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ABSTRACT

Zhang, C., Sun, B., Yang, H. and Ma, J., 2016. A non-split perfectly matched layer absorbing
boundary condition for the second-order wave equation modeling. Journal of Seismic Exploration,
25: 513-525.

The perfectly matched layer (PML) absorbing boundary conditions (ABC) have been well
studied for seismic wavefield modeling. However, existing approaches are either based on a
wavefield variable-split or are only applicable to first-order wave equations. In this paper, we
present a non-split PML ABC for the second order wave equations in displacement. The principle
of the proposed method lies in introducing a series of auxiliary variables to represent the partial
derivatives associated with the stretching axis. We derive the non-split PML formula by using basic
tensor algebra. The derived equations are in a compact form which makes the ABC condition easier
for implementation in practice. Furthermore, as no extra splitting wavefield variables are introduced,
the computer memory usage of wave equation modeling can be reduced accordingly. Numerical
results for both acoustic and elastic examples show the quality of the performance of the proposed
new method.

KEY WORDS: perfectly matched layer, absorbing boundary condition, second-order, wave equation,
seismic modeling, finite difference.

INTRODUCTION

‘Because of the rapid development of computer performance, wave
equation based seismic imaging and inversion methods like Reverse Time
Migration (RTM) (Baysal et al., 1983; McMechan, 1983; Whitmore, 1983) and
Full Waveform Inversion (FWI) (Tarantola, 1984) have become popular for
seismic exploration. A highly accurate numerical modeling of seismic wave
propagation is an essential stage for successful implementations of these
methods. Many different approaches have been examined to solve the seismic
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wave equations. Finite difference (FD) methods (Kelly et al., 1976; Virieux,
1984; Dablain, 1986) are most simple and efficient tools for modeling of wave
equations. Now they are routinely used for the RTM and FWI. For wave
equation modeling by finite difference methods, in order to approximate an
unbounded area, ABC are normally introduced to damp the energy at the
artificial boundaries of the finite model domain. Over the past decades,
numerous methods have been proposed regarding ABC such as damping layers
or "sponge zones" (Cerjan et al., 1985), one-way or paraxial conditions
(Clayton and Engquist, 1977), Mur’s condition (Mur, 1981), PML (Berenger,
1994), and hybrid method (Liu and Sen, 2010). Discussions about the strengths
and weaknesses of those methods can be found in (Festa and Vilotte, 2005) and
(Komatitsch and Martin, 2007). Berenger (1994) introduced the PML technique
that has the desired property of absorbing the incidence waves over a wide
range with only ten or less grid points. The PML has been successfully applied
to both acoustic (e.g., Liu and Tao, 1997; Qi and Geers, 1998; Hagstrom and
Hariharan, 1998) and elastic wave equation modeling problems (e.g. Chew and
Liu 1996; Hastings et al., 1996; Collino and Monk, 1998; Collino and Tsogka,
2001; Basu and Chopra, 2003; Liu et al., 2009). All of these papers focused on
the PML implementation in first-order systems in velocity and stress.
Komatitsch and Tromp (2003) applied the PML to a second-order elastic wave
equation in displacement. Their method introduced an intermediate variable to
overcome the third-order partial derivative with respect to time. However, as
a standard implementation of the PML, their method is still variable-split, which
is nonphysical and mathematically weakly well-posed (Abarbanel and Gottlieb,
1997). Also, it is a little bit complex for code programming in practice. On the
other hand, non-split based PML ABC has been well studied for the first-order
wave equation (e.g., Sacks et al., 1995; Gedney, 1996; Chew and Weedon,
1994; Teixeira and Chew, 2000; Wang and Tang, 2003; Ramadan, 2003; Zeng
and Liu, 2004; Komatitsch and Martin, 2007).

In the context of electromagnetic simulation, Ramadan (2003) proposed
a non-split implementation of the PML by using auxiliary differential equations
(ADEs). Wang and Liang (2006) extended this method to complex-frequency-
shift (CFS) PML with a 2D alternating-direction-implicit (ADI) finite-difference
time-domain (FDTD) method. Zhang and Shen (2010) implemented the auxiliary
differential equations based CFS-PML in the non staggered-grid finite difference
method using a fourth-order Runge-Kutta time-marching scheme. However, all
previous non-split approaches are used for first-order equations. In this paper,
we propose an approach based on ADE and focus on the non-split algorithm for
second-order systems. The principle of the method lies in introducing a series
of auxiliary variables to replace the partial derivatives associated with the
stretching coordinate in frequency domain. The PML wave equation is
transformed into a normal second order wave equation and several first order
auxiliary equations. As shown in Fig. 1, the auxiliary variables are only
calculated in the PML domain. As no extra splitting variables are introduced,
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computational memory burden is significantly reduced for implementation. In
the following, we will describe our method and present the main formula. We
will then verify our method with numerical examples through comparison with
one-way conditions (Clayton and Engquist, 1977, egs. (8) and (9)). In the
Appendix, we will show related mathematical derivations in detail.
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Fig. 1. Schematic diagram of the PML settings.

THEORY

Consider a three dimensional Cartesian coordinate system, in an isotropic
homogeneous elastic space. The source free particle displacement elastic wave
equations can be expressed as,

N\ + wVEu + wV-Viu = pdiu (1
where the u = (u;,u,,u) is the particle displacement vector of the wavefield, A
and p are the Lamé coefficients and p is the density of the media (Aki and
Richards, 1980). The second order partial derivative with respect to time is
given by 67. It is assumed that readers are familiar with the basics of tensor

algebra, like the subscript "," for derivatives and Einstein summation convention
so that eq. (1) may be written as
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We introduce two auxiliary variables p,; and q,;; (see the Appendix)
which play key roles in our non-split PML algorithm:

P = B Gy (8.1)
élli'j = By 040 + Py - (8.2)

Eqgs. (8.1) and (8.2) are defined in the frequency domain. Applying an
inverse Fourier time transform to these two equations and incorporating eq. (5),
we have

—d()uy; = —dp; = Py ©.1)
—de) + pg) — dX)G = Gy - ©.2)

Substituting egs. (6), (8.1) and (8.2) into eq. (7), yields
N+ w5 + Py + Q) + p@y + Py + 4y = —pwl . (10)

Detailed derivations of the above are given in the Appendix. After
applying the inverse Fourier time transform to eq. (10), we have the final
equation for the non-split PML in the time domain:

N+ Wy + g0+ qy) + ey + py; + gy = el . (11)

Combining with egs. (9) and (11), we get the non-split PML formula for
second-order elastic wave equations. Solving eq. (11) also requires the
determination of the auxiliary variables p; and gy in egs. (9.1) and (9.2). It
should be noted that eqs. (9.1) and (9.2) reduce to the original elastic wave, eq.
(2), if both p; and gy are set to zero.

For the acoustic wave equation, we can set (A + u) = 0 and u/p = V3
in eq. (11) to obtain the non-split PML formulae:

'V12>(ui.jj + py; Q) = oy . (12)

For the acoustic case, the vector u only has one component as acoustic
pressure. We only evaluate i = 1 in eq. (12). The equation for the auxiliary
variable is the same as egs. (9). However, we will only consider the reduced
system within eqs. (9.1) and (9.2). As shown in eq. (12), we only need to
evaluate p;; = py;; + piay + Piss. Other terms shown in eq. (9.1) do not need
to be calculated for the acoustic case. It is the same for evaluation the auxiliary
variable q;; in eq. (12), i.e., @y = Qi + G + 33
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For numerical implementation of the non-split PML, we use a forward
difference scheme to update the auxiliary variables p; and gy, in eqgs. (9.1) and
(9.2). Then a central difference scheme is used to update the wavefield y; in eq.
(11). As non-splitting wavefield variables are introduced and the auxiliary
variables are only computed in the PML domain, the computer memory burden
for practical implementation of the PML can be much reduced.
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Fig. 2. Snapshots of the 2D homogeneous medium acoustic modeling wavefield by using different
ABC at 550 ms, 600 ms and 650 ms, respectively. (a)-(c) are using Clayton A1 ABC; (d)-(f) are
using Clayton A2 ABC; (g)-(i) are using the proposed non-split PML ABC.
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NUMERICAL EXAMPLES

The first example is a 2D acoustic model with a constant velocity of
2500m/s. The size of the model is 201 grid points in depth, and 201 grid points
in the horizontal direction. The vertical and horizontal grid steps are both 10 m.
The 15 Hz Ricker wavelet point source is placed at (z = 1000 m, x = 1000 m).
The receiver depth is 1000 m. The time step is 1 ms for computation. We have
ABC at each of the four boundaries and evaluate the performance of the
proposed non-split PML method by comparing it with the Clayton-A1 ABC and
Clayton-A2 ABC proposed by Clayton and Engquist [1977, egs. (8) and (9)].
The number of grid points for ABC is set the same at 10. Fig. 2 shows the
snapshots of the wavefield at times t = 350 ms, 500 ms and 650 ms. Fig. 2
(a-c) is for the Clayton-Al, (d-f) is for Clayton-A2, and (g-i) is for the proposed
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Fig. 3. Shot records of the 2D homogeneous medium acoustic modeling by using different ABC.
(a) Clayton-Al. (b) Clayton-A2. (c) proposed non-split PML. (d) Zoomed plot of the 41-th trace
extracted from (a), (b) and (¢) with time fromt = 0.4 tot = 0.8 s, respectively.
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non-split PML ABC. It can be seen from the figures that the PML achieves the
best results where no visible reflections occur near the boundary. Fig. 3 (a)
shows the shot records for each ABC and Fig. 3 (b) shows the zoomed 41-th

trace extracted from Fig. 3 (a-c) in the time range fromt = 0.4 tot = 0.8 s,
respectively.

Depth(m)
=
2

[ —
= [
= =
= =

2000

1000 1000

00 Distance(m)

1000

Distance(m) 00 Distance(m)

1000
Distance(m)

1000
00 Distance(m)

Fig. 4. Snapshots and shot records of 3D homogeneous medium forward modeling. The proposed
non-split PML has been used in all boundaries.

(a) and (b) show snapshots slices at time t = 350 ms and t = 450 ms; c) shows the shot records
slices.
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The second example is for a 3D acoustic media with constant velocity of
3000 m/s. The grid points of all three directions are 201, with a step of 10 m.
The calculation time is up to 0.6 s with a time step of 1 ms. The 15 Hz Ricker
wavelet is placed at grid (z = 1000 m, x = 1000 m, y = 1000 m). The depth
of the receivers is 1000 m. We apply the proposed non-split PML at all
boundaries. The number of grid points for the PML is 10. Fig. 4 (a-b) shows

snapshots slice at times t = 350 ms and t = 450 ms. Fig. 4 (c) shows slices of
shot records.

We apply the non-split PML ABC to the elastic model in the third
example. The model is a constant velocity model with V, = 4000 m/s and Vg
= 3000 m/s. The vertical and horizontal grid numbers are 201 and 401,
respectively, and the grid spacing is 10 m. We have a 15 Hz point source
Ricker wavelet placed at (z = 1000 m, x = 2000 m). The time step is 1 ms and
the number of grid points for the ABC is set to be 20. Figs. 5(a) and 5(b) show
the snapshots of the vertical component of the displacement vector at 300 ms

and 500 ms, respectively. The PML also appears to behave very well for the
elastic case.
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Fig. 5. Snapshots of the vertical component in elastic model at different time: (a) 300 ms;
(b) 500 ms.
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CONCLUSIONS

In this paper, we proposed a non-split PML formula for the second-order
wave equation modeling. The main idea is based on augmented variable
substitution. We evaluated the proposed methods with both acoustic and elastic
wave equation modeling. The results verified the performance of the proposed
PML method in comparison with the conventional Clayton ABC methods. In
addition, the proposed method avoids wavefield splitting, which simplifies the
practical applications and also saves memory storage space.

ACKNOWLEDGEMENTS

We thank the associate editor and all reviewers for their constructive
comments. The research is supported by National Nature Science Foundation of
China under numbers 41174094, 91330108, 41374121, 61327013, National
Science and Technology of Major Projects under number 2016ZX05003-003,
and the Fundamental Research Funds for the Central Universities under number
HIT. PIRS. A201501.

REFERENCES

Abarbanel, S. and Gottlieb, D., 1997. A mathematical analysis of the PML method. J. Comput.
Phys., 134: 357-363.

Aki, K. and Richards, P., 1980. Quantitative Seismology: Theory and Methods. W.H. Freeman and
Co., San Francisco.

Basu, U. and Chopra, A., 2003. Perfectly matched layers for time-harmonic elastodynamics of
unbounded domains: theory and finite-element implementation. Comput. Meth. Appl. Mech.
Engin., 192: 1337-1375.

Baysal, E., Kosloff, D. and Sherwood, J., 1983. Reverse time migration. Geophysics, 48:
1514-1524.

Berenger, J.P., 1994. A perfectly matched layer for the absorption of electro-magnetic waves. J.
Comput. Phys., 114: 185-200.

Cerjan, C., Kosloff, D., Kosloff, R. and Resef, M., 1985. A non reflecting boundary condition for
discrete acoustic and elastic wave equations. Geophysics, 50: 705-708.

Clayton, R. and Engquist, B., 1977. Absorbing boundary conditions for acoustic and elastic wave
equations. Bull. Seismol. Soc. Am., 67: 1529-1540.

Chew, W. and Liu, Q., 1996. Perfectly matched layers for elastodynamics: a new absorbing
boundary condition. J. Comput. Acoust., 4: 341-359.

Collino, F. and Monk, P., 1998. Optimizing the perfectly matched layer. Comput. Meth. Appl.
Mech. Eng., 164: 157-171.

Collino, F. and Tsogka, C., 2001. Application of the PML absorbing layer model to the linear
elastodynamic problem in anisotropic heterogeneous media. Geophysics, 66: 294-307.

Dablain, M., 1986. The application of high-order differencing to the scalar wave equation.
Geophysics, 51: 54-66.

Drossaert, F. and Giannopoulos, A., 2007. A nonsplit complex frequency shifted PML based on
recursive integration for FDTD modeling of elastic waves. Geophysics, 72(2): T9-T17.



LAYER ABSORBING BOUNDARY CONDITION 523

Festa, G. and Vilotte, J., 2005. The Newmark scheme as velocity-stress time staggering: An
efficient PML implementation for spectral-element simulations of elastodynamics. Geophys.
J. Internat., 161: 789-812.

Gedney, S., 1996. An anisotropic PML absorbing media for the FDTD simulation of fields in flossy
and dispersive media. Electromagnet., 16: 399-415.

Hastings, F., Schneider, J. and Broschat, S., 1996. Application of the perfectly matched layer
(PML) absorbing boundary condition to elastic wave propagation. J. Acoust. Soc. Am., 100:
3061-3069.

Hagstrom, T. and Hariharan, S., 1998. A formulation of asymptotic and exact boundary conditions
using local operators. Appl. Numer. Math., 27: 403-416.

Kelly, K., Ward, R., Treitel, S. and Alford, R., 1976. Synthetic seismograms: A finite-difference
approach. Geophysics, 41: 2-27.

Komatitsch, D. and Martin, R., 2007. An unsplit convolutional perfectly matched layer improved
at grazing incidence for the seismic wave equation. Geophysics, 72(5): SM155-SM167.

Komatitsch, D. and Tromp, J., 2003. A perfectly matched layer absorbing boundary condition for
the second-order seismic wave equation. Geophys. J. Internat., 154: 146-153.

Liu, J., Ma, J. and Yang, H., 2009. The study of perfectly matched layer absorbing boundaries for
SH wave fields. Appl. Geophys., 6: 267-274.

Liu, Q. and Tao, J., 1997. The perfectly matched layer for acoustic waves in absorptive media. J.
Acoust. Soc. Am., 102: 2072-2082.

Liu, Y. and Sen, M.K., 2010. A hybrid scheme for absorbing edge reflections in numerical
modeling of wave propagation. Geophysics, 75(2): A1-A6.

Loewenthal, D. and Mufti, I., 1983. Reverse time migration in spatial frequency domain.
Geophysics, 48: 627-635.

McMechan, G.A., 1983. Migration by extrapolation of time-dependent boundary values. Geophys.
Prosp., 31: 413-420.

Mur, G., 1981. Absorbing boundary conditions for the finite-difference approximation of the
time-domain electromagnetic field equations. IEEE Transact. Electromagn. Compat., 23:
377-382.

Qi. Q. and Geers, T., 1998. Evaluation of the perfectly matched layer for computational acoustics.
J. Comput. Phys., 139: 166-183.

Ramadan, O., 2003. Auxiliary differential equation formulation: An efficient implementation of the
perfectly matched layer. IEEE Microwave Wireless Compon. Lett., 13: 69-71.

Sacks, Z., Kingsland, D., Lee, R. and Lee, J., 1995. A perfectly matched anisotropic absorber for
use as an absorbing boundary condition. IEEE Transact. Antenn. Propag., 43: 1460-1463.

Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics,
49: 1259-1266.

Teixeira, F. and Chew, W., 2000. Complex space approach to perfectly matched layers: A review
and some new developments. Internat. J. Numer. Model. - Electron. Netw., Devices Fek
13: 441-455.

Virieux, J., 1984. SH-wave propagation in heterogeneous media: Velocity stress finite-difference

~ method. Geophysics, 49: 1933-1957.

Wang, L. and Liang, C., 2006. A new implementation of CFS-PML for ADI-FDTD method.
Microw. Optic. Technol. Lett., 48: 1924-1928.

Wang, T. and Tang, X., 2003. Finite-difference modeling of elastic wave propagation: A
non-splitting perfectly matched layer approach. Geophysics, 68: 1749-1755.

Whitmore, D. 1983. Iterative depth imaging by back time propagation. Expanded Abstr., 53rd Ann.
Internat. SEG Mtg., Las Vegas: 382-385.

Zeng, Y. and Liu, Q., 2004. A multidomain PSTD method for 3D elastic wave equations. Bull.
Seismol. Soc. Am., 94: 1002-1015.

Zhang, W. and Shen, Y., 2010. Unsplit complex frequency-shifted PML implementation using
auxiliary differential equations for seismic wave modeling. Geophysics, 75(4): T141-T154.



524 ZHANG, SUN, YANG & MA

APPENDIX

NON-SPLIT PML FORMULATION DERIVATION

In this Appendix, we provide an alternate form of eq. (1) by substituting
eqgs. (8.1) and (8.2) into eq. (7). Using eq. (5) the gradient operator, eq. (6),
in the new coordinate system can be written as

V' = a0 = (6,5 + Bi)oe; . (A-T)

The above definition is then introduced into the left hand side of eq. (7)
to obtain

O + WV (V) + w(V''V = L, + L,
= N+ w0 + Bi)die[(6y; + Bjpojey - (ue)]
+ pe, - (6 + Bi)dileq (6 + Bo(uce)] . (A-2)
where

L= N+ w6 + BiDde 6y + By ]
= N+ w6 + Biedi(h;; + Bijly;
= N+ w6 + Bi)edi(@; + Py
= (A + wedl;; + Pex) + (N + weB0,(4;; + Py
= N\ + pe; + Py + N+ ey,
= [N + W@ + Py + Giples . (A-3)

In the third and fifth lines of eq. (A-3), we have introduced egs. (8.1) and (8.2),
respectively.

Proceeding in a manner similar to the above equation, we have

L, = u(y + Bi)di[(6 + By je,)]

i

.u(éi’i + Bi’i)ai(ﬁk',i'ek' + Bi’jﬁk’jek')

(6 + Bi)di(0y i + Pride
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= pdp(O i + Peide + pBiidi(Qy i + Prider
= H(ﬁi,jj + f’ij,j + jSj)ei . (A-4)
Combining the last lines of the formulae in eqs. (A-3) and (A-4) results in
A\ + WV (V) + wV'-VHia
=[N+ W@ + by + Gy) + w@y + Py + Gple . (A-5)

This is just the left hand side of eq. (10) in vector form.





