complex geological structure presents different complexities
to different seismic migrators. To quantitatively assess this type of seismic
imaging complexity, correlating the scaling characteristics of heterogeneities (in
both lateral velocity variations and dip angles) with those of migrators is
necessary. Fu (2010) proposed a tentative strategy for quantitative evaluation of
the complexity of subsurface heterogeneous media to determine which scales of
geological heterogeneities are captured by waves. In this strategy, geological
heterogeneities are expressed as the slowness- and angular-heterogeneity spectra
to quantify the velocity contrasts and dip-angle distributions of complex
geological structures, respectively. On the other hand, the scaling characteristics
of a propagator are measured through dispersion analysis by its angular spectra
plotted against refractive indexes and propagation angles. Finally, a parameter,
which is termed the complexity coefficient, is defined by associating the
geological heterogeneity spectra with the propagator’s angular spectra to
understand the coherent interference between the heterogeneity of the medium
and the scaling characteristics of the propagator. This strategy provides a means
of quantitative analysis of geological complexity in terms of seismic
propagators. From application to Kugqa field data (Dong et al., 2011; Fu et al.,
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2013), the method appears to be reliable in most cases, except in some special
situations due to its inherent defects in the following aspects: (1) the slowness-
heterogeneity spectrum expressed as a velocity probability density cannot reflect
lateral velocity variations exactly; (2) the method takes no account of vertical
velocity variations that may complicate wave propagation, particularly in the
presence of a high-to-low velocity reverse; and (3) the angular-heterogeneity
spectrum obtained by a simple windowed scanning algorithm cannot achieve an
accurate dip-angle distribution when geological interfaces in seismic profiles are
characterized by low continuity, a high degree of curvature, or significant cross
bedding.

In this article, the strategy is extended to seismic imaging. Particular
attention is paid to overcoming the limitations mentioned above by means of
several algorithms. First, a velocity co-occurrence matrix (VCM) is used to
highlight velocity variations by statistically classifying adjacent-point velocity
contrasts. The matrix can detect subtle velocity variations through careful choice
of the maximal contrast. Furthermore, the scaling characteristics of migrators
are directly incorporated into the matrix for the presentation of seismic imaging
complexity. Second, vertical velocity variations are taken into account. Third,
we introduce the Hough transform to improve the dip-angle calculation, by
which both the position and angle of each point along an interface can be
precisely detected. Finally, as the effect of both lateral/vertical velocity
variations and dip angles cannot be separated for assessment in the seismic
imaging procedure, we introduce a comprehensive coefficient to assess the
seismic imaging complexity of complex geological structures. Some numerical
examples with salt-pierced structures and complex faults are used to illustrate
the applicability and performance of these techniques.

ANALYSIS OF SEISMIC IMAGING COMPLEXITY
Angular spectra of seismic migrators

With the requirement of accuracy in seismic imaging, an increasing
number of migration methods have been developed to image steep dips under
strong velocity contrasts. In general, a wave-equation-based migrator has an
analytical dispersion equation to quantify its accuracy. It is possible to calculate
the analytical dispersion equation using an angular spectrum in which the
imaging accuracy is displayed as functions of velocity perturbation and
propagation angle. In this article, we take Fourier-transform-based methods as
examples for dispersion analyses due to their many desirable properties, such
as analytical wavefield extrapolation, algorithm simplicity, high computational
efficiency, amplitude preservation by honoring Snell’s law naturally, and

immunization against both grid dispersion and operator splitting errors occurring
in 3D cases (Fu, 2005).
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After the phase-shift migrator (Gazdag, 1978) for laterally homogeneous
slabs, several typical Fourier migrators for wavefield extrapolation have been
designed for lateral velocity variations by approximating the square root
equation with different accuracies and computational costs, such as the split-step
Fourier (SSF; Stoffa et al., 1990) or phase-screen migrator (Wu, 1996) for
either weak-contrast slabs or small propagation angles; the pseudoscreen (Wu,
1996; Huang et al., 1999) and generalized screen migrators (de Hoop et al.,
2000; Le Rousseau and de Hoop, 2001) for large-contrast slabs; the high-order
separation-of-variables screen migrators (Fu and Duan, 2002; Fu, 2006); and
the Fourier finite-difference migrator (FFD; Ristow and Riihl, 1994) for
strong-contrast slabs. Let u(k,,z) denote the 2D time-harmonic scalar wavefield
in the frequency-wavenumber domain, where k, is the wavenumber with respect
to x and z is the depth. For wavefield extrapolation through a laterally
heterogeneous slab Az, these Fourier migrators can be generally expressed as
u(k,,z + Az) = u(k,,z)exp(ik,A), where k2 + k? = kJ and the wavenumber k,
= w/v, with the constant reference velocity v, for the slab. In Fourier migration
techniques, two steps are involved in wavefield extrapolation: the phase shift in
the wavenumber domain by a reference velocity and the phase-screen interaction
(plus an extra finite difference (FD) implementation for the FFD) in the space
domain. The procedure is repeated for each frequency and each slab. A fast
Fourier transformation is frequently used to shuttle wavefields between these
two domains.

The intermediate wavefield (k,,z) can be obtained by different Fourier
migrators for different accuracies. For instance, the SSF method takes G(k,,z)

= FT,[u(x,z)exp{ik,Az(n(x) —1)}] with the dispersion equation
K+ k-0-DP =1,

where FT, is the forward Fourier transform (x — k,) and n(x) the refractive
index.

For the FFD, the corresponding dispersion equation can be rewritten as
k, = VA-k) +n =1+ ) {ak/[1 + bmk]} , (1)
i=1

where @; and b; functions of n changing with lateral velocity variations. The
third item on the right-hand side of eq. (2) is called the parabolic correction
term, which is incorporated to handle strong lateral velocity variations. The
cross-coupling of k, and n in this term indicates that eq. (1) is not a
separation-of-variables operator expression and consequently requires an extra
implicit FD implementation.
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Based on these dispersion equations, it is possible to measure the imaging
accuracy as functions of lateral velocity variation and propagation angle. The
relative phase error for imaging accuracy can be defined as e = 6¢ — 1, where
0¢ is the phase perturbation. Using the dispersion equations, the correlation of
the propagation angle 0, the refractive index n, and the imaging accuracy e can
be explicitly expressed as an angular spectrum of the cross-plot of propagation
angles and refractive indexes. For instance, the SSF and FFD migrators
correspond to the following respective angular spectra:

essr = p(,O)sse = | /(1 —sin2) — /(1 -nZ%sin20) + (1—n)|

/(1 —sin6) | )
erep = p(Oprp = |1a/(1—sin?0) — /(1 —n%sin2) + (1—n) + n(1—n)

X {sin?0/[2—0.5(n2+n+ Dsin20]}| / n/(1—sin2) , (3)

It is apparent that the parameters 6 and n in the angular spectra act as a
bridge between imaging accuracy and geological heterogeneity. For a given
imaging accuracy e, efficient seismic imaging requires the migrator’s angular
spectrum to provide a band-pass filter defined by 6 and n for dominant
heterogeneous components in the slab. This provides a possible way to assess
geological complexity in terms of seismic migrators.

Slowness-heterogeneity spectrum from a lateral/vertical velocity
co-occurrence matrix

Velocity variations in a slab can be measured in terms of two quantities:
the proportion of each velocity in the whole slab and the contrast between
velocity components. In contrast to the former, the latter increases the
complexity of velocity variations in seismic imaging. Both the quantities should
be properly taken into account for the slowness-heterogeneity spectrum of
velocity variations. Lateral velocity variations are often treated as the main
factor affecting seismic imaging; however, little attention has been paid to
vertical velocity variations in seismic imaging. Complex geological structures,
such as penetrating salts and salt-related overthrusts, often cause vertical
velocity turnovers, significantly attenuating upward waves from complex subsalt
zones. In this article, we regard these salt-related and irregular high-velocity
layers as another factor that affects seismic imaging.

As mentioned in the introduction, Fig. 1 illustrates the inability of the
traditional slowness-heterogeneity spectrum (Fu, 2010; Dong et al., 2011; Fu
et al., 2013) to measure the lateral distribution of velocities exactly. Figs. la-lc
show three slabs constructed from the same velocity components but with
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different geological structures. Despite the obvious differences in velocity
distribution, these slabs share the same velocity probability density, as shown
in Fig. 1d. The velocity probability density is obtained by counting the number
of points with the same velocity value in a slab, but without considering their
spatial arrangement. The slowness-heterogeneity spectrum expressed as a
velocity probability density cannot differentiate velocity structures.
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Fig. 1. Three different velocity models (a), (b), and (c) that share the same velocity probability
density (d).

To avoid this defect in velocity probability density, we introduce the gray
level co-occurrence matrix (GLCM; Haralick et al., 1973) used in the texture
analysis of images to describe spatial variations in a velocity distribution. The
GLCM is a measure of how often different combinations of neighboring pixel
values occur in an image. The GLCM method has been widely applied in
seismic amplitude texture analyses (Gao, 2003; Chopra and Marfurt, 2005; Gao,
2007; Yenugu et al., 2010; Eichkitz et al., 2015) for seismic image visualization
and facies classification. The method extracts textural features in a seismic
image via a co-occurrence matrix depicting spatial relations or patterns of
neighboring amplitudes. Similarly, the spatial variability in the velocity
components of a slab can be evaluated at each sample location by means of a
velocity co-occurrence matrix.

Fig. 2a presents a 2D velocity distribution ranging from v, to v, in
which two arbitrary points (i,j) and (i+n,j+n) with velocities and v;; and
Vienjem (00 = 1,2, N,; j,m = 1,2,...,N,), respectively, can be connected by
dip steering with a straight line L and an angle « with respect to the x-axis. We
can set a velocity pair (v;;,Viy, . for the velocity contrast between these two
locations. By changing L and «, theoretically a total of 0.5 X (N, XN,) X
(N, XN,—1) velocity pairs can be obtained. With dip steering, it is possible to
control the direction for co-occurrence matrix computations to describe the
spatial variations of velocity in different directions. Considering lateral/vertical
velocity variations for seismic imaging, we simply choose o = 0°/90° and L
= Ax/Az, resulting in lateral/vertical VCMs.
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Fig. 2. Schematic diagram of velocity co-occurrence matrix computation. (a) A 2D velocity
distribution ranging from v,;, to v,,,, in which two arbitrary points (i,j) and (i+n,j+m) create a

velocity pair (V;j,Viiaj+m)- (b) The lateral and (c) the vertical velocity co-occurrence matrixes for the
velocity model in Fig. 2a.

For convenience in calculating co-occurrence matrixes, we normalize each
velocity value v;; into an integer V,; within the range 1—M (M is the order of
the VCM) using the equation

Vi,j = round{[(vi_J - Vmin)/(vmax - Vmin)](M_l) + 1} H (4)
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where round() rounds each element to the nearest positive integer. From the
modified velocity model, we compute each element s, , of a VCM of size M XM
using the equation

N

X

Sk = E

i=1 j=1

1z

(Vi,j =k, Vi+n,j+m =10, (5)

-
I

where k,/ = 1,2,...,M. The resulting lateral/vertical VCMs are shown in Figs.
2b and 2c, respectively, in which s, , (or S, for the vertical VCM) denotes the
number of occurrences (counts) of adjacent points with the same velocity pair
(Vij»Visnj+m) 10 @ specific direction defined by L and «. Rather than the velocity
probability density, these lateral/vertical VCMs characterize spatial variability
across all velocity components, both considering their contrasts and depicting
their spatial relations to or the patterns (i.e.,., structures) of neighboring
components.

Before conducting analyses of velocity variations, the lateral/vertical
VCMs should be optimized to improve their applicability to models of different
sizes and varying velocity variations. It is worth mentioning that the VCMs are
more than just a counter, as the indexes / and k are relevant to real velocities
with a contrast proportional to the distance d = |/ — k|/M from an arbitrary
position s (or S) to the leading diagonal D, as illustrated in Figs. 2b and 2c. The
elements in the bottom-left and top-right corners have the largest velocity
contrasts, and the leading diagonal denotes elements without velocity
perturbations. We use d? as a scaling coefficient to optimize each element of the
VCMs at an exponential rate to differentiate each from others located in
different positions. For analytical convenience, we normalize each VCM by
dividing it by the sum of all its elements to make the results independent of the
size of the velocity model.

Fig. 3 shows the lateral (Figs. 3a-3c) and vertical (Figs. 3d-3f) VCMs for
the three different velocity models in Fig. 1, where M = 10 and the small
squares indicate nonzero elements with varying gray levels. For quantitative
comparison of different elements, these squares are marked with their accurate
values as well as their velocity pairs. The three black squares along the leading
diagonal of each VCM represent the domain with the same velocity component.
The absence of nonzero elements, except for the leading diagonal in Fig. 3a,
exactly corresponds to the constant lateral velocity distribution in Fig. 1a. The
gray squares in Figs. 3b and 3c indicate lateral velocity variations between one
domain and its adjacent neighborhood in the horizontal direction, as illustrated
in Figs. 1b and lc. In addition, the locations of these gray squares denote
different velocity pairs; similarly, the gray squares in Figs. 3d-3f indicate
vertical velocity variations.
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Fig. 3. Lateral [(a)-(c)] and vertical [(d)-(f)] VCMs for the respective velocity models illustrated in
Figs. la-1c.

Interaction between lateral/vertical VCMs and seismic migrators

The revised VCMs take into account both velocity compositions and
lateral/vertical variations. Incorporation of seismic migrators into the
lateral/vertical VCMs is key to quantifying seismic imaging. In general,
different migrators have different localization features: none of the migrators can
globally account for all of the velocity contrasts and dip angles. To obtain
optimum seismic imaging, we expect that the spectrum of a given migrator will
coincide with the heterogeneity spectra of the slab, expressed as the
lateral/vertical VCMs.

Direct incorporation of the angular spectrum of a seismic migrator into
the VCMs is convenient for the presentation of seismic imaging complexity with
respect to lateral/vertical velocity variations. Based on egs. (2) and (3), the
angular spectra g(n,e) = 0 of the SSF and FFD migrators can be numerically
calculated for a given phase error, for example,e = 10%. To incorporate the
angular spectra into the VCMs, we first revise the angular spectra as q =
1—g'(n,e) with g'(n,e) denoting the normalization of g(n,e). The resulting
spectra are shown in Fig. 4a, in which the normalized angular error curves are
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Fig. 3. Lateral [(a)-(c)] and vertical [(d)-(f)] VCMs for the respective velocity models illustrated in
Figs. la-lc.

Interaction between lateral/vertical VCMs and seismic migrators

The revised VCMs take into account both velocity compositions and
lateral/vertical variations. Incorporation of seismic migrators into the
lateral/vertical VCMs is key to quantifying seismic imaging. In general,
different migrators have different localization features: none of the migrators can
globally account for all of the velocity contrasts and dip angles. To obtain
optimum seismic imaging, we expect that the spectrum of a given migrator will
coincide with the heterogeneity spectra of the slab, expressed as the
lateral/vertical VCMs.

' Direct incorporation of the angular spectrum of a seismic migrator into
the VCMs is convenient for the presentation of seismic imaging complexity with
respect to lateral/vertical velocity variations. Based on egs. (2) and (3), the
angular spectra g(n,e) = ¢ of the SSF and FFD migrators can be numerically
calculated for a given phase error, for example,e = 10%. To incorporate the
angular spectra into the VCMs, we first revise the angular spectra as q =
1—g'(n,e) with g'(n,e) denoting the normalization of g(n,e). The resulting
spectra are shown in Fig. 4a, in which the normalized angular error curves are
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The MVCMs take into account both lateral/vertical variations and
migrator characteristics, by which it is possible to define a scalar coefficient to
measure the complexity of geological models for seismic imaging. As mentioned
previously, the GLCM is well known for its potential in terms of distinguishing
different textural features of a normal image by a scalar coefficient acquired
from different definitions, such as angular second moment, contrast, and
correlation. Similarly, a complexity coefficient can be defined from the MVCMs
in the same way. Of the several textural features of the MVCMs, we choose the
following expression as the definition of the lateral complexity coefficient
h_cmp,

M M
hocmp = Y. Y. [(k—)/MP{1 — g'[min(k,))/max(k,0),el}s?, . (6)
k=1 [=1

A slight modification of eq. (6) yields the vertical complexity coefficient
v_cmp,

M k
vemp = Y. Y [(k—)/MP{1 — g'[min(k,))/max(k.]).el}s?, . 7
k=1 (=1

For the vertical velocity complexity, we focus only on the location of
velocity reversals along the depth direction. In fact, the VCMs automatically
classify all the velocity pairs into three different regions: (1) the lower triangular
region (k < /), in which the velocities are higher for the overlying strata than
for the underlying strata; (2) the leading diagonal (k = /) for equal velocities;
and (3) the upper triangular region (k > /), in which the velocities are smaller
for the overlying strata than for the underlying strata. As indicated in egs. (6)
and (7), we only consider elements in the first region for the computation of
complexity coefficients.

We use the models illustrated in Fig. 1 as examples to test the
applicability of these complexity coefficients. It is obvious by intuition that the
horizontally layered model in Fig. la shows no lateral velocity variations,
whereas the model in Fig. 1c with a high-velocity dipping interlayer should be
more complex than that in Fig. 1b. This type of high-velocity dipping
interlayers or salt structures often cause strong lateral contrasts. We compute the
lateral/vertical complexity coefficients of these models in terms of the SSF and
FFD migrators. The results are listed in Table 1. The lateral complexity
coefficients of the model in Fig. lc are higher than those of the model in Fig.
1b for both migrators. The coefficients increase much more for the SSF than for
the FFD migrators. Therefore, the geological complexity represented
quantitatively by the lateral complexity coefficients listed in Table 1 agrees with
the intuitive estimation for these models. For the vertical complexity
coefficients, the zero values indicate no velocity inversion along the depth
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direction for the models in Figs. la and 1b, whereas the vertical velocity
turnover from 6000 m/s down to 3000 m/s for the model in Fig. 1c results in
nonzero vertical complexity coefficients for the SSF and the FFD migrators.

Table 1. Lateral/vertical complexity coefficients of the three models illustrated in Fig. 1

h cmp v_cmp
model SSF FFD mode] SSF FFD
(a) 0 0 (a) 0 0
(b) 0.24 0.10 (b) 0 0
(©) 0.45 0.19 (©) 0.37 0.16

Calculation of angular complexity based on the Hough transform

As one of the main descriptions of geological structures, dip angle is a
key factor affecting seismic imaging. To quantify the dip-angle distribution in
a geological structure, Fu (2010) proposed an angular-heterogeneity spectrum
by calculating the angular probability density through edge detection, window
scanning, and dip-angle estimation for each point in a velocity model or a
seismic section. The reliability and accuracy of these techniques depend heavily
on precisely how the geological interfaces are located and the angles are
calculated. Conventional techniques for edge detection are mainly based on
gradient operators, such as the Robert, Prewitt, Laplacian, and Kirsch operators
(Bourgeois et al., 1991). These gradient operators for interface positioning, plus
simple window scanning for angle estimation, work well for simple geological
structures  with noiseless images. However, for complex structures with
noise-polluted images, these edge-detection and angle-estimation techniques give
an unsatisfactory performance because of algorithmic defects such as window
shape/size dependency; for instance, each point will be assigned an angular
value no matter whether an interface is present or not. In this section, we
attempt to improve the accuracy of edge detection and angle estimation by
applying the Hough transform (Hough, 1959; Guil et al., 1995).

The classical Hough transform was originally created to identify straight
lines in an image before being developed to detect arbitrary shapes, most
commonly circles or ellipses. In the simplest case, an arbitrary straight line / at
an angle ¢ to the x-axis can be expressed as

xcosf + ysind = p | )]
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where p is the distance from the origin to the nearest point on /. Eq. (8)
demonstrates that any straight line in the (x,y) space is associated with a unique
parameter pair (6,p), based on which the Hough transform is developed. Fig.
5 gives a simple description of how a straight line in an image is converted into
a single point in the 6-p domain by the Hough transform. Fig. 5a is an input
image, in which the black dots mark the potential straight lines; for instance, the
dots falling on [, are treated as a real line and may be detected. In general, four
main steps are needed to complete the transform: (1) determine the potential line
in the image in terms of (x,y) coordinates using eq. (8) according to the given
parameter (6,p0); (2) count the number of dots located on the line before storing
the number in the bin of (6,p) in Fig. 5b; (3) repeat the above two steps until
each bin in the 6-p domain is completed; and (4) execute a global search of all
the bins for values higher than a threshold that is set as a parameter to extract
the points that are most likely to be located on straight lines. For instance, in
the case of Fig. 5, if the threshold is set as 40, then bin B2 is abandoned while
Bl is retained because the latter has a higher value than the threshold. As the
coordinates of bin B1 are known, it is easy to locate the line that consists of 50
dots in Fig. 5Sa.

(a) v (b)
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image|
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5! | |3 |B2
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\ | [s0]m
A — >
- of L%
0/,’/ 1 2 ; X

Fig. 5. Sketch of the method for transforming a single line (a) into a single point (b) using the
Hough transform.

Regardless of the configuration of any random region of geological
interfaces, the straight-line Hough transform still performs well if the input
parameters are appropriately selected, because large-scale bent curves can be
properly approximated by small-scale straight lines. This is demonstrated by the
following experiment. Fig. 6a shows a black-and-white image containing many
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geological interfaces resulting from applying an edge detector to a geological
model with dip angles ranging from 0° to nearly 90°. The computed Hough
space (0,p) is displayed in Fig. 6b, in which the gray level represents the
number of points located on the same line, depending on which the spatial
distribution is recalculated with dip angles for all the interfaces shown in Fig.
6¢c. The profile in Fig. 6¢ perfectly restores the spatial distribution with dip
angles for all the interfaces compared to Fig. 6a, without redundant information
emerging in places with no interfaces. Furthermore, the gray levels provide a
clear and readable dip-angle distribution for the whole model. This experiment
demonstrates the applicability of the straight-line Hough transform in detecting
irregular geological interfaces as well as in estimating dip angles.
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Fig. 6. A black-and-white image (a) with many geological interfaces, the corresponding Hough
transform spectrum (b), and the restored spatial distribution (c) with dip angles.
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Based on the dip-angle distribution obtained by the Hough transform (Fig.
6b), the angular probability density can be calculated for angles in the range 0°-
90°, with an interval of Af = 1°. The resulting angular-heterogeneity spectrum
q(6) is illustrated in Fig. 7a. Physical interpretation of the spectrum is not
difficult. The probability density at each value of 6 is the density of data points
falling in the interval A0 = 1° centered at §. The spectrum shows a full span
of dip angles in the model from 0° to 90°, with most angles being less than
50°. To measure the angular-localization feature of a migrator for complex
models, it is necessary to look at the coherent interference between the angular-
heterogeneity spectrum q(f) of a geological model and the angular spectrum
p(n,0) of a migrator. As shown in Fig. 7b for the SSF and FFD migrators, the
angular spectrum is plotted as a function of the propagation angle ¢ under a
constant refractive index n = 0.25. Following Fu (2010), we define a
coefficient a_cmp, termed the angular complexity coefficient, to quantify the
performance of a migrator in imaging dipping strata for a given dataset

90°
a cmp = 5 q(®)p(n,6)do . )
0

For the example illustrated in Fig. 7, angular complexity coefficients of
0.24 and 0.06 are obtained for the SSF and FFD migrators, respectively. These
angular complexity coefficients quantify the coherent interference of two types
of spectra, in which the dominant components in the angular-heterogeneity
spectrum of a complex model will be imaged efficiently and perfectly if they are
situated in the illuminated area of the migrator’s angular spectrum; conversely,

for components in a "dark" area, poor imaging and strong noise will be
expected.

CASE STUDIES

Based on separate analyses of velocity and angular variations in the
previous sections, we apply the strategy to both the 2D SEG/EAGE salt model
and the classical fault model in eastern China. We attempt to create a criterion
for evaluating geological complexity in terms of seismic migrators. The problem
is how to allocate the proportions of velocity and angular complexities in terms
of their coupled relationship in seismic imaging. For simplicity, we sum both
as a comprehensive complexity coefficient, assuming that the velocity and
angular variations have the same effect on seismic imaging.

The salt model illustrated in Fig. 8a has strong velocity contrasts up to n
~ (.35 and steep dips up to a maximum of 70°. There are several crucial
targets to challenge seismic imaging methods, such as the strong-contrast salt



96 CHEN, FU, CHEN, SUN, WEI & GUAN

=

Probability density =
(=] o o

8 2 g

o
[=]
=

0
0 1o 20 30 40 50 60 70 80 S0
Dipping angle (*)

(b) o s T i P . HE i i 7 i
pllZo8) | ! ! ! ! : :
I ] ] I | h I
e e e e S frrmedfenees
5 I I
§ 60 |[-----q------ ymmmmmn heeeemem e R S TR P—— :
a i | | : I ! !
= i i i L 4 o
o 0 e T T Y 4 S T T T
2 i i i ! i i
F ; : ' K :
& 20y A
I I [ | [} 1
i == i i i

0 -

0 10 20 30 40 50

S
3
8

S0
Propagation angle ()

Fig. 7. (a) Angular-heterogeneity spectrum for the geological model in Fig. 6a, (b) Angular spectra
of the SSF and FFD migrators with the refractive index n = 0.25.

body and root, the steep subsalt interfaces, the steep subsalt faults, and the
horizontal subsalt interface. We expect to characterize these local regions that
have a marked deleterious effect on the performance of seismic imaging and
need to be handled with more accurate methods. By using recursive migration
to split the velocity model into a series of thin slabs for wavefield extrapolation,
the velocity and angular complexity coefficients are calculated for each slab.
The resulting complexity coefficients of the whole salt model are illustrated in
Figs. 8b-8e for both the SSF and FFD migrators.
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The lateral velocity complexity appears to peak at a few slabs at 300,
1250, and 2100 m depth, where the velocity contrasts become very strong and
cause strong migration noise. The vertical velocity complexity peaks at the
bottom of the salt body, with a strong velocity reversion that seriously worsens
subsalt imaging. The angular complexity basically reflects the statistical
characteristics of dip angles in the model. The steep saltroot and subsalt faults
in the subsalt slabs have large angular complexity coefficients that markedly
affect interface positioning in seismic imaging. Compared to the upper half of
the model, the lower half (below 2000 m) contains more complex structures,
resulting in an increase in the comprehensive complexity with increasing depth.
The comprehensive complexity curves basically reflect the imaging difficulties
of the whole model. The complexity variations between the SSF and FFD
migrators illustrate their differences in imaging accuracy, which are
demonstrated by the depth migration sections in Fig. 9.

Fig. 10a shows a real velocity model with complex fault blocks, a
common geological structure in eastern China. The velocity and angular
complexity coefficients for the whole model are calculated and plotted in Figs.
10b-10e for both the SSF and FFD migrators. The lateral complexities are not
large for both migrators, indicating gentle to moderate lateral velocity variation.
Thus, the time-saving SSF migration appears to be adequate for the accuracy
requirement of lateral velocity variations. The vertical velocity complexity
curves peak at around 2000 m depth, responding to moderate velocity reversions
with a low-velocity belt (Fig. 10a). The angular complexity caused by many
steep faults is quite strong for the SSF migration but weak for the FFD
migration: this result agrees well with the intuitive estimation of dip-angle
distribution for the model. The comprehensive complexity is mainly controlled
by the angular complexity components. The comprehensive complexity can be
roughly divided into three main sections on the basis of its values. The first
section is between 0 and 1500 m: both the SSF and FFD migrators work well
in this section because of moderate velocity and angular variation. The second
section is between 1500 and 4500 m and contains various complex geological
structures. In this section, FFD performs better than SSF. The third section
includes the bottom strata, which do not appear to be difficult in terms of
seismic imaging, but for which the amplitude fidelity is not guaranteed. The
above evaluations of imaging complexity are validated by the SSF and FFD
depth migration results, as illustrated in Fig. 11.
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Fig. 11. Poststack depth migration sections of the complex fault model by (a) SSF and (b) FFD.
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DISCUSSION and CONCLUSIONS

Quantitative evaluation of the complexity of a velocity model in terms of
migrators has been addressed in many previous geophysical studies. The method
described herein actually measures the coherent interaction of geological
heterogeneity spectra with the utilized imaging operator prior to carrying out
migration calculations. Therefore, the method can offer an effective criterion to
help choose the most suitable migration method for a given dataset. There are
two key factors in the solution to the problem: accurate representation of the
velocity variations and dip-angle distribution of a complex model, and scientific
definition of complexity coefficients that characterize the correlation between the
heterogeneity spectra of the medium and the angular spectra of the migrator.
Based on the work of Fu (2010), in this study we tentatively introduce several
different methods to achieve this aim, mainly including a velocity co-occurrence
matrix for velocity variations and the Hough transform for dip-angle
calculations.

We present lateral/vertical VCM:s to describe spatial variations in velocity.
We optimize the VCMs using d? (the square of the vertical distance from an
arbitrary position to the leading diagonal) as a scaling coefficient to highlight the
large-contrast velocity components that significantly affect seismic imaging. For
convenience of analysis, we normalize each VCM by the sum of all its elements
to improve its applicability to models of different sizes and varying velocity
variations. We directly multiply each element of the VCMs by the
corresponding angular error coefficients of a seismic migrator. The resulting
MVCMs characterize the illumination feature of a migrator to a heterogeneous
slab. We add up all the elements of the MVCMs as the presentation of seismic
imaging complexities with respect to lateral/vertical velocity variations. In
addition, we use the classical Hough transform to improve the accuracy of edge
detection and angle estimation. These methods largely improve the accuracy and
applicability of angular-complexity analyses for complex structures with
noise-polluted images. Tests on the 2D SEG/EAGE salt model and the classical
fault model in eastern China illustrate the applicability and performance of the
strategy for complexity analyses in seismic imaging with respect to velocity
contrasts and dip-angle variations.

Besides, in our study the complexity at one depth is calculated just for a
thin slab around that depth, but not for the whole model or the part of the model
above that depth. A measure of the total complexity at a specified depth might
be found by integrating all the complexities above the target depth. We believe
this type of integration over the whole model could be seen as the ultimate

quantitative imaging complexity for the entire model but this remains a question
for future research.
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By incorporating the heterogeneity spectra of the medium into the angular
spectra of the migrator, we tentatively define a complexity coefficient to
understand the coherent interference of a migrator with media, and also to
evaluate the geological complexity quantitatively in terms of migrators. There
has been little research on this issue in previous studies. The strategy used for
complexity analyses in seismic imaging is obviously controversial because of the
following problems: (1) the heterogeneity spectra of the medium are calculated
based on a geological model that does not occur in the real world, and (2) we
simply integrate the contributions from velocity contrasts and angular variations,
which are actually coupled to each other and thus affect the performance of
seismic imaging. In conclusion, a tentative strategy is attempted in this article
as a means of opening up the subject for discussion.
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