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ABSTRACT

Liu, C., Wang, D., Hu, B. and Wang, T., 2016. Seismic deconvolution with shearlet sparsity
constrained inversion. Journal of Seismic Exploration, 25: 433-445.

The application of conventional deconvolution methods must be under some assumptions,
meanwhile the processing procedure is through single trace cycle, which may destroy the continuity
of seismic events. Besides, these methods are serious interfered by noise. For these reasons, we
proposed seismic deconvolution based on multiscale and multidirectional shearlet transform sparsity
constrained inversion. Shearlet has the ability to represent multidimensional signals with optimal
sparse representation. We expressed the reflected signals sparse characteristic by the sparse shearlet
coefficients. Deconvolution based on multi-dimensional space transform maintains the continuity
along reflectors theoretically compared to the traditional single channel method. We expressed the
deconvolution problem as a /-norm optimization problem and combined with a fast iterative
thresholding algorithm. Experiments on synthetic and field seismic data show our method could
improve the resolution of seismic data effectively, attenuate random noise and make the events more
smoothly.

KEY WORDS: shearlet transform, sparse deconvolution, /,-norm minimum, resolution.

INTRODUCTION

Seismic deconvolution plays a vital role in improving vertical resolution
of seismic data. The results of deconvolution directly affect the subsequent
stack, migration and geological interpretation. Currently, the exploration areas
are more focused on smaller and deeper buried reservoirs, while the
conventional deconvolution methods cannot meet the requirements of high
resolution.
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The application of conventional deconvolution methods such as least
square deconvolution (Berkhout, 1977), spike deconvolution and prediction
deconvolution are under some assumptions, such as minimum phase wavelet and
Gaussian white reflectivity coefficients sequence. However, these conditions are
often not satisfied in practice. Ulrych (1971) introduced an homomorphic system
into deconvolution, which does not require the assumptions of minimum phase
wavelet and Gaussian white reflectivity coefficients. Claerbout and Muir (1973)
proposed to use the /,-norm instead of least square to achieve more stable
solutions. Gray (1979) put forward a variable norm deconvolution method,
which estimates the reflectivity coefficients by minimum /,-norm between the
input and the desired output. Although the variable norm deconvolution has no
special wavelet requirements, the sparse reflectivity coefficient is required, and
it is severe interference by noise.

In order to reduce the noise influence on deconvolution, Oldenburg et al.
(1981) proposed to use prior information or constraints to guarantee the
accuracy of the result. Shlomo and Peter (1981) utilized the spectral information
of seismic data to recover reflectivity using the /,-norm, which gets quality of
anti-noise. Kaaresen and Taxt (1998) described the deconvolution problem in a
Bayesian framework. Canadas (2002) presented a scheme for blind
deconvolution problems that the probability distribution of the reflectivity
sequence was used as the penalty term. In this way both the wavelet and
reflectivity sequence are simultaneously estimated. Nojadeh and Sacchi (2013)
developed a Sparse Multichannel Blind Deconvolution method, which can
tolerate moderate levels of noise and does not require a priori knowledge of the
length of the wavelet.

Herrmann (2005) pointed out that it is too simple to represent seismic
reflectivity coefficients as sparse spike in deconvolution. He proposed a
redundant dictionary to describe the seismic reflectivity, which abandoned
restrictions of the traditional assumptions. Hennenfent et al. (2005) proposed an
iterative curvelet-regularized deconvolution algorithm that exploits continuity
along reflectors in seismic images. Curvelet transform was introduced to
represent non-spiky reflectivity by Meng and Wang (2013). Based on this
method, we describe the deconvolution in the sparse transform domain and
introduce shearlet transform into deconvolution. Shearlet is proved to have the
optimal sparse representation of 2D data (Guo and Labate, 2007). In our
method, the stratum reflective layers (faults or pinch-outs) could be seen as
piecewise smooth curved reflective layer, whose reflectivity can be represented
by the sparse Shearlet coefficients. We don’t make the hypothesis of sparse
reflectivity coefficients but use the sparse shearlet coefficients instead.
Moreover, according to the distribution characteristics of the reflect signal and
random noise in the shearlet domain, we apply a threshold algorithm to separate
noise from the signal. In this way, we could improve resolution and suppress
noise at the same time. Deconvolution based on multi-dimensional space
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transform maintains the continuity along events in theoretically compared to the
traditional single channel method, which combined the shearlet deconvolution
problem with fast iterative thresholding algorithm (Beck and Teboulle, 2009).
Numerical examples show that our method is robust and effective.

THEORY OF SHEARLET TRANSFORM

Shearlet transform is first introduced by Labate and Kutyniok (2005),
which is obtained by applying the actions of dilation, shear transformation and
translation to a fixed function, and exhibit the geometric and mathematical
properties, e.g., directionality, elongated shapes, scales, oscillations, recently
advocated by many authors for sparse image processing applications. Indeed,
unlike wavelet generated by isotropic dilations, shearlets provide an optimal
sparse representation of anisotropic and directional information at multiscales.

Shearlet systems are generated by a parabolic scaling, translation and
shearing operators to change the orientation. A shearlet system is built from a
generating function ¢(t) by orienting it using S, scaling it using A,, and
translating it using T,,, so that a shearlet system can be defined as:

S(e) = A;S¢Tyre (1)

Shearlet systems can be regarded as consisting of certain generating

functions whose resolution is changed by a parabolic scaling matrix A, or A,;
defined by:

a 0 a? 0
Ay = and A, = . )
0 " 0 @

Equal scaling along both axes will not be able to capture anisotropic features,
hence different scaling for the axes is required.

Although other ratios for scaling the axes are possible, this choice, known
as parabolic scaling, optimizes the approximation properties for the piecewise
smooth image model considered. To change the orientation of the generating
function, an obvious choice is a rotation operator. However, rotations destroy
the integer lattice (except for trivial rotations that switch the axes). In other
words, integer locations may get mapped to fractional locations after a rotation.
This leads to the problem of obtaining a discrete transform that is consistent
with the continuous transform (where approximation properties have been

optimized). As an alternative orientation operator, the orientation is changed by
a shearling matrix:
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S = . ©)

This achieves orientation changes using the slope s rather than a rotation angle.
It has the advantage of leaving the integer lattice invariant when s is chosen as
an integer.

Finally, a translation operator is defined that shifts the generating
function:

T.(p) = ot —m) . )
The conditions on the generating function so that the shearlet system S(p)

can represent any square-integrable function, are known as admissibility
conditions.

To investigate the differences of wavelet, curvelet and shearlet, we show
the frequency tiling of three multiscale transform in Fig. 1. Here we can see:

1. Meyer wavelet: Regularization wavelets may well represent isotropic data.
2. Curvelet: Tight directional support frame, fine-scale data can be a good

representation of anisotropy. However, curvelets offer limited localization
in the spatial domain since they are band limited.

Y
v
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Fig. 1. The frequency tiling of a) wavelet, b) curvelet, c) shearlet.
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3. Shearlet: Compactly directional support frame, fine-scale data can be a
good representation of anisotropy, provides a unified treatment of
continuous as well as discrete models, allowing optimally sparse
representations of piecewise smooth images.
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Fig. 2. Anisotropically scaled and sheared atoms efficiently cover curve-like singularities, a)
wavelet, b) curvelet, c) shearlet.

SEISMIC DECONVOLUTION WITH SHEARLET SPARSITY
CONSTRAINED INVERSION

The forward problem of seismic data deconvolution can be written as:
S=wxr+n , (5)

where s represents the data, r represents the reflectivity, w represents the source
wavelet and n represents zeros-centered white Gaussian noise, respectively. The
symbol * denotes linear convolution. The only quantity we know is the seismic
data, and the source wavelet can be estimated by other ways. These are two
knowns to search the other one unknown if we ignore the noise data. We
rewrite eq. (5) as:

s=Wx+n , (6)

where W denotes a N X M wavelet matrix, whose elements are W, =w,

i—r+1»

and the deconvolution problem become given s and W to find the reflectivity x.

A simple way is to find W™, so that the approximate solution of x can
be written as:

X=Wls=x+W!n . (7)
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Deconvolution is an ill-posed problem, and moreover, the large changing
range of W~' makes a large deviation between the calculated ¥ and real .

Since the 1980’s, many researchers express this problem as an /,-norm
minimization:

X = arg min | x|, s.t. [Wx —y|, < e, (8)

where X represents the estimated reflectivity vector, W is the deconvolution
operator of the source wavelet, y is the data and ¢ is the noise level.

Eq. (8) means estimating a set of reflectivity coefficients with a minimum
[,-norm, and the set of coefficients satisfies the condition that the /,-norm of the
misfit between seismic data and the Wx less than a certain noise level. By
controlling the sparsity of reflectivity with the /,-norm and the noise error with
the /,-norm, the approximation reflectivity can be obtained. This algorithm has
relatively improved the accuracy of the deconvolution, but it is required that the
reflectivity is sparse, and its solving process is a single channel circular
convolution, which may damage the continuity of formation. To some extent,
this also enhances the noise and reduces the signal-to-noise ratio.

In this paper, we do not need to assume that the reflectivity coefficients
is sparse. By transforming the coefficients into Shearlet domain, the sparse

reflectivity is represented by sparse shearlet coefficients. We introduce the
shearlet operator into eq. (4) and rewrite it as:

X = arg min, | x||; s.t. [|[Wx — yl, < e

; ©)

r=S"x

where X denotes the shearlet coefficients of the reflectivity vector, W represents
the deconvolution operator of the source wavelet, ST is the inverse shearlet
operator, y is the data. The estimated reflectivity coefficient is ¥ = ST X.

Through eq. (9) we combine the Shearlet transform with deconvolution,
which calculating a set of minimum sparse Shearlet coefficients with the /-
norm. In this process, total reflectivity coefficients is used to approximate the
true reflectivity coefficients in the Shearlet domain. In this way we can keep the
formation reflector inherent continuity. According to the sparsity of the Shearlet
transform, the main seismic reflector concentrates to a few large shearlet
coefficients, while white noise remains by itself with low amplitude after a
transform on any orthogonal basis. So the shearlet coefficients of the signal is
relatively greater than that of noise. We can remove the noise by applying
threshold, and improve the anti-noise ability of the algorithm.
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In order to solve eq. (9), we describe the solving sparse reflectivity
coefficients problem as the objective function consisting error with the /,-norm
and the solution with the /,-norm:

T=%[WR —y[i+n][r]i = nfwsx —y|3+r[x]} . 0

where | g||3and | g| ! represent the /,-norm and the /,-norm separately, \ is the
trade-off parameter to balance the weight or impact of the two terms; the larger
A, the larger is the weight of the /,-norm. The /,-norm constrained is adopted
to the first half of the cost function [eq. (10)].

In this paper, we chose fast iterative shrinkage thresholding algorithm
(FISTA) to solve eq. (10). Pérez et al. (2013) combined FISTA and a standard
least-squares algorithm to solve the amplitude-versus-angle inversion problem.
FISTA can be viewed as an extension of iterative shrinkage thresholding
algorithm (ISTA). ISTA is a kind of attractive linear inversion technique due to
its simplicity and thus is adequate for solving large scale problems. However its
low convergent rate seriously limits the computational efficiency. ISTA defines
an iteration formula of soft threshold to calculate x in eq. (10):

X = Txgy — 2t(y — Axy)] . (11)
In our deconvolution problem we rewrite it as:
Xp = Tlxe + (Vea)(WSH(y = WSx),(Ma] (12)

where y is an intermediate variable, N\ and « are two parameters. W is the
deconvolution operator of the source wavelet, S is the forward Shearlet
transform operator, S" is the inverse Shearlet transform operator.

The threshold is controlled by adjusting «.. The soft thresholding function
we use is:

x — sign(x) if |[x| = A
Tx) = . (13)
0 if [x] <A

By changing x, FISTA improved the convergence speed significantly. The new

X, 1s not calculated by the previous point x,_,, but uses a very specific linear
combination of the previous two points {x,_;,Xy_,}:

Xpe1 = Xg T (/b DX — Xeop) (14)

o = [1 4 V(1+4D)]2 . (15)
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FISTA preserves the computational simplicity of ISTA but with a global
rate of convergence. It is very suitable for solving problems of the very large
scale data such as seismic data.

Fig. 3. Experiment on a complex model. a) The reflectivity model. b) Synthetic seismic data.
c¢) Estimated reflectivity with sparse spike deconvolution. d) Estimated reflectivity with Shearlet
deconvolution.
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EXAMPLES WITH COMPLEX MODEL AND NOISE DATA

To investigate the ability of deconvolution based on shearlet sparsity
constrained inversion, we carry out an experiment on a complex geological
model. The reflectivity model is part of the Marmousi model. Seismic data is
obtained by convolving a Ricker wavelet (central frequency = 25 Hz) with the
reflectivity. We applied sparse spike deconvolution and shearlet deconvolution
to estimate reflectivities. Figs. 3a and 3b show the reflectivity model and the
corresponding synthetic seismic data. Four labels in Fig. 3 highlight the better
performance of the proposed method. The first arrow located around 0.12 s
indicates a wedge geological model. The second arrow located around 0.25 s
indicates a thin interbed reservoir model. The third arrow located around 0.27s
indicates a weak reflectivity model. The ellipse shows a rough reflectivity. Due
to the tuning effect of the wavelet, the wedge model becomes blurred and
indistinct, the thin interbed reservoir is almost invisible in Fig. 3b.

Figs. 3c and 3d show the results of sparse spike deconvolution and our
algorithm respectively for the synthetic data. In Figs. 3¢ and 3d, both algorithms
improve resolution. However, in Fig. 3c the sparse spike deconvolution does not
clearly express the wedge geological model, the two coherent events separate
from each other. Moreover, the thin interbed reservoirs as well as weak
reflectivity turn out to have disappeared. In Fig. 3d, shearlet deconvolution
estimates an accurate result. The wedge geological model resembles the true
model, and we can clearly recognize the thin interbed reservoirs and weak
reflectivity. Besides, shearlet deconvolution utilizes a multi-trace algorithm,
exploits the structure in both time and spatial coordinate, which keep the
continuity of events. Sparse spike deconvolution is a trace-by-trace operation,
which does not account for the two-dimensional structure of the reflectivity
model. In the ellipse marker, the reflectivity estimated by shearlet deconvolution
is more smooth than that of sparse spiking deconvolution. Shearlet
deconvolution estimated reflectors are structurally close to the true model.

In Fig. 4a, we add strong Gaussian white noise to the synthetic data. Fig.
4b and 4c show the estimated reflectivity by sparse spike deconvolution and
shearlet deconvolution, respectively. The sensitive to noise and single trace
processing make the sparse spike deconvolution result discontinuity. While the
shearlet has an optimal sparse representation of the seismic data, the shearlet
coefficients of noise energy is small. Combined with the FISTA algorithm,
shearlet deconvolution can reduce the effect of random noise and improve the
signal to noise ratio at the same time. The technique achieves excellent noise
attenuation without removing any coherent events. As marked in Fig. 4c, the
small geological structure still can be recognized.



442 LIU, WANG, HU & WANG
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Fig. 4. Examples on noise data (SNR = 2.8828 dB). a) Noise data. b) Estimated reflectivity with
sparse spike deconvolution. ¢) Estimated reflectivity with shearlet deconvolution.

FIELD DATA EXAMPLES

To verify the shearlet deconvolution on field data, we applied the
proposed method on a post-stack seismic data. The data has 400 traces, and
every trace has 400 samples. The wavelet used is estimated with high order
statistic method.
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Fig. 5. Examples on field data. a) Original seismic data. b) Estimated reflectivity with sparse
deconvolution. ¢) Estimated reflectivity with Shearlet deconvolution.

Fig. 5a is the original seismic data. Because of the stratum absorption,
high-frequency signals are absorbed. The rectangular located around 0.63 s
indicate a thin layer, it is difficult to distinguish from the original profile. Both
sparse spike deconvolution and shearlet deconvolution are applied. We get some
improves by sparse spike deconvolution, but still cannot recognize the thin
layers. As we can see in Fig. 5c, two events could be clearly recognized by the
Shearlet sparsity constrained deconvolution. Seismic profile is always
discontinuity in deeper area because of weak energy. Comparing the highlighted
ellipse in Figs. 5c and 5b, it is obvious to find that the proposed technique is
capable to improve the resolution and keep the seismic events continuity as well.

Fig. 6a shows the frequency spectrum of original data. The spectrum
decays rapidly after 60 Hz. Fig. 6b shows an improved spectrum after 60 Hz
with sparse spike deconvolution, Fig. 6c shows spectrum with shearlet
deconvolution. In Fig. 6¢ the spectrum is improved not only after 60 Hz, but
also at low frequency. Results show our method can expand the spectrum band
efficiently.
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Fig. 6. The corresponding spectrum of Fig. 5. a) Field data. b) Sparse deconvolution. c) Shearlet
deconvolution.

CONCLUSIONS

In this paper, we proposed a seismic deconvolution algorithm based on
shearlet sparse constrained inversion. The sparse reflectivity is represented by
the sparse shearlet coefficients, making the deconvolution results more
smoothly. Deconvolution based on multi-dimensional space transform instead of
the traditional single channel deconvolution, can keep the continuity of seismic
signal in theoretically. We combine the deconvolution problem with norm and
solving this problem by FISTA. In this way, our algorithm can attenuate noise
and accelerate computational efficient. Synthetic and field data examples show
our algorithm is robust.
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