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ABSTRACT

Chen, W., Yuan, J., Chen, Y. and Gan, S., 2017. Preparing the initial model for iterative
deblending by median filtering. Journal of Seismic Exploration, 26: 25-47.

Simultaneous-source acquisition can obtain much faster acquisition with higher spatial
sampling at the cost of obtaining highly noisy seismic records. While researchers are seeking specific
direct imaging algorithms for attenuating the simultaneous-source interference during the migration
process, deblending is still a preferable way to deal with simultaneous-source seismic data at the
current stage. Removing blending noise while preserving as much useful signal as possible is thought
to be the key in the deblending process. Previous study has shown that the median filtering (MF)
can be used to effectively and efficiently separate the simultaneous-source seismic data in the
common midpoint domain based on one-step filtering. In this paper, we investigate the application
of MF in preparing the initial model in an inversion-based deblending framework. Our results show
that the application of MF in a shaping regularized iterative deblending framework can effectively
accelerate the convergence rate and improve the deblending performance in a limited number of
iterations. We use three different synthetic examples and one field data example to demonstrate our
proposed methodology.

KEY WORDS: simultaneous source, deblending, shaping regularized iterative inversion,
median filtering (MF), initial model of deblending.
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INTRODUCTION

The purpose of simultaneous source acquisition (or sometimes called
multisource acquisition) is to speed up the acquisition of a higher-density seismic
record by firing more than one source at nearly the same time. The
simultaneous source acquisition allows temporal or spatial overlap of seismic
records, and thus can save numerous acquisition cost and increase data quality.
The benefits of simultaneous-source acquisition are compromised by the intense
interference between different sources (Berkhout, 2008). Because of its
economic benefits and technical challenges, this technique has attracted the
attention of researches in both industry and academia (Mahdad et al., 2011; Huo
et al., 2012; Gan et al., 2016b). One way for solving the problem caused by
interference is by first - separating and second - processing strategy (Chen et
al., 2014b), which is also called deblending. Another way is by direct imaging
and inversion of the blended data by attenuating the interference during
inversion process (Xue et al., 2016b; Chen et al., 2015; Gan et al., 2016¢). For
deblending, many successful applications have been reported, which have made
huge savings of acquisition cost (Abma et al., 2010; Zhang et al., 2013;
Alexander et al., 2013; Manning and Ahmad, 2013). There have also been
several successful applications of direct imaging onto synthetic data (Jiang and
Abma, 2010; Xue et al., 2016b; Chen et al., 2015), however, seldom successful
applications of direct imaging onto field data have been reported in the past
decade. Thus, deblending is still the dominant way for dealing with
simultaneous-source data.

Currently existing deblending method falls into two categories. The first
is filtering-based method (Hampson et al., 2008; Huo et al., 2012), which treats
the deblending problem simply as a noise attenuation problem. Because, though
coherent in the common shot domain, the blending noise has been demonstrated
to be incoherent in other domains, such as common receiver, common offset or
common midpoint domain (Beasley, 2008; Berkhout, 2008). Thus all the
conventional denoising algorithms can be used in the deblending process.
Because of the better coherency of useful signals in common midpoint domain,
Chen et al. (2014c) proposed to use common midpoint domain for deblending.
Since the near-offset useful events follow the hyperbolic assumption and can be
flattened using normal moveout (NMO) correction, a simple median filtering
(MF) can be applied to the NMO corrected common-midpoint (CMP) gathers
to attenuate blending noise. Chen (2015) proposed a type of MF with spatially
varying window length. The space-varying median filter (SVMF) does not
require the events to be flattened and is also better applied in midpoint domain.
Huo et al. (2012) used a multidirectional vector median filter after resorting the
data into common midpoint gathers. Kim et al. (2009) simulated a noise model
from the data and then adaptively subtracted the modeled noise from the
acquired data in the common-offset domain.



INITIAL MODEL FOR ITERATIVE DEBLENDING 27

The second type of deblending approaches is based on inversion, which
treats the deblending problem as an inversion problem, and because of the
ill-posed property of the blending equation, some specific constraints have to be
added (Wapenaar et al., 2012a,b). Akerberg et al. (2008) used sparsity
constraints in the Radon domain to regularize the inversion. A sparsity
constraint was also used by Abma et al. (2010) to minimize the energy of
incoherent events presented in blended data. Bagaini et al. (2012) compared two
separation techniques for the dithered slip-sweep (DSS) data using the sparse
inversion method and f-x predictive filtering (Canales, 1984; Chen and Ma,
2014), and pointed out the advantage of the inversion-based methods over the
filtering-based methods. In order to deal with the aliasing problem, Beasley et
al. (2012) proposed the alternating projection method (APM), which chooses
corrective projections to exploit data characteristics and is claimed to be less
sensitive to aliasing than alternative approaches. Mahdad et al. (2011) proposed
a coherence-based inversion approach to deblend the simultaneous-source data.
The convergence properties and the algorithmic aspects of the method were
discussed by Doulgeris et al. (2012) and Mahdad et al. (2012), respectively.
Borselen et al. (2012) proposed to distribute all energy in the simultaneous shot
records by reconstructing the individual shot records at their respective
locations. However, most of the published methods will either cause heavy
signal leakage or require large iterative computation. New efficient and robust
deblending scheme is still demanded. Chen et al. (2014b) proposed a general
iterative deblending framework via shaping regularization (Fomel, 2007a). The
constraint for the ill-posed inversion problem is applied via the shaping
operator.

Median filter (MF) is well-known for its ability in removing out spiky
noise in seismic profile after NMO or with relatively flatter events. It has been
successfully utilized in the deblending process (Chen et al., 2014c; Chen, 2015),
based on the simple one-step filtering approach. However, the integration of MF
with an iterative inversion-based deblending approach has been seldom
investigated. Considering that the conventional inversion-based deblending
approach is very expensive, e.g., seislet transform (Gan et al., 2016a), curvelet
transform (Zu et al., 2016), and high-resolution Radon transform(Xue et al.,
2016a), a limited number of iterations are affordable in the real processing
workflow. Finding a well-constructed initial model for the inversion-based
deblending process is crucial for the convergence rate and final deblending
performance. In this paper, we investigate the performance of a superior initial
model for the whole iterative inversion by preparing the input data with MF.
Three synthetic examples with different complexities and one field data example
show that the initial model prepared using MF can accelerate the convergence
greatly and improve the final deblending performance within a small number of
iterations.



28 CHEN, YUAN, CHEN & GAN

THEORY
Shaping regularized iterative deblending framework

According to Chen et al. (2014b), the deblending problem can be
formulated as a basic estimation problem:

Fm = d , (1)

where

[d I T d,
d = , F= m = : Q)

)

lT‘ld [T 1 d,

d, and d, denote the two unblended common receiver gathers, which are
collected from a ocean bottom node (OBN) survey. d and T~'d denote the two
blended common receiver gathers. There will be strong interference in the
blended data due to simultaneous shooting of multiple sources. I is an identity
operator. T and T~ denote the forward and inverse dither operators (Chen et
al., 2014b) or blending operators (Berkhout, 2008). The exact formulation of
the dithering operator is given as follows:

T = F'PF |, (3)

where F and F~' are forward and inverse Fourier transforms, respectively, and
P is a NXN diagonal block phase-shift operator given by

P,

P,
P = P, , @

4 NxN

where P, denotes the individual phase shift operator for n-th trace and can be
expressed as a M X M diagonal matrix:
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Here, w denotes the angular frequency, 6t, denotes the random dithering time
of the n-th trace. Series {t,} is also called the dithering sequence or shot
scheduling (Abma, 2014). M and N in egs. (4) and (5) denote the number of
temporal samples and number of traces, respectively.

An estimation of the model m can be iteratively obtained as follows:
m,,, = m, + Bd — BFm, , (6)

where B is the backward operator that provides an inverse mapping from data
space to model space. If B is taken as the adjoint of F, iteration (6) is known
as the Landweber iteration (Landweber, 1951). The Landweber iteration solves
the system of normal equations and converges to the least-squares estimate of
m:
min | Fm — d |} , (7)
m

where || - ||3 denotes the squared L, norm of a function. The least-squares
optimization problem (7) is usually regularized by adding a regularization term:

min | Fm — d |2 + R(m) , (8)

where R(") is a regularization function. Alternatively, with a shaping operator
S (Fomel, 2008), iteration (6) can be modified to the following equation:

m,,, = S[mn + B(& - an)] . (9)

Regularized iteration (9) shapes the estimated model into the space of
admissible models at each iterations (Fomel, 2007b, 2008). It has been proved
that if S is a nonlinear thresholding operator (Donoho and Johnstone, 1994), B
= F" where F" is the adjoint operator of F, iteration (9) converges to the
solution of problem (8) with L, regularization term (Daubechies et al., 2004).
A better choice for B is the pseudoinverse of F: B = (F'F)"'F" (Daubechies et
al., 2008).

It has been proved that the pseudoinverse of the forward operator F is half
of the identity operator when the random dithering range is small, which means
that the optimal choice for the backward operator is B = (1/2)I. The Appendix
gives a brief derivation to derive the pseudo-inverse of the forward operator.
The shaping operator can be chosen either as a coherency promoting operator
Or as a sparsity promoting operator. In this paper, we use the seislet domain soft
thresholding as the shaping operator. Thus, the minimization problem to be
solved in this paper is as follows:
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th = argmin | Fm — d |3 + &|m]|, , (10)

where |||, denotes the L, norm of an input vector, & denotes a balancing
parameter that compromise the data misfit term | Fm — d |3 and the model
sparsity term || m|,.

Median filter

Conventional MF is based on a scalar-value sorting process. When a set
of scalars is sorted to be an ascending or descending sequence, the middle value
is chosen to stand for this sequence. In signal-processing or geophysical data
analysis fields, this filter is commonly used to remove spiky noise. The more
general mathematical formulation of a MF is given as:

L
l"\li = arglfnin Z ”um - ul”p ’ (11)

m i (=1

where U; is the output value for location x;, S; = {u,, u,, ..., u;}. It’s worth to
be mentioned that in eq. (11), i is the position index in a 1D sequence, [ and m
are both indices in the filtering window. L is the length of the filtering window
and p denotes the L, norm. Commonly p = 1 corresponds to a standard MF.
The classic MF has been utilized by Chen et al. (2014c) for separating
simultaneous sources based on one-step filtering in the NMO corrected CMP
gathers.

Preparing the initial model by median filtering

The special "spiky" feature of blending noise provides a suitable
application for the conventional MF. In a common offset domain, where useful
events are mainly flat and blending noise is incoherent along the spatial
direction, a MF can adequately remove out those noise. In some other domains,
the MF can not only remove the blending noise but also remove some useful
signals. In this case, we propose to use the MF as a preprocessing tool, and we
treat the MF filtered data as the initial model to the subsequent iterative
framework to get a faster convergence. The lost useful signal, however, can be
recovered during the subsequent iterative inversion. Note that the initial model
used in the conventional framework is usually zero. Fig. 1 demonstrates how
median filter can be implemented into a common deblending framework. As we
can see in the flowchart, in ideal cases, an acceptable result might be obtained
only through a median filtering process. If we are more strict to the result, we
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can utilize iterative inversion to obtain a better deblending performance.
Preparing the initial model by MF can not only accelerate the convergence, but
also will improve the final deblending performance. Since many sparse
transforms are not exactly invertible, such as the seislet transform,
high-resolution radon transform, we can not afford too many iterations,
otherwise we will introduce extra error due to the transform itself. In the
following section, we will use different type of examples to show the advantage
of applying MF for preparing the initial model.

Fig. 1. Workflow of using median filter to prepare the initial model for deblending.
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EXAMPLES

We use three different synthetic datasets and one field dataset to test the
effect of median filter (MF) as a preprocessing step in the whole deblending
process. The first and third examples can be used to demonstrate the deblending
performance in common offset domain, the second synthetic example and field
example can be used to demonstrate the deblending performance in common
receiver domain. In all the example, we blended data using the random dithering
method introduced in Chen et al. (2014b). The source and receiver geometry is
shown in Fig. 2. The dots denote different shots for two different sources. The
inverted triangles denote the constant receivers. Because of the symmetry of the
two sources, we only show the deblending performance for one source. The two
arrows denote the sailing directions of two sources. In this paper, both sources
sail from the west towards the east.

In order to test the convergence rate, we apply SNR (Chen et al., 2014a)
as the measurement of deblending performance in the following form:

SNR = 10log,([d |7 [d - d[3) . (12)

Source and receiver geometry

-------------------------------------------------

Y'Y Y Y IV YNNI YN YN YN

Crossline
<

P T T T T T T T T T T T T T T T T T T P O T T P T T PP P O P T O T I T T T T T WY

Inline

Fig. 2. Demonstration of the source and receiver geometry for the blended acquisition used in the
presented four examples.
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where d denotes the deblended data, d denotes the unblended data and the unit
of SNR is dB.

The first example is a flat-event example, as shown in Fig. 3. The
traditionally acquired clean unblended data is shown in Fig. 3a. The blended
data is shown in Fig. 3b.
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= e
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0 50 100 150 200 250 0 50 100 150 200 250
Trace Trace
(a) (b)

Fig. 3. First synthetic example (sorted to common offset domain). (a) Unblended data. (b) Blended
data.

In this example, applying a MF onto the blended data obtains a nearly
perfect estimation (see Fig. 4a). We can use the result as an initial model for the
subsequent iterative framework, thus we can get a more precise estimation. The
result using MF and MF embedded iterative framework do not have much
difference. However, if we do not use MF as a preprocessing tool, the iteration
is much slower (see Fig. 5).

The second synthetic example is a linear-events example. The clean
unblended and noisy blended data are shown in Figs. 6a and 6b, respectively.
The MF also does a good job for the second synthetic example, as shown in
Fig. 7a. Even though there exists some coherent energy in the noise section and
error section, considering that the amplitude of the coherent part is actually very
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Fig. 4. Deblending results comparison for the first synthetic example. (a) Deblending result using
MF. (b) Blending noise corresponding to (a). (c) Error section corresponding to (a). (d)-(f)

Deblending using shaping regularized iterative framework. (g)-(i) Deblending using the proposed
approach.
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Fig. 5. SNR diagrams for the first synthetic example. The "+" line corresponds to the proposed
approach. The "*" line corresponds to deblending using MF. The "o" line corresponds to the
shaping regularized iterative framework.

small and the process is done in one step without any other procedures, this
result is still acceptable, especially when a quick look at the deblending result
or the subsequent migration result is needed. Here, difference section denotes
the difference between the deblended data and the blended data) and error
section denotes the difference between the deblended data and the original
unblended data. Furthermore, we can treat it as the initial model for the
subsequent iterative estimation, and then we can get a perfect estimation with
a faster convergence (see Fig. 8).

The third example is a very complicated synthetic example, which
contains not only useful hyperbolic reflection events, but also unwanted dipping
interference and ground roll noise. The clean unblended and noisy blended data
are shown in Fig. 9. In this example, the one-step MF does not enjoy much
benefit, because using MF harms much of the useful energy, as shown in Figs.
10a-10c. According to the SNR diagrams, using a MF embedded iterative
framework enjoys a faster convergence, which demonstrate the advantage of MF



36 CHEN, YUAN, CHEN & GAN

D

o - e U
0 50 100 150 200 250 0 50 100 150 200 250
Trace Trace
(a) (b)

Fig. 6. Second synthetic example (sorted to common offset domain). (a) Unblended data. (b) Blended
data.

as a preprocessing tool. The deblending performance for the field data example
is shown in Fig. 13. The deblending performance is much similar to the
deblending performance of the third synthetic example. Although the sole MF
will cause some damage to the useful energy, the subsequent iterative inversion
based on this initial model will compensate for the energy loss in MF. The MF
embedded iterative inversion can also obtain a much better deblending result
compared with that from the traditional iterative inversion without the
preprocessed initial model. The error section using the proposed approach is
nearly zero across the whole profile while the traditional approach still cause
some visible error. The convergence diagrams using three different approaches
are shown in Fig. 14. The comparison confirms that the proposed approach can
obtain faster convergence and better deblended result.

In order to show how the blending interference looks like in different
domains and how the proposed method help attenuating the interference in a
clearer way, we show the whole field data set before and after deblending in
Fig. 15. Fig. 15a shows the unblended data. Please note that the two spatial
dimensions are "shot" and "receiver". Fig. 15b shows the blended data. It is
obvious that in each common receiver gather, the interference is incoherent due
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Fig. 7. Deblending results comparison for the second synthetic example. (a) Deblending result using
MF. (b) Blending noise corresponding to (a). (c) Error section corresponding to (a). (d)-(f)

Deblending using shaping regularized iterative framework. (g)-(i) Deblending using the proposed
approach.



38 CHEN, YUAN, CHEN & GAN

(]
(]
& r
ﬁ_
_l’_
_|_
| il
Y & ' o
= | g
T (0]
S
0 $ -
z —]
CD O
e * * * 9 * * * * *
2_ (o]
(8]
0 - o]
) I 1 I | 1 I | | I

0 1 2 3 4 5 6 7 8 9 10
[teration no. #

Fig. 8. SNR diagrams for the second synthetic example. The " +" line corresponds to the proposed
approach. The "*" line corresponds to deblending using MF. The "o" line corresponds to the
shaping regularized iterative framework.

to the random shot scheduling. However, in each common shot gather, the
interference is coherent. It also demonstrate the reason why we need to apply
the proposed method in common receiver gather. After using the proposed
approach, the deblended data is shown in Fig. 15c. Both coherent and
incoherent interference that is shown in Fig. 15b has been removed in Fig. 15c.
Fig. 15d shows the difference between the deblended data and blended data. The
energy in common receiver gather is incoherent and shows that the proposed
method does not damage any useful coherent signals.

DISCUSSIONS AND CONCLUSIONS

The ability of MF to attenuate high-amplitude spiky noise is nearly
irreplaceable. Although strictly the blending noise is rather wavelet-like than
spike-like noise, the high-amplitude peaks appear similar to spiky noise along
the spatial dimension. Thus they can be removed out by MF while leaving the
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Fig. 9. Third synthetic example (sorted to common receiver domain). (a) Unblended data. (b)
Blended data.

small-amplitude parts to be filtered by some other effective filters like f-x
deconvolution or f-k filter (Mahdad et al., 2012). For simpler seismic profiles,
utilizing a MF alone is adequately to fulfill the requirements (e.g., Fig. 4a). For
more realistic complicated profiles, MF can be used to prepare the superior
initial model, which can make the subsequent iterative inversion faster
converged and more stable. The proposed framework simply uses a classic
version of MF, and can be widely used in different research or industry
environment. Utilizing more sophisticated version of MF to better prepare the
initial model is worth being investigated, which is the ongoing project.

Finding a well-constructed initial model for the iterative inversion based
deblending is crucial for the convergence rate and final deblending performance.
In the paper, we investigate the impact of a superior initial model after median
filtering on the whole iterative inversion. Three synthetic examples with
different complexities and one field data example show that the initial model
prepared using MF can accelerate the convergence greatly and improve the final
deblending performance within a small number of iterations. While the initial
MF will cause some damage to the useful energy, the lost energy will be
compensated during the subsequent iterative iterations. The improvement of the
proposed approach is due to the anti-spike ability of a traditional MF.
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Fig. 10. Deblending results comparison for the third synthetic example. (a) Deblending result using
MEF. (b) Blending noise corresponding to (a). (¢) Error section corresponding to (a). (d)-(f)

Deblending using shaping regularized iterative framework. (g)-(i) Deblending using the proposed
approach.
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Fig. 11. SNR diagrams for the third synthetic example. The "+" line corresponds to the proposed
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Fig. 12. Field data example (sorted to common receiver domain). (a) Unblended data. (b) Blended

data.



CHEN, YUAN, CHEN & GAN

42

gz
(=) awny,

50

40

0 20 do
Trace

1

iy .-_.._.dm.

' o ol AR
e |

0o g0 1 @1

0 90 1 91 2 92 B 9f
() auny,

50

40

30

f)

(

)

€

(

(d)

30

20

30

20

(s) oy,

50

40

Trace

0

1

50

40

Trace

10

50

40

30

(i)

)

h

(

g)

(

Fig. 13. Deblending results comparison for the field data example. (a) Deblending result using MF.
(b) Blending noise corresponding to (a). (c) Error section corresponding to (a). (d)-(f) Deblending
using shaping regularized iterative framework. (g)-(i) Deblending using the proposed approach.
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interference appears incoherent in common receiver gather but coherent in common shot domain.
The unblended and deblended data are almost the same, which confirms the effectiveness of the
proposed method.
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APPENDIX
PSEUDO-INVERSE OF THE FORWARD OPERATOR

In eq. (3), considering that the Fourier operator (with symmetric
normalization) and the phase shift operator are both unitary, which means F~'
= F' and P™' = P7, it is easy to derive that

T" = F'PF)' = F'P'F = (F'PF)' = T! . (A-1)

Thus, the dithering operator is proven to be a unitary operator.

Furthermore,
T
I T 1 17T I T
FT — — - = F,
™! 1 ™ 1 T! I
(A-2)
I T I T I T
FTF = =2 = 2F
T1 I T! I T ! I

The pseudo-inverse of the forward operator is therefore:

m = (F'F)"'F" = BWF'F' = ] . (A-3)





