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ABSTRACT

Ikelle, L.T., 2016. Up-down separation of OBS wavefield using ICA techniques. Journal of Seismic
Exploration, 25: 419-432.

We here describe an effective way of performing up-down separation of OBS wavefield. The
key feature of the up-down separation is the decomposition matrices. We will also name them mixing
matrices. These matrices describe how upgoing and downgoing wavefields have been combined to
produce the multicomponent data that we record. The inverses of these matrices allow us to
decompose multicomponent data. We describe statistical ways of estimating these mixing matrices.
By taking advantage of the redundancy of seismic data, we here present a way to simultaneously
reconstruct the mixing matrices, the upgoing and downgoing wavefields by essentially using the
statistical methods. The attractive features of the statistical wavefield methods are that they are
independent of the data dimension (i.e., they are applicable to 2D and 3D data without any
modification of the computer code and without a sampling or interpolation requirement) and that they
work for aliased data as well as for nonaliased data, and even for nonuniform sampled data. The
only assumptions here are that (1) the mixing matrix is invertible and (2) the number of datapoints
is large enough for statistical applications.

KEY WORDS: up-down separation, ocean bottom seismics, PZ summation, aliased data,
nonuniform sampled data, 2D, 3D, independent component analysis,
constrained independent component analysis.

INTRODUCTION

In modern seismology, each sensor is actually a multicomponent recording
system. In ocean-bottom acquisitions, we can record both pressure and particle
velocity (i.e., four components or two components when only the vertical
component of the particle velocity is recorded). These types of data allow us to
perform up/down separation. The up/down separation consists of separating the
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vector wavefields into upgoing and downgoing wavefields at the receiver
location. The key feature of these decompositions is the decomposition matrices.
We will also name them mixing matrices. These matrices describe how upgoing
and downgoing wavefields and P- and S-wavefields have been combined during
the wave propagation to produce the multicomponent data that we record. The
inverses of these matrices allow us to decompose multicomponent data.

In the previous solutions [see for example, Ikelle and Amundsen (2005)],
we generally used deterministic ways of estimating the mixing matrices of
wavefield decomposition (that is, the mixing matrices are derived from the
wave-equation theory often under the assumption that the sea floor is flat). The
use of these estimates in wavefield decomposition requires that data be
uniformly sampled, especially when working in the frequency-wavenumber
domain, and nonaliased to facilitate the computations of the Fourier transforms
with respect to spatial coordinates. For wavefield decomposition in land data,
the estimation of the mixing matrices also requires knowledge of near-surface
physical properties. For wavefield decomposition in OBS data, the estimation
of the mixing matrices requires knowledge of the physical properties just below
the seafloor. These requirements may limit the use of the deterministic solutions
for OBS data when the water-solid interface is not horizontally flat.

In this paper, we describe statistical ways of estimating these mixing
matrices. The basic idea is that by taking advantage of the redundancy of
seismic data, we can seek to simultaneously reconstruct the mixing matrices, the
upgoing and downgoing wavefields by essentially using the statistical methods
described in Ikelle (2010). The attractive features of the statistical wavefield
methods are that they are independent of the data dimension (i.e., they are
applicable to 2D and 3D data without any modification of the computer code
and without a sampling or interpolation requirement) and that they work for
aliased data as well as for nonaliased data, and even for nonuniform sampled
data. The only assumptions here are that (1) the mixing matrix is invertible and
(2) the number of datapoints is large enough for statistical applications.

FUNDAMENTALS OF STATISTICAL WAVEFIELD SEPARATION

Up-down separation problems can be cast in one of the following forms:
Di(a;,0p,03) = Z a; iFj(oy,0,05) (1)
Di(a;,ap,05) = Z aij(al)Fj(OluOlz,O%) ) )

Di(ay,0,05) = Y @ (o, 00)F(eup,an003) 3)
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where D; are the multicomponent input data and F, are the separated data, where
i and j vary from 1 to N. N can take the values 2, 3, ..., 9. We did not
explicitly introduce the specific variables of the fields D, and F, because the
forms in (1), (2), and (3) can be derived in the T-X domain, the F-X domain,
the F-K domain, and even the 7-p domain. Instead we use arbitrary variables
ay,0,, and og, which here represent the coordinate systems of the data in a given
domain. Notice that (1) has a typical ICA form (see Ikelle, 2010). Egs. (2) and
(3) also have ICA forms if we process them as a series of ICAs for each o; in
the case of (2) and for each pair («;,a,) in the case of (3). So we can then apply
the ICA algorithms captured in Ikelle (2010) to recover F,, ..., Fy , along with
the elements a; of the mixing matrix - and therefore to perform up-down
wavefield separation. These algorithms can be performed at any point in the
subsurface because their application does not require any knowledge of the
elastic parameters of the subsurface and because the ICA methods allow us to
recover a@; and F; simultaneously. However, there are two fundamental
requirements that must be fulfilled for using ICA methods to decompose
wavefields. The first one is that the number samples must be large, more than
2,000. In other words, the number of triplets («,,a,,0;) must be large in the
case of the forms in (1), the number of pairs («;,a,) in the case of the forms in
(1) must be large, and the number of «; must be large in the case of the forms
in (1). As each of the coordinates in seismic data takes at least 2,000 values,
this requirement will be generally fulfilled. The other requirement is that the
fields F; must be statistically independent. Note that the variations of the mixing
matrix with «;, as described in (2), allow us to effectively perform the data
decomposition even when the upgoing and downgoing wave components are
both not present at the hydrophone and the geophone at the same time,
especially when working F-X or F-K domains.

When the receivers are very close to the sea surface, as in towed-streamer
acquisition, the upgoing and downgoing wavefields are highly correlated and
therefore not statistically independent. The ICA is not effective for such
decomposition. However, for ocean-bottom acquisition, the ICA can still be
effective in up-down separation because the upgoing and downgoing wavefields
rarely interfere in this case.

CONSTRAINED NEGENTROPY MAXIMIZATION

As in all ICA solutions, the wavefield decomposition based on ICA will
suffer from an inherent indeterminacy on scale (dilation) and permutation. This
indetermination can be reduced or even eliminated by using the constrained ICA
(cICA), also known as ICA with reference. The cICA consists of reconstructing
the independent components from their mixtures by using the objective function
of the algorithms described in Ikelle (2010), with additional constraints and a
priori information about the independent components and/or the demixing
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matrix. In other words, with additional conditions, the ICA problem becomes
a constrained optimization problem (i.e., a constrained ICA problem).
Moreover, with appropriate constraints the cICA can also be used to extract
independent components from mixtures contaminated by non-Gaussian noise and
to better deal with the ICA decomposition in which some independent
components are very weak in amplitude compared to the other independent
components in the mixtures. We here describe an cICA algorithms which is
based on negentropy maximization.

Let us denote by Y = [y,,ys,....y;]" the mixed data, X = [x;,X,,...,x;]"
the independent component data. We start by whitening Z; that is, we go from
mixtures which are correlated and dependent to new mixtures which correspond
to mixtures that are uncorrelated but remain statistically dependent.
Mathematically, we can describe this process as finding a whitening matrix, V,
that allows us to transform the random vector, Y, to another random vector, Z
= [z,,2,,...,2)]"; i.e.,

I
Z, = Z Vik Yk - “4)
k=1

The whitening problem comes down to finding a V for which the
covariance matrix of Z is the identity matrix; i.e.,

E[ZZ"] = E,Ly*Ly“El =T , (5)

where Ey is an orthogonal matrix and L, is a diagonal matrix with all
nonnegative eigenvalues \; that is, Ly = Diag(\,,\,,...,\)). The columns of the
matrix Ey are the eigenvectors corresponding to the appropriate eigenvalues. So
the matrix V, which allows us to obtain the whiten random vector Z, can be
computed as follows:

V = Ly“E, . (6)

The central problem here is the reconstruction of X from Z; that is, finding W
such that X(X = WZ) is made of independent components.

The objective function of cICA can be written as follows:
maximize O(X)
; (7
subject to  h(W) < 0, and/or ¢(W) =0

where O(X) represents the ICA contrast function to be minimize or maximize,
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W = [w,w,,...,w]]" represents the ICA demixing matrix, h(W) =
[h,(W),h,(W),....,hy(W)]" represent a set of M inequality constraints, and ¢(W)
= [c,(W),co,(W),...,cx(W)]T represent a set of N equality constraints. These
constraints allow us to introduce some a priori information about the mixing
matrix and the desired independent components. For example, we can introduce
a priori information about the desired independent component as a reference
component, r;, to obtain an output which is a desired independent component.
The reference signal must carry some information about the desired independent
component. It does not need to be a prefect match, but it should be close
enough to point the algorithm in the direction of a particular independent
component. The closeness constraint can be written as

h(xn l) - e(xl’r) g‘ > (8)

where h; is an inequality constraint function, € is a closeness measure, and { is
a closeness threshold parameter. Note that r; can be a reference for w,. The
constraint in this case is

hy(w,r) = e(w,r) — <0 . )

Similar measures can also be used for the row of the demxing matrix. The
measure of closeness can take any form, such as a mean squared-error, e(w,,r;)
= E[(w, — r))’] (with the requirement that both x; and r, are normalized to have
the same mean and variance) and correlation, e(x;, r) = 1/(E[(x;r)])* (both x,
and r; need to be normalized to ensure that the value of correlation is bounded).
Also the inner product can be used to measure the distance between r; and either
X; Or W;:

|xir;| for x
e(x;, Iy = . (10)
|wir,| for w;

In our numeral implementation, we will use the mean-squared-error and
scalar product as measures of closeness.

For a case in which constraints are simply used for ordering and
normalizing independent components, we can use h(W) = I(x;,,) — I(x) to
define the descending order of independent components, where I(x;) is the index
of some statistical measure of the recovered independent components - for
example, variance, E[x}], or normalized kurtosis, E[x? ]/E[x] — 3. The set of
N equality constraints are defined as ¢(W) = (wiw,) — 1,1 =1, ..., L

Here we will focus on the particular case in which O(X) represents the
negentropy maximization; i.e.,



424 IKELLE

OX) =}, 0,(x)
= ¥ [E{GWZ)} — E{G(o)}T | (11)
with
O(x) = [E{GWZ)} — E{G(xp)}])* ., (12)

where X is a set of Gaussian random variables with a zero mean and a unit
variance, and where G(.) is one of the nonquadratic functions, such as

G(x) = log[cosh(a,x)/a;] , (13)

G(x) = exp(—x%/2) , (14)
and

G(x) = x'/4 (15)

where 1 < g, < 2.

We here present a technique for solving the constrained optimization
problem in (7) for reconstructing one row of W at a time. This technique is
generally known as the one-unit ICA. We will use the method of Lagrange
multipliers to solve this optimization problem. The augmented Lagrangian
function of (7) can be written as follows (Bertsekas, 1996):

L(wi, i, Nv) = 0i(x) + pilhy(wy) + U%] + Yay[h(w) + Uﬂz
+ Nei(wy) + I/ZY[Ci(Wi)]Z ) (16)

where u; and A, are the positive Lagrange multipliers corresponding to inequality
and equality constraints, respectively, and v is the penalty parameter. Notice
that the inequality constraint in (7) is incorporated into the ICA as an equality
constraint using the slack variables, v;. In other words, we have transformed
inequality constraints h(w;) < 0 into equality constraints h(w;) + v = 0 by
using slack variables. The equality constraint is added to the cost function using
the method of multipliers. The quadratic penalty terms ensure that the local
convexity assumption holds. To find the optimal v, that maximizes L,(w,,u;,\,,v,),
we first need to rewrite (16) as follows:

Liw,pi,\v) = Oi(x) + (v/2)[hy(w) + U% + (Mi/'Y)]z - (P«%/ZY)

+ Nei(wy) + Vylewpl® . (17)
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To maximize Li(w;,u;,\;,v;), v; must satisfy the following condition:

—hiw) + wly , a <0
v = ; (18)
0, a >0
or
vi = (1/y)max{0, = [yh(w) + wl} , (19)

where a; = hiy(w;) + p;. By substituting (19) in (17), we finally obtain the
following simplified augmented Lagrangian-optimization function

Liwi,pmi,N) = O(x) + [(1/2y)(max{0,[yh(w;) + I“"i]})2 - i
+ Neiwy) + Vayle(wl® . (20)
To find the maximum of L,(w;,pu;,\,), we iteratively update w, in the
Newton-like method. We go from one iteration (described by w,) to another
iteration (described by w}) as follows:

Wi =w, — n[azLi(Wi,Mi’)\i)/aW%]Al32La(wi,l/~i’>\i)/awi - (21

7 is a positive stepsize added to avoid the uncertainty in the convergence. After
some algebra, we arrive at

wi = w, — n{aE[ZG'(WZ)] — wE[Zh(w)] — 2NE[Zx ]}
/CAaE[G"(Zx])] — pE[hI(W)] — 2N} (22)

with

a = 2sign(E[G(wZ)] — E[G(xo)]) . 23)
where G'(u) and G"(u) are the first and second derivatives, respectively, of G(u)
with respect to u, hi(u) and h7(u) are the first and second derivatives,
respectively, of hi(u) with respect to u, and C, is the covariance of Z. The
estimated vector must be normalized as follows

wi = wi/[[wi] . (24)

There are several methods for updating Lagrange multipliers. Here, we
use the gradient ascent method (Bertsekas, 1996):

pi = + max{—p, yh(w)} , (25)

A=\ + yc(w) . (26)
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Table 1. The key steps of the one-unit negentropy-based cICA based on the negentropy-maximization
criterion.

1. Center the observed signals Y to make them mean zero and whiten them to Z.
2. Sete to a small value to control the learning precision.

3. Set the number I of independent components to be recovered.

4. Choose penalty parameter ~.

5. Seti = 1 for the first independent components to be recovered.

6. Choose an initial value for the Lagrange multiplier, ;.

7. Choose an initial value for the Lagrange multiplier, \;.

8. [nitialize w; with a random vector and set its norm to 1.

9. Update w; by using (22).

10.  Normalize w, by using (24).

11.  Update g, by using (25).

12. Update N\, by using (26).

13. Go back to step 9 until convergence is achieved (i.e., until |1 — [|w!w!| | < ¢).

14, Seti =1+ 1 and go back step 6, until i > 1.

Egs. (22), (23), (24), (25), and (26) together constitute a

negentropy-based cICA method. The key steps in this algorithm are described
in Table 1.

To numerically validate the cICA algorithm, let us first discuss the
standard ICA results. We consider the single-shot gathers in Fig. 1 and the
corresponding multishot data in Fig. 2. Notice also that the decoded results in
Fig. 3 are almost identical to the original single-shot gathers shown in Fig. 1.
However, we have to adjust the amplitudes.

Let us now look at some numerical illustrations of cICA. We consider the
decoding of the mixtures in Fig. 2. The single-shot gathers in these mixtures are
responses to the same subsurface models for the same receiver array but
different source points (i.e., X, = 0 m for the single-shot gather in Fig. la, x,

= 875 m for the single-shot gather in Fig. 1b, and x, = 1700 m for the
single-shot gather in Fig. 1c). We have chosen as a reference single-shot gather



SEPARATION OF OBS WAVEFIELD 427

0.0

Time (s)

4.0

Fig. 1. Three single-shot gathers representing three responses to the same subsurface models for the
same receiver array but different source points (i.e., x, = 0 m for the single-shot gathers in Fig. la,

X, = 875 m for the single-shot gather in Fig. 1b, and x, = 1700 m for the single-shot gather in
Fig.lc).

Time (s)
[\
o

3.0

3.5

4.0

Fig. 2. Three mixtures of the single-shot gathers in Fig. 1.
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Fig. 3. The SOBI decoded results of the mixtures in Fig. 2. When compared to the original
single-shot gathers in Fig. 1, these results are quite satisfactory.

a single-shot gather which is a response to the same subsurface models for the
same receiver array as the actual single-shot gathers but with a different source
point which is at x, = 250 m. Therefore we expect this reference to allow us
to recover the single-shot gather at x, = 0 m. One can think of this reference
as representing a gather extracted from an survey several years old. As
illustrated in Fig. 4, we can recover quite well the desired single-shot gather
(i.e., the gather with the shot point at x = 0) by using cICA without the
permutation and even the scale issues.

UPGOING-DOWNGOING SEPARATION

One cICA feature allows us to decode some non-instantaneous mixtures
if we can build a good reference model. Consider the problem of up-down
separation [see Box 2.7, Ikelle and Amundsen (2005), Chapter 9)]. Suppose that
we recorded the pressure and the vertical component of the particle velocity.
For a shot point at x;, we could then write the pressure and the vertical
component of the particle velocity as mixtures; i.e.,
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(P(x,0) = Py(x,t) + Py(x,0)
1 , (27)

L V(x,0) = Vy(x,0) + Vp(x,0)
or
(P(x,0) = Py(x,t) + Pp(x,0)
) , (28)
~V(x,t) = v(x,0)Py(x,t) — v(x,t)Pp(x,1)
with
Vux,t) = y(x,0)Py(x,t) and Vp(x,t) = —y(x,0)Pp(x,t) (29)

where P(x,t) is the pressure field, V(x,t) is the vertical component of the particle
velocity, Py(x,t) is the upgoing pressure field, Py(x,t) is the downgoing pressure
field, Vy(x,t) is the upgoing particle-velocity field, Vp(x,t) is the downgoing
particle-velocity field, and y(x,t) is a scaling factor which causes V to be a non-
instantaneous mixture. We now consider the pressure in Fig. 3a and the vertical
component of the particle velocity in Fig. 4a as input data. Using the standard
ICA decoding, we will end up with one of the following four permutations
(a,Py,B,Pp), (0P8, V), (a3Py,B5Vp), (Pp,B4Vy), and (asPp.B5V)) - where
a; and (3; are unknown constants. Because the direct wave is not well separated
from the rest of the data, it is difficult to blindly identify the permutation that
ICA will output, as all the permutations have an equal chance of being an output
of ICA. Let us now look at how cICA can help us solve this problem. The
physics of this problem suggests that for receiver points x, located near the
source point X, we can assume that y(x,t) = 1/Z, where Z is the P-wave
impedance of the water column; the P-wave impedance of the water column is
constant, and a well known quantity. In other words, (28) can be approximated
as

P(x,t) = P{(x,t) + PA(x,1)
, (30)
ZV(x,t) = Pi(x,t) — PAi(x,t)

which lead to

Pi(x,0) = WB[PX,0) + ZV,(x,0)]
. 31)
Pi(x,0) = WKIPX,0 — ZV,(x,0]

By using the solution P{; (Fig. 5b) as the reference component, for
example, we can use cICA to recover the actual upgoing pressure from P (Fig.
5a) and V (Fig. 6a), as illustrated in Fig. 5c. Note that we do not have
permutation and scaling issues with this solution. By scaling the pressure field
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in (30) by 1/Z, we can set up the system in (30) to reconstruct V{, and V}
instead of P{; and Pj, respectively. Hence by using the solution V|, (Fig. 6b),
for example, as the reference component, we can run cICA again to recover the
actual upgoing particle-velocity field from P (Fig. 5a) and V (Fig. 6a), as
illustrated in Fig. 6¢. Note that the three plots shown in Fig. 5 are plotted at the
same scale. This observation is also valid for plots shown in Fig. 6.

We have indicated in raw data in Figs. 5a and 6a some examples of
downgoing events which are well attenuated in the upgoing wavefields obtained
by cICA as shown in Figs. 5c and 6c. In other words, the cICA has recovered
the independent components which are closer to the reference components (i.e.,
the upgoing wavefields) instead of some arbitrary component as the standard
ICA. Moreover, cICA has recovered the scales of upgoing wavefields because
their scales are directly comparable to those of raw data in these figures.

Time (s)

Fig. 4. The cICA decoded results of the mixtures in Fig. 2 with as reference single-shot gather
which is a response to the same subsurface model for the same receiver array as the actual
single-shot gathers but with a different source point, which is at 250 m. The desired single-shot
gather is a gather with the shot point at x = 0 (Fig. 1a). (a) The original single-shot gather, (b) the
reference single-shot gather, and (c) the decoded single-shot gather by using cICA without the
permutation and even without scale issues. When compared to the original single-shot gather, these
decoding results are quite satisfactory.
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downgoing

Time (s)

Fig. 5. (a) The pressure data. They are here treated, along with the vertical component of the
particle-velocity data, as two mixtures for the upgoing and downgoing separation. The offset range
is from 0 to 4.5 km. (b) The reference upgoing pressure data. (c) The upgoing wavefield obtained
by using cICA. All three plots are at the same scale.

Note also that the polarity of the upgoing pressure field (Fig. 5c) is
different from the polarity of the upgoing particle-velocity field (Fig. 6c),
despite the fact that we have used the same inputs (i.e., Figs. 5a and 6a) in the
two runs of cICA. This observation indicates that cICA has recovered the
desired component in each of the cICA runs.

CONCLUSION

We have derived and implemented a new method of performing up-down
separation of OBS wavefield. This method is based on independent component
analysis. It is applicable to 2D and 3D data, to aliased data as well as aliased
data, and to nonuniform sampled data.
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Fig. 6. (a) The vertical component of the particle-velocity data. It is here treated, along with the
pressure data as two mixtures for the purpose of the upgoing and downgoing separation. The offset
range is from O to 4.5 km. (b) The reference upgoing pressure data. (c) The upgoing wavefield
obtained by using cICA. All three plots are at the same scale.
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