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ABSTRACT

Ren, C. and Tian, X., 2016. Prestack migration based on asymmetric wave-equation extrapolation.
Journal of Seismic Exploration, 25: 375-397.

Prestack wave-equation migration has been popular in recent years. One-way wave equation
migration and two-way wave-equation migration are the two choices for applying the wave-equation
migration. They have different advantages and disadvantages. In this investigation, a combined
version of these methods is developed, called asymmetric wave-equation migration. In this migration
scheme, the source wave-field is extrapolated using the one-way wave-equation or two-way
wave-equation, but the receiver wave-field is extrapolated based on the wave-equation being different
from the former. By analyzing theoretically, the asymmetric wave-equation migration scheme can
greatly reduce computation time compared with two-way wave-equation migration. Meanwhile,
detailed comparisons between different migration schemes have been performed. The results show
that the proposed migration scheme can work better than the two-way wave-equation migration, with
less computation time and noise; thus, it is a new choice when we select migration schemes.

KEY WORDS: wave-equation migration, one-way wave-equation, two-way wave-equation,
computation complexity, image quality.

INTRODUCTION

Prestack migration based on a wave equation has gained popularity
recently both in academic research and engineering applications (Claerbout,
1971, 1985; Liu et al., 2007, 2008; Zhang et al., 2007). The migration method
can provide a more accurate structural image of the subsurface, compared with
time migration. Prestack migrations based on a wave-equation include two
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principle steps: 1) extrapolate wave-fields. The source wave-field is extrapolated
from shots forward in time, while the receiver wave-field is extrapolated from
receivers backward in time; 2) image by imaging condition. After wavefield
extrapolation, an imaging condition is applied to the two wave-fields to form a
depth image. Extrapolating wavefields using the wave-equation is the key
process in the migration method. Two different strategies are employed to solve
the wave equation (Mulder and Plessix, 2003). The first is to solve the full-wave
equation directly. The migration scheme based on this strategy is referred to as
two-way wave-equation migration. The other option is to decompose the
wave-equation into an upgoing wave-equation and downgoing wave-equation
(Wu, 1994; Collino and Joly, 1995; Biondo and Palacharla, 1996). The
migration scheme based on this strategy is called one-way wave-equation
migration.

Two-way wave-equation migration is often also called reverse time
migration (RTM) and can be implemented in the time domain or in the
frequency domain (McMechan, 1983; Whitmore, 1983; Baysal et al., 1983,
1984). The computation efficiency in the frequency domain is higher than that
in the time domain (Mulder and Plessix, 2004). Two-way wave-equation
migration can simulate wave propagation without any approximation in complex
media. Therefore, the migration scheme can govern all the energy in wave-fields
can image layers accurately without the limitation of dip. However, two-way
wave equation migration has some shortcomings. First, it is not computationally
friendly. For three dimensions, it is usually unaffordable in practice. Second,
low-wavenumber artifacts, especially in shallow layers, could cover the real
image and count against seismic interpretation. An additional work is usually
needed to filter the image produced by two-way wave-equation migration.
Third, numerical dispersion and numerical stability are problems that need to
be treated carefully (Xie et al., 2014; Feng et al., 2015). To overcome these
problems, more time is required in the migration scheme.

By approximations and mathematical transforms, the two-way
wave-equation can be factored into two one-way wave-equations, which describe
the upgoing wave and the downgoing wave, respectively. The one-way
wave-equation is expressed by a pseudo-difference operator, which cannot be
solved directly. Thus, many researchers have developed different approaches to
simplify the one-way wave-equation, such as the 15° wave-equation (Claerbout,
1971), 45° wave-equation (Stolt, 1978), phase-shift (Gazdag, 1978), phase shift
plus interpolation (Gazdag and Sguazzero, 1984), split step Fourier (Stoffa et
al., 1990), Fourier finite difference (Ristow and Ruhl, 1994); generalized
pseudo screen (Jerome et al., 2001; Huang and Wu, 1996), etc. The one-way
wave-equation can govern the principle energy in a wave-field, and the image
produced is superior to that produced via ray-based migration. These methods
are usually implemented in the frequency-wavenumber domain or frequency-
space domain and extrapolate wavefields in the depth direction. Thus, compared
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to two-way wave-equation migration, one-way wave-equation migration can
greatly reduce computation time, especially in a 3D application. However, the
one-way wave-equation is just an approximation of the two-way wave-equation;
thus, it is difficult to accurately simulate wave propagation in complex media,
especially with a strong lateral velocity gradient. Meanwhile, the one-way wave
equation cannot govern multiples. Thus, migration based on it is under the
limitation of dips, making it hard to image the steep flanks (Albertin et al.,
2002). Therefore, one-way wave-equation migration cannot image layers as well
as two-way wave-equation migration.

Due to their different advantages and disadvantages, the choice between
one-way wave-equation migration and two-way wave-equation migration is
usually hard in practice. Mulder and Plessix (2004) performed a detailed
comparison between them and made some meaningful conclusions. They stated
that the two migration methods are better than the other in some aspects but
worse than the other in other aspects simultaneously. Thus, they made an
unsatisfying suggestion: if one has sufficient computation resources, he should
use the two-way wave-equation migration; if not, choose the other. Bednar et
al. (2003) tried to make a final judgement and proposed a direct question
regarding whether the two-way wave-equation is overkill or necessary.
However, they ultimate reached a similar conclusion to that of Mulder and
Plessix (2004). Thus, making a decision regarding using one-way wave-equation
migration or two-way wave-equation migration is difficult in many situations
due to their respective characteristics. A compromise is to use a different
extrapolation approach in different districts. One-way propagator is applied in
less complex districts, while the full-way propagator is applied in extremely
complicated districts (Luo and Jin, 2008).

In this investigation, we develop another way to implement one-way
wave-equation migration and RTM. The approach provides a new choice when
we select migration schemes. The key idea is to extrapolate source and receiver
wave-fields in asymmetric wave-equations: we extrapolate the source wave-field
using the two-way wave-equation and extrapolate the receiver wave-field by
using the one-way wave-equation, or vice-versa. Numerical simulation shows
that the migration approach is of higher computational efficiency and has less
artifacts than two-way wave-equation migration and is able to image the layers
with steep dips. This work is organized as follows. The first section presents the
definition and algorithm of prestack two-way and one-way wave-equation
migrations and explains why we employ asymmetric extrapolation in migration.
Then, the proposed migration scheme is described in detail and its advantages
are analyzed in the next section. The third section employs two synthetic
datasets to verify the performance of the proposed migration numerically. The
results show that it can image without the limitation of dips and works better
than the two-way wave-equation migration, with less computation time and
noise. Finally, some conclusions are drawn.
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THEORY
Two-way wave-equation

In this investigation, we only consider the P-wave. The governing

equation can be expressed as the following expression in the 2D time-space
domain.

?P(X,t)/at? = c?V2P(X,t) , (1)

where P is the wave-field pressure at a spatial location X and time t, ¢ is the
media acoustic velocity, and V2 is the Laplacian operator.

By using the 2-order center difference scheme, the time derivative is
derived as

0P} /0t = (1/A®)[PY*) + PI7) — 2P})] . 2)

At the same time, the spatial derivatives could be derived using the
2L-order center difference scheme:

L
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where a, are the parameters of the high-order finite different scheme (Dablain,
1986). Thus, based on the two-way wave equation, the extrapolate scheme of
the wave field can be expressed as

L
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where Ax, Az and At denote the step length of the variable x, z and t,

respectively. Employing the state transfer matrix, the corresponding stability
condition could be derived as
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where v,,,, is the maximum of the velocity model.

One-way wave-equation
Eq. (1) can be transformed to the frequency-space domain, expressed as

PX,0) = —(c/?)VP(X,w) , 6)

where P is the Fourier transform of P, i.e., P = s P-e 27y,
+ o
The one-way wave-equation requires less computational cost, particularly

in three dimensions. It can be formulated using the square-root operator in two
dimensions as

oP*/9z = FiV{(w/c?) + (92/3x?)} Pt | (7

where P* is the upgoing and downgoing wave-field in the frequency-space
domain. Eq. (7) could be further transformed to the frequency-wavenumber
domain via the Fourier transform of x. For an upgoing wave, it can be
expressed as

OP*(k,,z,w)/0z = —(iw/c)W{1 — (w2} P*(k,z,0) , (8)

where P* is the Fourier transform of P*. Based on the above equation, the
wavefield can be extrapolated in depth as

P (k,,z+Az,0) = P*(k,,z,w)exp[— (w/oV{l — (cYdk}-Az] ,  (9)

where Az is the depth step and k, is the wave number of the x-direction. Let Y
= V{1 — (c%k}/w?)}; then, Y is the phase shift operator. Unfortunately, due to
the square root operator incorporated into it, the one-way wave-equation cannot
be solved directly. Necessary approximations must be performed to simplify the
above equation. Researchers have developed many approaches for this. These
methods can be classified into two families. One is to approximate the
square-root operator by using the Pade approximation, and several schemes have



380 REN & TIAN

been proposed (Claerbout, 1971; Wu, 1994; Collino and Joly, 1995; Biondi and
Palacharla, 1996; Risow and Ruhl, 1994). The other is to transform the equation
into the frequency-wavenumber domain, then to extrapolate the wave-field via
phase-shift (Gazdag, 1978). However, this approach is only fit for the
simulation of wave propagation in homogeneous media; thus, several advanced
schemes based on it have been developed to improve its performance in complex
media, such as phase-shift-plus-interpolate (Gazdag and Sguazzero, 1984),
Fourier-finite-difference (Ristow and Ruhl, 1994), and split-step-Fourier (Stoffa
et al., 1990).

In this investigation, a splitting method (Collino and Joly, 1995) is
employed to implement the one-way wave equation extrapolation. It evaluates
the square root with three terms of Pade approximation, providing good phase
accuracy up to approximately 70°. However, it cannot model amplitudes
correctly (Zhang et al., 2007).

Imaging condition of wave-equation migration

After the source wave-field and receiver wave-field are extrapolated based
on egs. (1) or (6), an imaging condition is conducted on the two wave-fields to
form the image of layers. Many imaging conditions have been developed
(Chattopadhyay and McMechan, 2008; Costa et al., 2009; Guitton et al., 2007;
Sava and Fomel, 2006; Yoon and Marfurt, 2006; Ren et. al. 2015), but the
most popular imaging condition is the cross-correlation imaging condition
developed by Claerbout (1971) due to its simplicity and stability; it can be
formulated in the time domain and frequency domain as

IX) = Y, Y Py(X,0P(X.1), time —domain
shots t
(10)
I[(X) = Z E Ps(X,w)Pr(X,w), frequency —domain

shots  w

where I(X) is the depth image at point X, Pg and Py are the forward-propagating
source wave-field and backward-propagating receiver wave-field, respectively,
and Pg and Py are the Fourier transforms of Py and Py for time t, respectively.

Prestack migration based on the asymmetric wave-equation
One-way wave-equation migration and two-way wave-equation migration

are similar to each other but employ different wave-equations to extrapolate
wave-fields. In two-way wave-equation migration, the source and receiver
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wave-fields are extrapolated by using the two-way wave-equation, which can
describe wave-fields accurately but is costly. However, in one-way
wave-equation migration, the source and receiver wave-fields are both
extrapolated by using the one-way wave-equation, which is cheap but only
approximately simulates the wave-field. In other words, the governing equation
of the source wave-fields is the same as the governing equation of the receiver
wave-fields but uses different boundary conditions and extrapolating directions.

To integrate the advantages of one-way wave-equation migration and
two-way wave-equation migration, we develop a novel migration based on the
asymmetric idea. In the proposed migration scheme, the source wave-field is
extrapolated using the two-way wave-equation or one-way wave-equation, while
the receiver wavefield is extrapolated by using the wave-equation not used to
extrapolate the source wave-field. Hence, the asymmetric migration has two
forms. If the source wave-field is extrapolated by using the two-way wave
equation and the receiver wave-field is extrapolated by using the one-way
wave-equation in migration, we call it two-one-way wave-equation migration.
The other asymmetric wave-equation migration is called one-two-way wave
equation migration, where the source wavefield is extrapolated using the
one-way wave-equation, while the receiver wavefield is extrapolated using the
two-way wave-equation. In asymmetric wave-field migration, the two-way
wave-equation is replaced with the one-way wave-equation on one side to
greatly reduce the need for computation resources, particularly in three
dimensions. Moreover, the proposed migration can also image via multipath as
in two-way wave-equation migration.

COMPLEXITY ESTIMATES

We perform the complexity estimate following the conclusion drawn by
Mulder and Plessix (2003, 2004); thus, it is partly repeated from Marfurt and
Shin (1989) and Mulder and Plessix (2004). Let n be the number of grid points
of every space coordinate; then, there are O(n?) or O(n®) points for a 2D grid
or 3D grid, respectively. The number of frequencies is n,, and the number of
time steps is n,. Thus, for two-way wave equation extrapolation in the
time-domain, O(nn®) or O(nn’) operations are required for 2D or 3D,
respectively. Otherwise, for one-way wave equation extrapolation, O(n,n?) or
O(n,n*) operations are required for 2D or 3D, respectively. Due to the stability
condition, the time step is constrained by the grid spacing; thus, n, is
proportional to n. However, n,, can be set relatively small compared to n,; thus,
it is O(1). Therefore, whether for the 2D or 3D model, the complexity of
one-way wave equation extrapolation is one order lower than that of two-way
wave equation extrapolation. In wave equation migration, most computational
time is spent on extrapolating the source wavefield and receiver wavefield.
Because the complexity of two-way wave-equation extrapolation is one order
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higher than that of the one-way wave equation, the time required for one-way
wave-equation extrapolation could be ignored compared with the time required
for two-way wave-equation extrapolation. Therefore, because the proposed
asymmetric wave-equation migration only employs the two-way wave equation
in forward extrapolation or backward extrapolation, computation time will be
reduced by approximately half compared with two-way wave-equation
migration. This is very attractive in practice.

IMAGING ABILITY EVALUATION

Fig. 1 shows the image principle of wave-equation migrations. In the
figures, only one shot and one receiver are set on the surface and wave-fields
are simulated coming from them, either forward or backward in time,
respectively. An image point is set on a subsurface, and rays along different
paths from shots and receivers can image it. The rays marked as 1 and 3 are the
first waves in the source wave-field and receiver wave-field, respectively. The
rays marked as 2, 4, 5 and 6 are multipath waves in the two wave-fields.

One-way wave-equation migration, as depicted in Fig. 1(a), only uses the
first waves in the source and receiver wave-fields to image, which can allow for
governing the main energy in the wave-fields and produces less
low-wavenumber artifacts. However, two-way wave-equation migration,
depicted in Fig. 1(b), can employ all waves in the wave-fields to produce
images; thus, it images layers better. Unfortunately, it will produce some
low-wavenumber artifacts along the path of rays at the same time, which
contaminates the images, especially in the shallow layer. Many researchers have
performed much work to overcome this problem. Liu et al. (2007, 2011) only
used the waves propagating in opposite directions to image by decomposing the
wave-fields into downgoing and upgoing wavefields. This idea was also
exploited by Fei et al. (2010) and Diaz and Sava (2012) to attenuate the noise
induced by the back-scattering energy. As for the proposed asymmetric
wave-equation migration scheme, depicted in Fig. 1(c-d), it only uses the main
energy governed by the one-way wave-equation on the one side and retains the
ability of imaging by allowing multiple waves to govern via the two-way
wave-equation on the another side. This indicates that the asymmetric
wave-equation migration is able to image via multiples, as in two-way wave
equation migration, while producing fewer low-wavenumber artifacts, which is
beneficial to the further work after imaging. However, its performance for real
data sets needs to be verified.
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Fig. 1. Image principles of different migration schemes. (a) One-way wave equation migration; (b)
two-way wave-equation migration; (c) one-two-way wave-equation.



384 REN & TIAN

SYNTHETIC NUMERICAL EXAMPLES

To verify the imaging ability of the proposed migration, we use two
synthetic data sets to compare the performances of different migration schemes.
In all numerical simulations, synthetic datasets are computed by using the
eight-order finite-difference operator expressed in eq. (4). The four migration
methods use the same datasets to implement migration.

Steep dip model

The first model is simple; an inclined layer is set to verify the
performance of these migration methods for steep dips. The dip 6 is set to 45°,
80° and 90° in the following numerical simulations. The velocity model is
depicted in Fig. 2. The horizontal extent of the model is 5,120 ft and its vertical
extent is 1,280 ft. The model is meshed to 512 by 128 grids, i.e., spatial grid
increments are set to 20 ft in both the vertical and horizontal direction. The
velocity of the top layer is 10000 ft/sec, while the increment per layer along the
vertical direction is 2000 ft/sec. A total of 128 shots are simulated to implement
migration, and all 128 receivers are distributed evenly on the surface. The time
increment is set to 0.5 ms, which can ensure computational stability and reduce
grid dispersion when the two-way wave-equation is solved in the time-domain.
The Ricker wave, with a dominant frequency of 25 Hz, is employed to simulate
the amplitude over time of the source. The Perfectly Matched Layer (PML)
boundary condition is employed to absorb the energy passing through the
boundaries. The synthetic data are preprocessed before migration by muting the
direct wave to reduce artifacts (Chang and McMechan, 1986). All computations
are implemented using a PC with dominant frequency 3.5 GHz, and codes are

Horizontal distance (ft)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

V = 14000 f/s '
0 Sl 1000 1500 2000 29500 3000 3500 4000 4500 5000 10

Fig. 2. Dip model.
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executed sequentially. It spends 1959 seconds, 3738 seconds, 3779 seconds and
5726 seconds to complete the one-way wave-equation migration, one-two-way
wave-equation migration, two-one-way wave-equation migration and two-way
wave-equation migration, respectively. There is no obvious difference in storage
requirements for the four migration schemes. Thus, it shows that asymmetric
wave-equation migration could considerably reduce computation time compared
with two-way wave-equation migration, which is consistent with the analysis of
complexity.

When the dip is set to 45°, 80° and 90°, the results of the different
migration methods are as depicted in Figs. 3-5, respectively. The subfigures
(a-d) represent the images produced by using one-way wave-equation migration,
two-way wave-equation, one-two-way wave-equation migration, and
two-one-way wave-equation migration, respectively. As shown in the figures,
one-way wave-equation migration can image the layers clearly with less
low-wavenumber artifacts when the dip is equal to 45°. However, as the dip
becomes steep, such as 80°, it cannot image the inclined layer effectively. In
contrast, two-way wave-equation migration can image all subsurfaces with all
dips correctly, but serious low-wavenumber artifacts between layers contaminate
the image. Particularly in the strong reflecting subsurface, additional work is
needed to filter the image after imaging. The two asymmetric wave-equation
migrations can both image the layer with a dip equal to 90°. This indicates that
the asymmetric wave-equation migration images without limitation of dips, but
the amplitude of the image with steep dips is not very good because it was
conducted by RTM. Some low-wavenumber artifacts exist between layers but
are not as serious as in two-way wave-equation migration. All subsurfaces can
be read directly without the need of any additional post-imaging processing.
Compared with the images of two asymmetric wave-equation migration, the
one-two-way wave-equation migration can image better than two-one-way
wave-equation migration in the numerical simulation. The results indicate that
the proposed migration scheme has the ability to image the complex media with
less computation and low-wavenumber artifacts.

Hess 2004 Model

We select the Hess 2004 P-wave velocity model as another relatively
complicated example to test our imaging condition. The velocity model is
depicted in Fig. 6.

We tested and compared the above four migration schemes numerically.
In the simulations, we used the same synthetic data but employed different
migration schemes. Meanwhile, their performances when using the data with
and without direct waves were also compared. Figs. 7-8 show the results based
on the four migrations, and subfigures (a-d) are the images produced by using
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Fig. 3. Images created using different migrations, where the dip is set to 45°. (a) One-way
wave-equation migration; (b) two-way wave-equation migration; (c) one-two-way wave equation
migration; (d) two-one-way wave-equation migration.
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Fig. 4. Images created using different migrations, where the dip is set to 80°. (a) One-way
wave-equation migration; (b) two-way wave-equation migration; (c) one-two-way wave equation
migration; (d) two-one-way wave-equation migration.



388 REN & TIAN

Horizontal distance (ft)
00 1000 2000 3000 4000 5000
€ 500
=
(=
o
© 1000
(a)
Horizontal distance (ft)
00 1000 2000 3000 4000 B 0
£
£ 500 F
(=
o
2 1000
(b)
Horizontal distance (ft)
2000 3000
0
E 500
oy
2 1000
(c)
Horizontal distance (ft)
00 1000 2000 3000 4000 5000
=
:-E 500
&
2 1000

(d)

Fig. 5. Images created using different migrations, where the dip is set to 90°. (a) One-way
wave-equation migration; (b) two-way wave-equation migration; (c) one-two-way wave equation
migration; (d) two-one-way wave-equation migration.
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Fig. 6. Hess 2004 P-wave velocity model.

one-way wave-equation migration, two-way wave-equation migration,
one-two-way wave-equation migration and two-one-way wave-equation
migration, respectively. Fig. 7 is the image created by the filtered seismograph
when the direct wave was removed, while Fig. 8 shows the images created by
the original seismograph. We can investigate their performance when the
interference of direct waves exists. These figures indicate that the one-way
wave-equation can image the layers clearly with fewer low-wavenumber
artifacts, even for the image created by the original seismograph. However, the
left flank of the salt body was not imaged effectively, which is the shortcoming
of one-way wave-equation migration. Two-way wave-equation migration works
well, even for the surface with steep dips. However, the amount of
low-wavenumber artifacts contaminates the images, covering the layers above
the salt body wholly if direct waves are not removed. Subfigures (c-d) in Figs.
7-8 show the performances of the proposed asymmetric wave equation
migration. The results show that the asymmetric wave-equation migration could
image the flanks of the salt body successfully. Moreover, fewer
_ low-wavenumber artifacts appear in the images compared with the images
created via two-way wave-equation migration. Even when using the original
seismograph without deleting direct waves, only the layers near the surface are
contaminated and need additional operations to make them clear.
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Fig. 7. Images of Hess 2004 model created using different migration schemes, where the direct

waves in receivers have been removed in migrations. (a) One-way wave-equation migration;
(b) two-way wave-equation migration.
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Fig. 7. Images of Hess 2004 model created using different migration schemes, where the direct
waves in receivers have been removed in migrations. (c) One-two-way wave-equation migration,
(d) two-one-way wave-equation migration.
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Fig. 8. Images of Hess 2004 model created using different migration schemes, where the direct

waves in receivers have not been removed in migrations. (a) One-way wave-equation migration;
(b) two-way wave-equation migration.
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Fig. 8. Images of Hess 2004 model created using different migration schemes, where the direct
waves in receivers have not been removed in migrations. (c) One-two-way wave-equation migration;
(d) two-one-way wave-equation migration.
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Fig. 9. Images created using one-two-way wave-equation migration and two-way wave equation
migration and filtered using the Laplacian operator. (a) One-two-way wave-equation migration; (b)
two-way wave-equation migration.
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In these cases, we find that one-two-way wave-equation migration works
better than two-one-way wave-equation migration. Furthermore, we compared
the performances after Laplacian filtering between one-two-way wave equation
migration and two-way wave-equation migration. Fig. 9 depicts the results. The
results show that the Laplacian operator can remove the majority of
low-wavenumber artifacts of low frequency in the two images. Unfortunately,
a worse thing appears in the image created using two-way wave-equation
migration. An obvious artifact marked as appears above the salt body, which
may be the result of incorrect seismic interpretation. However, this artifact does
not appear in the image created via one-two-way wave-equation migration.
Thus, we conclude that the asymmetric wave-equation migration not only
reduces computation time but also reduces artifacts.

CONCLUSIONS

Wave-equation migration is a strong technology for imaging layers. It has
become more and more popular recently due to the need for highly accurate
seismic interpretation. It can be implemented by using the one-way
wave-equation and two-way wave-equation. The former is cheap but cannot
image steep dips; the latter is strong but costly and produces an amount of
low-wavenumber artifacts. In this investigation, an asymmetric wave-equation
migration scheme is developed and provides a midway approach. Thus, if we
do not have sufficient computational resources to implement RTM, the
asymmetric wave migration scheme is a feasible choice.

Furthermore, two synthetic models are proposed to verify the performance
of the asymmetric wave-equation migration compared with other wave-equation
migrations. Numerical simulations show that asymmetric wave-equation
migration can image without the limitation of dip and produce less
low-wavenumber artifacts. Thus, we conclude that it can replace the two-way
wave-equation migration when computation resources are limited. This
migration approach also offers us a new choice when we fall into the struggle
of how to decide between two-way wave-equation migration and one-way
wave-equation migration. The numerical results indicate that the asymmetric
one-two-way wave-equation migration can image layers effectively. Based on
the tests in the investigation, we can conclude regarding the selection of prestack
wave-equation migration: if the layers are simple and without steep dips,
one-way wave-equation migration is the best choice; if not, and the
computational complexity is acceptable, asymmetric wave-equation migration
may be the better choice. In the situation where the image of flanks is the key
target and the computational complexity is affordable, two-way wave-equation
migration is the best.
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