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ABSTRACT

Li, Y., Li, Z., Zhang, K. and Lin, Y., 2016. Frequency-domain full waveform inversion with
rugged free surface based on variable grid finite-difference method. Journal of Seismic Exploration,
25: 543-559.

Full waveform inversion (FWI) is a challenging data-fitting procedure to solve model
parameter reconstruction problems. But FWI with irregular topography, which is common in the real
land cases, has been barely researched. For more accurately describing of the subsurface structures,
we introduce the effect of surface topography in the full waveform inversion. Then we develop a
frequency-domain modeling algorithm for irregular topography medium, and incorporate it into a
full waveform inversion algorithm. The variable grid finite-difference method is applied to the
frequency-domain modeling and inversion algorithm to improve the accuracy of results. Specifically,
the computational domain near the surface is discretized by fine rectangular grids, while the rest part
is discretized by coarse grids. We apply successive inversions of overlapping frequency groups and
layer stripping strategy implemented with complex frequencies to the FWI algorithm to improve the
stability of the iterative procedure. In the meantime, the pseudo-Hessian matrix is used to scale the
gradient to improve the efficiency. In the numerical tests, we validated our algorithm with two
synthetic tests consisting of a layered model and a modified dip section of the overthrust model.

KEY WORDS: full waveform inversion, frequency-domain, variable grid, finite-difference method,
rugged free surface.

INTRODUCTION

Full waveform inversion (FWI) is an efficient method to extract
quantitative parameter information by the data-fitting between simulated and
observed data (Virieux and Operto, 2009). However, the computational cost of
forward modeling is one of the most crucial issues in FWI. Recent advances in
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high-performance computing prompt the evolution of FWI to be applied to a
more complicated medium, e.g., the elastic medium (Sheen et al., 2006; Prieux
et al., 2013; Vigh et al., 2014), the viscoacoustic medium (Hicks and Pratt,
2001; Askan et al., 2007; Smithyman et al., 2009; Malinowski et al., 2011), the
anisotropic medium (Lee et al., 2010; Warner et al., 2013; Vigh et al., 2014)
and so on. While very few attempts have been performed to reconstruct
parameters with the irregular surface by FWI. Moreover, irregular topography
is commonly observed in onshore seismic exploration, which has a significant
influence on the resolution and accuracy of inversion (Bleibinhaus and
Rondenay, 2009). As such, it is essential to perform FWI with surface
topography.

The effectiveness of waveform inversion with irregular surface depends
on the corresponding modeling algorithm. The forward modeling algorithms
with rugged topography have been developed rapidly the in time domain, while
the studies for frequency domain are few relatively. Jang et al. (2008) developed
a frequency-domain modeling for an irregular surface using the finite-element
method (FEM), and incorporated it into an elastic inversion algorithm. Brossier
et al. (2008) applied the finite-volume method (FVM) to frequency-domain
modeling with the surface topography. Following, a mixed-grid finite element
method is presented to simulate seismic wave propagation in complex media
(Liu et al., 2014). The main deficiencies of the classical FEM and FVM are the
huge memory requirement and the low computational efficiency. By contrast,
the finite-difference method (FDM) is most widely used in forward modeling
with high efficiency and simplicity. However, the conventional FDM suffers
from severe numerical dispersion, when coarse grids are used to discretize the
irregular free surface. Robertsson (1996) proposed that a rugged surface should
be sampled by at least 15 grid points per minimum wavelength. To balance the
artificial diffraction and computational expense, we apply the variable grid FDM
(Guo et al., 2014), with fine and coarse rectangular grids to discretize the
domain containing the irregular surface and the rest of the model, respectively.
And the variable grid FDM has been developed rapidly in time domain (Huang

and Dong, 2009). The variable-grid FDM is utilized in frequency domain FWI
for the first time.

In addition to the forward modeling with surface topography, an
alternative challenging issue is the strong nonlinearity of inversion arising from
free-surface multiples (Hicks and Pratt, 2001; Operto et al., 2006). Brossier et
al. (2009) implemented two nested hierarchical levels through an outer loop over
the slightly overlapping frequency groups and an inner loop over the damping
terms to improve the stability of inversion. And the above-mentioned inversion
strategies are applied to the inversion algorithm. Moreover, we used
pseudo-Hessian matrix to scale the gradient of the misfit function to accelerate
convergence (Shin et al., 2001).
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First, we introduce the variable grid finite-difference frequency-domain
modeling in theory. Second, we describe the theory and strategies of the
frequency-domain FWI briefly. And then, we test the FWI method based on the
variable grid FDM on a layered model and a modified overthrust model. And
last, we present the discussions and conclusions.

FORWARD PROBLEM

The 2D acoustic equation in the time domain (Wei et al., 2014) can be
expressed as

—[1/(v*(x,2)][8°p(X,2,t)/0t’] + (8/3x)[dp(X,z,t)/0x]
+ (4/0z)[0p(x,z,t)/0z] = f(x,z,t) . )

Then we transform eq. (1) into the frequency domain by Fourier transformation,
and introduce the complex frequency-shifted perfectly matched layer (CPML)
absorbing boundary condition (Zhang and Shen, 2010). Finally, the

frequency-domain acoustic wave equation with the CPML absorbing boundary
can be written as

[w*/Vi(x,2)][p(X,Z,w)] + (1/s)(0/3%){(1/5)[dp(X,Z,0)/dx]}
+ (1/5)(8/02){(1/s,)[0p(x,2,)/82]} = f(x,2,0) . 2)

where p(x,z,w) is the pressure wavefield in the frequency domain, w is the
angular frequency, v(x,z) is the velocity, s, and s, are 1D damping functions for
CPML absorbing boundary conditions (Zhang and Shen, 2010), which are
shown as follows

() = B,(x) + {d(®)/[o(x) + 0]} ,

)
sA2) = B,(2) + {d,@/[a,(2) + iw]} ,

angi f(}x,z,w) is the source, which is assumed to be known in our inversion
algorithm (Liu et al., 2014). Using the mixed-grid finite-difference method
(details are given in the Appendix), the acoustic equation can be recast in matrix
form (Hustedt et al., 2004)

Sp=F , @)

where S is the impedance matrix depending on medium properties and angular
frequency (w), vector p and F of N dimension represent the pressure wavefield

and the source term, respectively, where N is the number of the discretized
grids.
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The rectangular grids are normally used in the mixed-grid finite-difference
method. However, the staircase approximation of the irregular surface requires
at least 15 points per wavelength, otherwise the artificial diffractions will affect
the modeling results. To make a compromise between modeling accuracy and
computational cost, we can discretize the domain containing irregular surface
by fine grids, while the rest of the model is discretized by coarse grids, as
shown in Fig. 1.

In the transition region form fine to coarse grids, the spatial derivative for
the coarse grids can be computed directly with the wavefield values around it.
However, the derivative for the fine grids cannot be obtained in such a
straightforward way as the coarse grids, because the fine grids are not defined
below them. Therefore, we have to recur to the interpolation of the wavefield
values at coarse grids to estimate the wavefield at the fine grids. In addition to
the transition region, the introduction of the stable free-surface boundary
condition is critical and difficult in the modeling algorithm. For the
implementation of free-surface boundary condition in this study, we map the
grid points form Cartesian coordinates to linear coordinates, and set the
wavefield of the points above surface zero. We design a simple model to make
comparison between variable grid FD and normal coarse grid FD method as
shown in Fig. 2. The artificial diffractions can be suppressed visibly by the
variable grid FD frequency-domain modeling method.

<

-

W Ry | fine
|'J 1 | 3 1 1 | grids

coarse
grids

Fig. 1. Strategy of grid discretization for variable grid FD modeling with irregular topography;
green curve: the real rugged surface, red curve: the approximation of rugged surface with fine grids

for discretization, blue curve: the approximation of rugged surface with coarse grids for
discretization.
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Fig. 2. Snapshots computed with variable grid (c) and normal coarse grid (b) finite-difference
frequency-domain modeling for the model (a).

INVERSE PROBLEM

Full waveform inversion is a numerical optimization problem with an
attempt to minimize the misfit between the recorded and modeled wavefields
(Tarantola, 1984). The objective function [E(m)] in the frequency domain
waveform inversion (Brossier et al., 2009) can be given as

Em) = (S,Ad)'(S,Ad) = LAd'S[S,Ad = AW Ad (5)

where m is the model parameter, Ad is the residual wavefield, ‘T’ denotes the
conjugate transpose of the vector, W' = SIS, is the weighted operator and S,
is the diagonal weighting matrix to scale the relative contributions of each
component of the residual wavefield vector.

The gradient used in the inversion algorithm can be obtained by
minimizing the objective function. In its standard form,the gradient is given by
(Brossier et al., 2009)

V.E = R{IW,Ad*} | )

where V E is the gradient of objective function, %t denotes the real part of a
complex number, J is the Jacobian matrix, ‘t’ denotes the transpose of the
matrix, and Ad* is the conjugate of the residual wavefield vector. The Jacobian
matrix can be written as

J=S7"F, , (7)

where

F, = [-(3S/dm,)p —(3S/dm,)p - —(3S/dm,)p] . ®)
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Fig. 3. The flow chart of inversion algorithm used in this study.
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Considering the strong nonlinearity caused by the surface effect, some
scaling and regularizations should be applied to the gradient to obtain stable and
reliable results. Besides, the pseudo-Hessian matrix and a 2D Gaussian smooth
regularization operator is used to scale the gradient properly. The correlation
lengths of Gaussian spatial filter should be adapted to the inversion frequency
(Ravaut et al., 2004). The formula used in the inversion algorithm can be shown
as

m = m; — a(H 4 + \ND'GV E

= m, — O‘(I.Ipseudn + )\I)EIGSSR(J[WdAd*) 4 (9)

where m, is the starting model, m is the updated model, « is a step length,
H 40 18 the pseudo-Hessian matrix (Shin et al., 2001), N is the damping factor
to avoid numerical instability (i.e., division by zero), G, refers to the Gaussian
smoothing term.

We applied the multiscale FWI scheme in the inversion algorithm. Owing
to the irregular surface effects, the robustness of inversion is poorer. The
multiscale inversion is based on successive inversions of slightly overlapping
frequency groups. Besides, the stability of FWI can be improved by the layer
stripping method which can be realized by complex frequency. The relative
contributions of the arrivals from shallow layers will be increased by damping
the seismograms in time, and it is helpful for the reconstruction of shallow
layers. The velocity will be inverted effectively in the layer-stripping mode by
adjusting the damping term (i.e., the imaginary part of complex frequency). The
detailed description of our inversion algorithm is shown in Fig. 3 as follows.
Two nested hierarchical levels through an outer loop over the slightly
overlapping frequency groups and an inner loop over the damping terms are
used in the FWT algorithm to improve the stability of inversion (Brossier et al.,
2009).

NUMERICAL EXAMPLES
Four layered model with anomalies test

A four layered media with a rugged free surface (including peaks and
valleys) and two anomalies (Fig. 4) is used to test the effect of irregular
topography and the accuracy of the inversion algorithm. The size of the model
is 151101 grid nodes with a regular spacing of 12 m.

There are 50 shots located 12 m below the rugged surface, with a
horizontal spacing of 36 m. Every shot is recorded by 151 receivers located on
the surface, with a horizontal spacing of 12 m. The source is a Ricker wavelet
with a dominant frequency of 10 Hz. To improve the accuracy of modeling with
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Fig. 4. True model for the synthetic four layered model test.

the rugged surface, we implement variable grid technique. The domain including
the surface (i.e., the domain above the depth of 248 m) is discretized by fine
grids with a spacing of 4 m, while the rest part is discretized by coarse grids
with a spacing of 12 m. The satisfactory result of modeling is achieved without
obvious artificial wave phenomenon as shown in Fig. 5a. The shot records
appear strongly scattered owing to the rugged surface, and comprise
reverberations. Besides, the events are distorted seriously.

To verify that the rugged free surface has great influence on the seismic
data and inversion result, we also simulated shot records for the true model with
an absorbing boundary and a flat free surface boundary on top, respectively,
which are shown in Figs. 5b and Sc. Because the surface of the model is flat,
the shots are located at depth of 12 m, and the receivers are laid on the surface.
Besides, all the other parameters used during the simulation are the same as
those used for four layered model with the rugged free surface. The obvious
surface multiples are shown in Fig. 5¢ because of the flat free surface. The
irregular surface leads to the serious distortions of events and apparent scattered
waves by comparison between the seismograms with rugged free surface and
that with flat free surface. On the whole, a comparison between the simulated
seismograms with different boundary conditions shows that the shot records with
rugged free surface is the most complicated. We try to implement the inversion
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algorithm under the assumption of flat free surface for the seismic data with
rugged surface, but the recovered model converges badly. In conclusion, the
effect of rugged free surface on simulated seismograms and inverted result is
important and worthy of consideration. In the next section, we will introduce the
process and the result of FWI with rugged surface.

Distance (m) . Distance {m)
o 500 1000 1500 ] Zﬂ?[} 1 0_[}0 1 r).{]f)
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time (=)
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Fig. 5. Seismograms computed with finite-difference frequency-domain code for true model with a

rugged-free surface (a), an absorbing surface (b) and a flat free surface (c) on top. The shot is
located at x = 1080 m.

The initial model was a filtered version of the true model without
anomalies as shown in Fig. 6a. The source signature was assumed to be known
in the inversion algorithm. To avoid the convergence to the local minimum, four
frequency groups were used for inversion successively with three frequencies
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per group, namely, (7, 8, 9) Hz, (11, 12, 13) Hz, (16, 17, 18) Hz and (21, 22,
23) Hz. The inversion was performed without damp terms to precondition the
seismic data, because the model is relatively simple. When the maximum
iteration of 40 for each frequency group is reached or the convergence criterion
is satisfied (| E(m);,, — E(m),,,_,;| < E(m),,,_, X 1 X 107°), the loop over the
inversion iterations of one frequency group is stopped. The final inversion result
is shown in Fig. 6b. The two anomalies and the interface between layers are
reconstructed successfully. A comparison between vertical profiles of the
inverted model, the true model and the initial model shows a reliable estimate
of velocity (Fig. 7).
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Fig. 6. Initial (a) and inverted (b) model for the synthetic four layered model test.

Modified overthrust model test

We tested our FWI algorithm by an irregular surface model which is a
modified version of a dip section of the SEG/EAGE overthrust model (Fig. 8a).
The size of model is 600X 140 grid nodes with a regular spacing of 25 m.

149 shots are laid 25 m below the irregular surface, with a horizontal
interval of 100 m. There are 600 receivers located on the surface with a
horizontal interval of 25 m. The synthetic seismograms are generated by the
finite-difference frequency-domain modeling algorithm with irregular topography
using variable grid method. The domain including the surface (i.e., the domain
above the depth of 500 m) is discretized by fine grids with a spacing of 5 m,
while the rest of the model is discretized by coarse grids with a spacing of 25m.
Fig. 9 shows the synthetic seismograms for the 74th shot using the Ricker
wavelet with the dominant frequency of 8 Hz as source wavelet. As shown in
Fig. 9, artificial reflections or diffractions are almost invisible, and the relatively
accurate result is owing to the implementation of variable grid technique with
fine rectangle grids to approximate the irregular surface.
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Fig. 7. Vertical profiles for the velocity parameter at x = 396 m (a), and x = 1476 m (b). Profiles
of the true, the initial and the inverted models are plotted with solid, dashed and dotted lines,
respectively.

The initial velocity model for inversion was acquired by smoothing the
true model with a Gaussian function of vertical and horizontal correlation ranges
of 400 m (Fig. 8b). Four overlapping frequency groups were inverted
successively with four frequencies per group, namely, (3, 3.5, 4, 4.5) Hz, (4,
4.5, 5, 6) Hz, (5, 6, 7, 8) Hz, and (7, 8, 9, 10) Hz. Besides, four damping
factors (i.e., 1.5, 1.0, 0.5 and 0.02) were used to improve the stability of
inversion. The maximum number of iterations is still 40 for each complex-
valued frequency group, and the convergence criterion is same as that of the
inversion for the four layered model. The velocity model recovered with the
inversion schemes is shown in Fig. 10. Fig. 11 shows the vertical profiles of the
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Fig. 8. True (a) and initial (b) model for the synthetic modified overthrust model test.
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Fig. 9. Seismograms computed with finite-difference frequency-domain code for true model with a
rugged free surface on top. The shot is located at x = 7450 m.



FREQUENCY DOMAIN FWI 555

recovered velocity model at a distance of 7200 m and 12 km. The shallow part
of recovered velocity is closer to the true velocity model than the deep part,
which is because of the influence of illumination and surface multiples.
Synthetic seismograms for the inverted velocity model and the misfit between
seismograms for the true velocity and that for the inverted velocity model are
shown in Fig. 12. We can see that the two synthetic seismograms fit well. On
the whole, the velocity model can be recovered reasonably with the frequency
domain inversion scheme, when the irregular surface is present.
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Fig. 10. The inversion result.

CONCLUSIONS

Our study develops a variable grid finite-difference frequency-domain
modeling with surface topography and the corresponding inversion schemes. By
grid refinement near the irregular surface, we can efficiently simulate the wave
propagation for surface topography without apparent artificial wave
phenomenon. The modeling algorithm is incorporated into a full waveform
inversion algorithm for the first time. Considering the increased nonlinearity
produced by the effect of complex topography, two-level multi-scale strategy
implemented with successive inversions of overlapping frequency groups and
damping terms is critical to recover the velocity model stably. Besides, the
pseudo-Hessian matrix is used to scale the gradient of objective function to
improve the convergence. The frequency-domain inversion algorithm proves to
be effective for the complex model with surface topography by numerical tests.
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Fig. 11. Vertical profiles for the velocity parameter at x = 7.2 km (a) and x = 12 km (b). Profiles
of the true, the initial and the inverted models are plotted with solid, dashed and dotted lines,
respectively.
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APPENDIX
MIXED-GRID FINITE DIFFERENCE MODELING

The numerical dispersion is most significant along the bisectrices when
a standard five-point stencil (x - z or x’ - z’ coordinate system as shown in
Fig. A-1) is used in the finite difference modeling. The mixed-grid finite
difference scheme (Fig. A-1) is applied to reduce the numerical dispersion. A
combination of two staggered-grid stencils on the classical Cartesian coordinate
system (X - z coordinate system as shown in Fig. 13) and the 45° rotated
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coordinate system (x' - z' coordinate system as shown in Fig. A-1) is the basis
of the mixed-grid stencil. The spatial derivative is approximated by linearly
combining two discretizations of the derivative operator on the x - z coordinate
system and the x’ - z’ coordinate system. The mass acceleration term should be
approximated by using a weighted average over the nine nodes included in
mixed-grid operator stencil (Fig. A-1), as is done in finite-element modeling.
Then, the weighting coefficients should be obtained by optimization method that
minimizes the dispersion.

The discretized form of frequency-domain acoustic wave equation [eq.(2)]
based on mixed-grid finite difference scheme is

Cpi; + C2P1+1,j + C3pi—l.j + C4pi,j—1 + Cspiji

+ Rpij-1r + Ropigyjoy + Rypioyjiy + Rypigyjr = fiy - (A-1)
where p;; is the pressure wavefield at the node (i,j), C; and R, are the
coefficients defined by medium parameters, optimized weighting coefficients,
difference coefficients and so on, f;; is the source term. And finally, eq. (A-1)
can be recast into the matrix-type equation as shown in eq. (4).
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Fig. A-1. Mixed-grid finite difference scheme.





