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ABSTRACT

Sun, W. and Wang, H., 2016. Water-layer-related demultiple method using constraints in the sparse,
local tau-p domain. Journal of Seismic Exploration, 25: 463-483.

Water-layer-related multiple suppression remains a challenge in marine data processing.
Surface-related multiple elimination (SRME) is proven to be effective in many offshore cases. As
an alternative to SRME, model-based water-layer demultiple offers an effective way to predict
water-layer-related multiples. In both SRME and model-based water-layer demultiple methods, the
multiple contribution gather plays an important role in multiple prediction. In this paper, we propose
a method to predict and subtract the water-layer-related multiples in the local tau-p domain. The
sparse local tau-p transform is implemented by a weighted least-squares inversion with weights in
the local tau-p domain, yielding higher resolution. Being in the local tau-p domain, the seismic data
and the Green’s functions of the water-layer primary reflections can be combined such that the true
downward reflection points for different water-layer-related multiple generators are automatically
selected by obeying Snell’s law. In this way, the accuracy of water-layer-related multiple prediction
is improved. In addition, it is proposed to replace the traditional adaptive subtraction by a filtering
in the local tau-p domain, where the semblance of the predicted water-layer-related multiples can
be used as constraints to identify the locations of water-layer-related multiples. Subsequently, a
Butterworth-type filter can be designed to adaptively subtract the predicted water-layer-related
multiples from the tau-p transformed input data. Compared with the conventional methods for
adaptive subtraction via the L,-norm, our proposed method is more effective when the primaries and
water-layer-related multiples are correlated. The constraints of the semblance not only provide an
effective and robust way for amplitude matching, but also weaken the effects of distorted wavelets
in subtraction. Our synthetic and field data examples show that the proposed flow of first predicting
water-layer-related multiples and, second, separating them from the primaries by utilizing the sparse
local tau-p transform enhances the water-layer-related multiple suppression results.

KEY WORDS: water-layer-related multiple, sparse local tau-p transform,
multiple contribution gather optimization, adaptive subtraction, semblance.
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INTRODUCTION

The suppression of multiple reflections has been a longstanding problem
in offshore seismic data processing. An important class of the techniques is
formed by wave-equation-based methods which suppress the multiples through
wavefield prediction and subtraction.

In the prediction stage, most methods focus on the prediction of the
kinematic characteristics, such as the traveltime of the multiples. The
data-driven surface-related multiple elimination (SRME) method (Berkhout and
Verschuur, 1997) has been proven effective in many offshore cases. SRME
simultaneously predicts all types of surface-related multiples without using any
prior information of the subsurface. The information hidden in the seismic data
is exploited by SRME. However, the near-offset data are missing due to
instrumental setups, and both the primaries and multiples are weak and often
contaminated by other arrivals such as direct, head and refracted waves (Sun
and Wang, 2014). All these factors make the data-driven methods less effective
in shallow water cases. Besides, iterative SRME suffers from inconsistency
between prediction and subtraction when the water depth is shallow or the
sea-floor is hard. That is, different orders of multiples require different
amplitude corrections even with a perfect sampling or recorded near-offset data.
Apart from SRME, MPI (Wang, 2004, 2007) predicts the multiples through
data-driven inversion. Compared with SRME, the MPI demultiple technique
minimizes the edge effects and eliminates the needs for near-offset traces.

Model-based methods (Berryhill and Kim, 1986; Wiggins, 1988) relieve
the dependence on completeness of data. With the prior information of the
water-layer model, model-based methods can effectively predict the
water-layer-related multiples (WLRM). Lokshtanov (1999) proposes a consistent
wave-equation-based method for simultaneous prediction of both source- and
receiver-sidle  WLRMs. Based on Lokshtanov’s method, deterministic
water-layer-related demultiple (DWD) (Moore et al., 2006) uses an operator,
deterministically designed from a water-layer model picked from the
autocorrelation, to predict the WLRMs. Model-based water-layer demultiple
(MWD) (Wang et al., 2011) is an alternative to SRME for WLRM prediction.
In MWD, the water-layer primary reflections are replaced by the water-layer
Green’s functions to convolve with the recorded data. Compared with the
conventional SRME, MWD removes the crosstalks between different orders of

multiples, and the spectrum distortion caused by the extra source wavelet is also
attenuated.

All the convolution-based methods for multiple prediction, either SRME
or MWD, involve the convolutions of the traces from a common shot gather
(CSG) with a common receiver gather (CRG) to form the multiple contribution
gather (MCG), the stack of which predicts the surface-related multiples or
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WLRMs. Within the MCG, most contributions are related to non-physical
events, which will be stacked out by destructive interference. Only a small
portion of the MCG that contains the true downward reflection points (DRP)
contributes constructively to the prediction of multiples. However, the right
stacking aperture is usually not known in advance. Bienati (2012) proposes a
method to automatically define the stacking aperture in 3D SRME. Keydar et
al. (1998) proposes a method to predict the multiples kinematically relying on
the angle relationship. Verschuur et al. (2007) separates the reflections and
diffractions in the tau-p domain, and separately predicts the diffracted multiples.
Donno (2010) presents a SRME-based approach to improve the prediction of the
surface-related multiples in the curvelet domain. The curvelet transform is used
to decompose the seismic data into local plane waves. The directionality of
curvelets is utilized to optimize the MCG. Similar to this idea, the method
presented in this paper focuses on both the MCG optimization through
exploitation of the Snell’s law and WLRM prediction in the local tau-p domain.
The sparse local tau-p transform is implemented by a weighted least-squares
inversion. The resolution is higher than the conventional local tau-p transform
via slant stack. In the local tau-p domain, the recorded data are convolved with
the Green’s functions of water-layer primary reflections. They are combined
such that the true DRPs for different WLRM generators are automatically
selected by obeying Snell’s law. This results in better WLRM prediction. The
proposed procedure can be implemented in both SRME and MWD process, but
in this paper it is demonstrated for the MWD situation.

Although the kinematic information of the multiples can be predicted, the
dynamic characteristics cannot be predicted accurately due to the effects of
modeling inaccuracy and noise contamination. Multiple subtraction compensates
for amplitude and phase discrepancies that arise from the process of multiple
prediction. The subtraction is usually posed as a least-squares minimization
problem that minimizes the energy difference between the recorded data and the
predicted multiples, which is implemented as single or multi-channel Wiener
filtering. However, the primaries are assumed to have minimum energy and to
be orthogonal to the multiples, as required by the L,-norm (Guitton and
Verschuur, 2004). Some problems arise when these two assumptions are not
met. Besides the amplitude attributes, pseudo-multichannel matching filter takes
into account residual traveltime and phase in the process of subtraction (Monk,
1993; Wang, 2003). When the primaries and multiples are not orthogonal, the
primaries overlapping the multiples will be wrongly subtracted. To overcome
this problem, Spitz (1999) proposed a ‘pattern recognition’ subtraction method
based on the prediction error filter (PEF). The subtraction methodology is
concerned with the patterns (shapes) of the events. The pattern of the event is
defined as the spatial vector that contains the phase shift and lateral amplitude
variation from trace to trace but excludes the waveform of the event.
Independent component analysis treats the problem as "blind source separating"
issues. The separation of multiples and primaries relies on higher-order
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statistics, which are utilized to measure the dependence between these
components (Lu and Liu, 2007). These methods have partly succeeded in
breaking through the orthogonality assumption. Considering the L1-norm is less
sensitive to outliers, it is used as an alternative to the L,-norm to avoid the
assumption that primaries should have minimum energy (Guitton and Verschuur,
2004). More recently, the curvelet domain has been used to adaptively subtract
the multiples (Herrmann et al., 2008; Wu and Barry, 2013). The method
supposes that primaries and multiples map into different positions in the curvelet
domain because of different local slopes or frequency contents. Van Groenestijn
and Verschuur (2008) present a method to estimate the primaries through sparse
inversion (EPSI) by redefining SRME as a large-scale inversion process.
Recently, the ghost effect is included into EPSI to generate better primary
estimation (Verschuur, 2013).

In this paper, the following adaptive subtraction of WLRMs is also in the
local tau-p domain. The primaries and multiples separate better in the local tau-p
domain than they do in the space-time domain. And the adaptive filter becomes
explicitly angle-dependent in the local tau-p domain. As the proposed prediction
method can predict the traveltime of the multiples, the semblance of the
predicted WLRMs can be used as constraints to identify the locations of
WLRMs in the local tau-p domain. Hereby, a Butterworth-type filter can be
designed to complete the adaptive subtraction. There are three advantages of the
proposed method for adaptive subtraction. First, the predicted WLRMs can be
effectively subtracted when they are not orthogonal to the primaries, and the
primaries can be preserved at the same time. Second, the predicted multiples
can be subtracted through filtering in the local tau-p domain rather than solving
linear equations in a certain norm. Third, this method not only preserves the
energy of the primaries but also weakens the sensitivity of wavelets on the
subtraction at the same time.

The paper is organized as follows. In the next section, we illuminate the
theory of the sparse local tau-p transform. In the following two sections, we
propose a method for WLRM prediction and subtraction in the local tau-p

domain, respectively. Finally, we test the proposed method through 2D synthetic
and field examples.

THEORY and METHOD
Sparse local tau-p transform

Both multiple prediction and subtraction are implemented in the local
tau-p domain. Thus a sparse local tau-p transform is required. Many papers
have been devoted to the high-resolution Radon or tau-p transform (Trad et al.,
2003). In the proposed method, the local tau-p transform is implemented by a
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weighted least-squares inversion with weights in the local tau-p domain, yielding
higher resolution.

In the frequency domain, the forward problem of the local tau-p transform
can be written as:

dl I eiwp,(x, -%) o'“P (n-%) ... ei“’Pnp(Xl -%) ] s,
d2 eiwp] (x,~%) ei“’Pz(Xz -x) . ei“’Pnp (x2-%) S,

= : . : , , (1)
dns einx (%, -%o) einz (xn=%) . eiwp”P Gm=%0) Snp

where w is the angular frequency. In the frequency domain, d; is the input data,
m is the number of traces in the spatially local window. X, are the spatial
locations of the input data, and x, is the reference trace, which is usually the
central trace in the local window. p;, is the i-th ray parameter, n, is the number
of ray parameters. s i is the local plane wave with the ray parameter being pip.

The local tau-p transform is considered as an inversion problem. A
common approach for obtaining a sparse local tau-p transform is to choose a
L,-norm for the model and a L,-norm for the data misfit (Trad et al., 2003).
The objective to be minimized can be written as:

T = |As — x|} + \[s] ., )

where matrix A consists of the basis functions corresponding to each ray
parameter, and vector s and vector x are the data in the local plane wave
domain and the spatially local input data in the space-time domain, respectively.
And A is the regularization parameter. The mixed norm problem can be easily
transformed to a L,-L,-norm problem by using a weighted diagonal matrix W,
in which the model-dependent elements on the diagonal are defined as:

Wii = I\fs 3)
where wi  is the i-th element on the diagonal of matrix W. In this way, the
sparse local tau-p transform can be implemented by a weighted least-squares
problem. We utilize the energy of the data in the local plane wave domain to
generate the weighted matrix. Although the tau-p-transformed data generated by
the slant stack suffer from the leaking noise and low resolution, their energies
can be utilized to evaluate the solution to the inverse problem. The larger the
energy is, the more likely it is the true component in the local tau-p domain.
Otherwise, the smaller the energy is, the more likely it is the leaking noise. The
energy of the data in the local plane wave domain is defined as:
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where e(i,), i, = 1,2,,n, are the energies of the data in the local plane wave
domain corresponding to the i,-th ray parameter. w, and w, are the beginning
and end of the frequency, respectively. s,(i,,w), i, = 1,2,.-,n, are the data in the
local p—w domain generated by the slant stack. Using e(i,) as weights, the
weighted objective function to be minimized can be written as:

= ||As — x|} + ||Rs| , (3)

where matrix R is a diagonal n, Xn, matrix, and the elements on the diagonal
can be written as:

o= Nely) | (6)

p

where r; ; is the i -th element on the diagonal. The solution to eq. (5) is:
S = (A"A + R)'Afx | (7

where the symbol H represents conjugate transpose. Neglecting the (AYA +R) !
we achieve the results of the slant stack, i.e., A"X. When e(i,) is large, ri i is
small. The inverse of A"A dominates the solutlon and the resolutlon of AMX
is enhanced. When e(i,) is small, i, is large. The inverse of rii, dominates
the solution, and the leakmg noise is suppressed. As a result, a sparse local
tau-p transform is obtained.

Fig. 1 draws a comparison between slant stack and the sparse local tau-p
transform. Panels in the top row compare the results of the forward local tau-p
transform. Compared with a slant stack, the local tau-p transform generated by
the proposed method has higher resolution. Besides, the leaking noise of slant
stack contaminates signals. As the basis functions of the local tau-p transform
do not form an orthogonal basis, the inverse transform also creates some errors.
Panels in the bottom row show the comparison of the results of the inverse local
tau-p transform. By checking the inverted wavelets in panel (e) and (f)
comparing with (d), it is clear that the proposed local tau-p transform is sparser
and more accurate.

MCG optimization

In this section, we propose an approach to optimize the MCG and
improve the precision of multiple prediction in the local tau-p domain. Based on
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SRME, the receiver-side WLRMs can be predicted by convolutions of recorded
data and the primary reflections:

Mr(xs’xr’w) = Z Ds(xs’xi’w)Pr(xi’Xr’w) = Z MCG(X;,XS,X‘.,Q}) . (8)

X, €Q X, €Q

In the frequency domain, M(x,,x,,w) are the predicted receiver-side
WLRMs for the trace with source x, and receiver x,. D(x,,X;,w) and P(x;,X,,w)
are the 1D Fourier transforms of the recorded CSG and the CRG of the primary
reflections, respectively. MCG(x;,X,,X,,w) is the MCG of the trace x, — x,,
calculated for all the possible DRPs x;. @ is the summation aperture. Relying on

(b)
E 1.04 E——— E 104 T ?1&1 e—
(d) (e) ®

Fig. 1. Comparison between the slant stack and the proposed high-resolution transform. (a) Synthetic
dataset, and the vertical line indicates the central trace of the input local window. (b) and (c) are
results of the slant stack and the proposed high-resolution local tau-p transform. (d) Original record
indicated by the vertical line in (a). (e) and (f) are the inverse transform of the slant stack and the
proposed method.



470 SUN & WANG

the Huygens’ Principle, all the possible DRPs are possible secondary sources
that generate WLRMs. In SRME, the prediction of WLRMs involves
convolution of trace couples X, — x; and x; — X, where x; scans throughout any
possible DRP. The convolution (or multiplication in the frequency domain, as
shown in eq. (8) generates the traces of the MCG. The subsequent summation
of MCG predicts the WLRMs recorded by trace x, — x,. Note that the primaries
act as prediction operator to predict WLRMs. MWD replaces the prediction
operator by water-layer Green’s functions. With the prior information of the
water-layer model, the water-layer Green’s functions can be modeled through
wave-equation modeling. In MWD, the receiver-side WLRMs can be predicted
by:

M, (X, X.w) = Y, DiX..X,0)G (X, X,.0) = ), MCG™(x,.x.X,.@) .  (9)
X, EQ X, €Q

Compared with SRME, G.(x;,X,,w) is the CRG of the modeled Green’s
functions, and MCG™(x;,X,,X,,w) is the MCG generated by MWD. In SRME or
MWD, only the true DRPs are the true secondary sources that generate
WLRMs. Thus only the contributions that belong to the traveltime stationary
zone (Donno, 2010) contribute constructively to the prediction of WLRMs,
whereas the summations of other contributions generate destructive interference.

In the local tau-p domain, we aim at optimizing the MCG through
exploitations of Snell’s law at the water-air interface. Assuming the surface is
flat, if x; is the true DRP, then the angle of incidence equals that of emission,
as illuminated in Fig. 2a. Otherwise, this does not hold, as illuminated in
Fig.2b. Therefore, the relationship between 6, and 6, can be utilized as criteria
to determine the locations of stationary positions. In the local tau-p domain, the

(a) (b)

Fig. 2. Ray paths to explain how to optimize the MCG relying on Snell’s law.
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criteria can be represented equivalently by ray parameters. That is, when 6, =
6, holds, the corresponding relationship between ray parameters is: p, = —p,.
Based on this, the seismic data and the Green’s functions of the water-layer
primary reflections can be combined such that the true DRPs for different water
layer-related multiple generators are automatically selected by obeying Snell’s
law in the local tau-p domain. For simplicity, the symbol w is omitted in the
following equations. The receiver-sidle WLRMSs for each frequency can be
predicted in the local tau-p domain by:

M(x.%.D, ) = ), Dxxp )G, (xXep ) = 3, MCG(xuxoxop, ), (10)
P X EQ P p XEQ P

where the range of ray parameter values is symmetric, i.e. Py = —P, i and
P, =0. M (xg,xr,p ) is the predicted receiver-side WLRMs with the ray
parameter being p; - ' D, (xs,x,,pl ) is the tau-p transformed CSG, and
MCG(x;,x,X,,p ;) is the correspondmg MCG in the local tau-p domain. Here,
G.(x,X,p ) the CRG of water-layer Green’s functions in the local tau-p
domain, act as prediction operators of receiver-side WLRMs. Relying on Snell’s
law, the incident local plane wave component with the ray parameter p, is only
convolved with the emitting local plane wave component with the opposite ray
parameter p, Thus the artifacts caused by destructive interference are
automatically removed which results in better prediction of WLRMs. Fig. 3
explains how the receiver-side WLRM s are predicted in the local tau-p domain.

X . X » X

K i i
L

Fig. 3. Ray paths to explain how the proposed method predicts the receiver-side WLRM in the local
tau-p domain.
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The solid line indicates the input CSG with the ray parameter being Pi - And
the dashed line indicates the prediction operator, which is the CRG' of the
water-layer Green’s functions with the opposite ray parameter being py —i,
The convolution of the input component with the corresponding prediction
operator automatically optimizes the MCG, and thus improves the prediction
precision.

According to the reciprocity principle, the source-side WLRMs can be
predicted with the CRG being input and CSG of water-layer Green’s functions
being prediction operator, as shown by:

M@ww)-ZGmmpD@mpwJ- (11)
X, €Q

In the p-o domain, M((x;,X,,p; ) is the source-side WLRMs with the ray
parameter being p ;. D.(x;,x,.,p; ) is tau -p transformed CRG, and G,(x,,X;,p; ) is
the CSG of water- layer Green’s functions in the local tau- -p domain. Slm1lar1y,
the source-receiver-side WLRMs M (x,,x,,p; ) can also be predicted from the
receiver-side, with the source-side WLRMs bemg input, and the corresponding
CRG of Green’s functions being prediction operator, as shown by:

sr(xwxr’p ) = E M (Xsaxnpl )G (anrapn —1 ) . (12)
X,€Q
Lokshtanov (1999) has mentioned that a correction term should be added
to correct the over-prediction of the first-order pure water-layer multiples, as
given by:

M (5050, ) = 0 Puxoxip G XXy i) - (13)
x€Q
where, M (xg,xr,pl ) is the first-order pure water-layer multiple. P, (x,x;,p, ) is
the CSG of water-layer primary reflections, which can be easily separated in the
local tau-p domain.

In order to demonstrate the effectiveness of multiple prediction, the
proposed method is applied on synthetic data. The synthetic example is
generated by 2D wave-equation modeling, and the water depth is about 100 m.
Fig. 4 compares the multiples predicted by conventional MWD and the proposed
method. The yellow arrows in Fig. 4b indicate the artifacts caused by
interference of MCG stacking. The proposed method eliminates the artifacts,
resulting in better multiple prediction. Fig. 5 compares the MCGs corresponding
to the trace annotated by the solid red line in Fig. 4. In the MCG via
conventional MWD, it clearly shows that the destructive interference is caused
by the extended non-physical extension of the MCG tails, which creates artifacts
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Fig. 5. Comparison of the MCGs (corresponding to the trace as annotated by the solid red line in
Figs. 4b and 4c) generated by conventional MWD and the proposed method. (a) and (b) are the
MCGs generated by conventional MWD and the proposed method, respectively. (c) and (d) are the
stack of the MCGs in (a) and (b). The green arrows in (c) indicate the artifacts caused by
deconstructive interference of the MCG, which are absent in (d).
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where 7 and x, stand for intercepting time and spatial locations, and N
represents the number of traces per local window. d is the input data in the
space-time domain for the calculation of semblance. Semblance can be
considered as the ratio of output to input energy along the proposed trajectory.
Firstly, the numerator of semblance acts as the envelope of the wavelets along
the trajectory, which weakens the effects of wavelet distortion during the
process of subtraction. Secondly, the denominator of semblance normalizes the
amplitude, which means that the value of semblance is independent of the
amplitude of the arrival to be detected. These advantages can make our method
more effective in multiple subtraction than the conventional methods do.

Using the semblance as constraints in the local tau-p domain, we design
the filters for multiple subtraction by the following strategy: when primaries and
multiples are orthogonal in the local tau-p domain, we can assign the filter with
zero values where the semblance of the predicted multiples have nonzero values.
Thus in the local tau-p domain, the filter for adaptive subtraction can be
designed as:

0, if C(r,p,) # 0
fir.p, ) = " : (15)
’ 1, if Cm(T,pip) =0

where C,(7,p, ) is the semblance of the predicted multiples. It is calculated as
eq. (14), w1th the local predicted multiples in the space-time domain used as
input. Unfortunately, primaries and multiples are not always orthogonal, even
in the local tau-p domain. Thus, a more generic way of designing filters is
needed. Generally, we choose the Butterworth-type filter to preserve the
primaries while subtracting multiples. This filter can be defined as:

f(r.p;) = UV + [Co(mp; VeCylr.p I} - (16)

where C,(7,p ) is the semblance of the original data. n acts as the parameter
to control the' ‘smoothness of the filter. o is a parameter that is utilized to
preserve the primaries in the local tau-p domain. When the primaries and
multiples are orthogonal, the filter can suppress the multiples thoroughly, and
the result is independent of «.. Otherwise, « acts as a weighting factor, in order
to preserve the primaries during the subtraction. In the proposed method for
multiple subtraction, we first calculate the semblance in the local tau-p domain
with original data and predicted multiples in the space-time domain used as
input, respectively. Then, the filter for multiple subtraction is generated by egs.
(15) or (16). By applying the designed filter on the tau-p transformed original
data in the local tau-p domain, the multiples can be subtracted and henceforth
the primaries are obtained in the local tau-p domain. Finally, the primaries in
the local tau-p domain are transformed back to the space-time domain. Thanks
to the aforementioned sparse local tau-p transform, the multiples are effectively
subtracted, and the primaries are preserved.
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(b)

(c) (d)

Fig. 6. Comparison of the subtraction results. (a) and (b) are the original dataset and predicted
multiples generated by MWD, (c) and (d) are the subtraction results via the conventional L,-norm
and the proposed method. A 2D window of 11 traces and 400 ms is used to estimate the matching
filter for conventional L,-norm subtraction, and the matching filter length is 60 ms.
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Next, we test the effectiveness of our proposed method for multiple
subtraction. Without loss of generality, we tackle the areas where primaries are
not orthogonal to multiples. The primaries and multiples interfere as framed by
the yellow box in Figs. 6a and 6b. Comparing Figs. 6¢ and 6d, the conventional
subtraction method based on the conventional L,-norm cannot preserve the
primaries, as shown in the yellow box in Fig. 6¢c. However, the proposed
method can effectively eliminate the multiples and preserve the primaries at the
same time, as shown in Fig. 6d. Fig. 7 shows the designed filter for multiple
subtraction. Figs. 7a and 7b are the semblance of the original data and the
predicted multiples, respectively. According to eq. (16), the Butterworth-type
filter for multiple subtraction in the local tau-p domain is calculated, with the
semblance of the original data and the predicted multiples being input. The filter
is shown in Fig. 7c. Compared with Fig. 7b, the red box in Fig. 7c identifies
the locations of the predicted multiples. Note that the values of the filter in the
red box are almost zero. Thus when the designed filter is applied on the original
data in the local tau-p domain, the multiples are adaptively subtracted.

P ... BV R ... SR .. S
= Et‘ E‘ |
g g £

| = - =

— —

}-! ? 2 24 = |
———— 2_____
@) ' ) ©

Fig. 7. Semblance of the input data and the predicted multiples and the corresponding filters for
adaptive subtraction in the local tau-p domain. (a) and (b) are the semblance corresponding to the
events in the red boxes in Figs. 6a and 6b, respectively, and (c) is the filter for multiple subtraction
in the local tau-p domain according to eq. (16).

FIELD DATA EXAMPLES

We now validate our multiple prediction and subtraction methods by field
data examples. The first example from southern China is utilized to prove the
effectiveness of the proposed method for adaptive subtraction. The water bottom
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depth is about 1400 m. Fig. 8a shows the original dataset, and Fig. 8b shows
the predicted multiples generated by MWD. The red arrows in Fig. 8a indicate
that primaries and multiples interfere. Figs. 8c and 8d are the subtraction results
via the conventional L,-norm and the proposed method, respectively. Comparing
Fig. 8c with 8d, the proposed method simultaneously eliminates the multiples
and preserves the primaries more effectively than the conventional L,-norm
does.

Next, the proposed method for WLRM prediction and subtraction is
applied on a field dataset in a shallow water case. The water bottom depth is
about 80 m. Firstly, we compare the proposed method with conventional MWD
through the stacked images in Fig. 9. The events indicated by blue arrows show
that the proposed method works better than conventional MWD. In the
prediction stage, the proposed method automatically optimizes the MCGs and
thus improves the precision of multiple prediction. As a result, the proposed
method generates a more accurate prediction result than the conventional MWD
does. In the subtraction stage, the proposed method can not only suppress the
multiples but also preserve the primaries at the same time. These advantages in
both multiple prediction and subtraction make the proposed method more
effective than the conventional MWD. Secondly, the effectiveness is furthermore
proven through the comparisons of autocorrelation functions. In Fig. 10a, the
autocorrelation functions of raw dataset shows a strong contamination by the
WLRMs. Comparing Figs. 10b and 10c, we can conclude that the proposed
method suppresses the WLRMs more effectively than the conventional MWD
does. Finally, we draw comparisons between the proposed method and
conventional MWD through the average amplitude spectra. As indicated by Fig.
11, the frequency bandwidth generated by the proposed method is broader than
that generated by the conventional MWD. Therefore, the effectiveness and
feasibility of the proposed method are proven, and the comparisons between the
proposed method and conventional MWD also show the advantages of the
proposed method.

CONCLUSIONS

-A method for WLRM prediction and subtraction in the local tau-p domain
is presented in this paper. Using weights in the local tau-p domain, a sparse
local tau-p transform is achieved by weighted least-squares inversion. Relying
on Snell’s law, the Green’s functions of the water-layer primary reflections in
the local tau-p domain are utilized as prediction operators to optimize the MCG
significantly. The true DRPs are automatically selected, thus the deconstructive
interference is suppressed. As a result, the WLRM prediction is more accurate.
During the subtraction stage, the semblance of the predicted WLRMs is used to
identify the locations of WLRMs in the local tau-p domain. Utilizing the
semblance as constraint, a Butterworth-type filter is then designed to implement
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Fig. 8. Comparisons of the subtraction results for field data. (a) and (b) are the original dataset and
predicted multiple generated by MWD, (c) and (d) are the subtracted results via the conventional
L,-norm and the proposed method. The red arrows prove that the proposed method subtract the
multiples better than the conventional method does when the primaries and multiples interfere.
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Fig. 9. Comparison of multiple removal methods via stacked images. Fig. (a) to (c) are the stacked
images of raw data and the results of conventional MWD and the proposed method, respectively.
The- events indicated by blue arrows prove that the proposed method works better than the
conventional MWD.
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Fig. 10. Comparisons of autocorrelation functions. Fig. (a) to (c) show the autocorrelation of the
raw data and the results of the conventional MWD and the proposed method, respectively.
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Fig. 11. Comparisons of the average amplitude spectra. Red, blue and green lines are the average
amplitude spectra of raw data and the results of the conventional MWD and the proposed method,
respectively.

the adaptive subtraction in the local tau-p domain. The predicted WLRMs can
be effectively subtracted despite the nonorthogonality between primaries and
multiples. This method not only preserves the primary energy but also weakens
the effects of wavelet distortion caused by WLRM prediction. The findings of
the synthetic and field data examples have proven the effectiveness and
robustness of the proposed method in WLRM prediction and subtraction, and
our method can serve as a solid flow for WLRM suppression.
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