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ABSTRACT

Kong, D., Peng, Z., Fan, H. and He, Y., 2016. Seismic random noise attenuation using directional
total variation in the shearlet domain. Journal of Seismic Exploration, 25: 321-338.

In this paper we propose an effective seismic denoising method using directional total
variation (DTV) in the shearlet domain. This approach exploits the sparseness of shearlet transform
and direction sensitivity of DTV. Shearlet shrinkage has a positive effect on denoising, but suffers
from Gibbs artifact which can be solved by total variation (TV). DTV is an improved method of TV
using anisotropic projection and performs well for the noisy signal with a dominant direction. The
seismic data can be decomposed into several subbands by shearlet transform. Every subband has its
own dominant direction. Therefore applying the direction information to DTV can more effectively
eliminate seismic noise. The application on synthetic data and field data shows that the proposed

method is superior to shearlet transform or DTV in seismogram noise removal and feature
preservation.

KEY WORDS: shearlet, directional total variation, sparse representation,
seismic random noise attenuation.

INTRODUCTION

As the terrain of seismic exploration becomes more complex, the quality
of acquired seismic data may not reach our requirement. The data are often
distorted by noise in survey procedure, data recording, etc. In some extreme
cases, the valid signal is lost in the noise. In addition, some processes, such as
thin layer estimation and AVO inversion (Puryear and Castagna, 2008; Alemie
and Sacchi, 2011), have high demands on the quality of seismic record.
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Therefore noise attenuation is a hot continuous topic on seismic
preprocessing. Seismic noise can mostly be divided into two parts: incoherent
noise (often called white noise) and coherent noise. The noise statistical
properties often have an important influence on choosing algorithms (Zhong et
al., 2015). In this paper, we concentrate on random noise, which is very
common and easily damages the characteristics of seismic data and stratigraphic
interpretation. The random noise indicates the incoherent noise in seismic data.
It mainly comes from wind motion, recording instruments, etc (Yilmaz, 2001).
The random noise processed in this article is an additive noise. It has a fixed
variance and its mean is approximately zero. The first and second order
statistical moments are time-invariant.

There are two main kinds of incoherent noise suppression, i.e., harmonic
analysis and partial differential equations. Harmonic analysis is a powerful tool
for dealing with the issue of random noise suppressing. It represents the signal
as the superposition of a set of basic waves. Since the effective part has a
particular structure and random noise does not have a specific structure, the
signal obtained by the decomposition focuses on some basic waves and noise is
evenly distributed within each wave. This method can effectively separate the
signal and noise components. Then a shrinkage operator is used for each basic
component decomposed from the noisy signal. The noise can be suppressed
greatly with a proper shrinkage parameter. Finally the denoised result is
obtained by synthesizing the processed basic signals. An important factor of the
performance of harmonic analysis denoising is the implement tool, for example,
Fourier transform, wavelet transform (Shan et al., 2009) and multi-scale
analysis (including curvelet transform (Starck et al., 2002), contourlet transform
(Do and Vetterli, 2005), shearlet transform (Easley et al., 2008), etc.). If
decomposition methods give the more structural characteristics of signal, the
converting coefficients are sparser. This sparseness can be regarded as the
effectiveness of separation between signal and noise. The reason for selecting
shearlet as harmonic analysis tool is its superior ability in sparse representation
of seismic wave (Yi et al., 2009).

However, the harmonic analysis has difficulty to recover sharp
discontinuities for its direct cutting off. This is shown as some Gibbs artifacts.
To suppress the artifacts, a combination with total variation (TV) has attracted
many attentions. TV regularization tries to minimize the gradient of the signal
in the /; norm (Rudin et al., 1992). The combination of harmonic analysis and
TV has improved performance of the denoising result (Glenn et al., 2008; Tang
and Ma, 2011; Guo et al., 2013; Lari and Gholami, 2014). This method also
has its limitation, especially the oil painting artifacts. Many efforts have been
made to improve the performance of TV (Bredies, 2010; Bayram, 2012;
Benning et al., 2013). In particular, the directional TV (DTV) is a
representative one. DTV weights the gradients depending on their direction
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features which improve the sensitivity to variation at a selected direction. DTV
requires a signal to have a dominant direction characteristic. The real signal has
various geometric features and rarely has a single dominant direction feature.
Therefore, the noisy signal is firstly decomposed into a set of basic components
which have their own characteristics in different directions. Then DTV
denoising method is used to process each basic component, achieving better

results. The experiments between synthetic data and field data all approve this
conclusion.

In the rest of this paper, we start with a review on shearlet transform and
DTV in the next section. Then the combination of shearlet transform and DTV
is shown in the third section. And the comparison of the proposed method and
related algorithms in the simulated and real seismic data processing is present,

respectively. Finally we summarize the main results and suggest directions for
further work.

THEORY

Shearlet is an excellent tool for sparse representation. It takes advantages
of multiscale analysis and a shear operator to capture the geometry of
multidimensional data. Each subband from shearlet transform describes a
particular direction feature. Using direction characteristic, DTV can effectively

suppress random noise. In this section, an introduction of shearlet and DTV is
given below.

Shearlet transform

Shearlet transform employs a family of operator on a single function to
realize a partition in frequency domain. A shear matrix is applied to obtain
direction information while curvelet uses rotation operator in polar domain.
Here, S is a simple shear matrix:

S = , s €ER (1)
where R denotes the real number set. Then an anisotropic dilation operator A
1s represented as

a O

A= , a € R* 2)
0 +Ja
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where a represents an anisotropic dilation. Shearlet basis is generated by using
the previous operators and translation vector on mother wavelet y:

I —s
¢a,s,m(x) = \b[ X 2—2a X (X - m)] 5 (3)
0 1

where s presents the shear operator in the shear matrix, a is the dilation
parameter corresponding to the dilation matrix A and m is a two dimension
translation vector. The basis has a separate form in the frequency domain:

U(w) = Yi(wd(wi/w,y) 4)
VosmW) = Y147 WP [2%(W,/w,) + sle ?m<wm> )

where w is a two dimensional vector, and w,, w, represent the frequency in
horizontal and vertical direction, respectively. From the definition of ¢, (W),
its frequency support can be shown as Fig. 1.

In Fig. la, the basis function {
through shear parameter .

(w) rotates in one level subband

a,s,m

o ]

\//

(a) (b)

Fig. 1. (a) Partitions of the frequency plane produced by shearlet. The part of support is
symmetrical. (b) One of the symmetrical sub-band.



RANDOM NOISE ATTENUATION 325

The continuous shearlet transform of a signal f&€ L2(R?) can be defined as

SH,(D(@,s,m) = (¥, = | | v, 0dx . ©)
w

Nature signals usually have many edges and anisotropic features. It is
shown that shearlet is essentially optimal in representing a two-dimensional
function (Guo and Labate, 2007). The N-term largest reconstruction coefficient
fy obtained by shearlet transform can estimate the original function f with an
asymptotic approximation error decays as

If— 3], < N"2(logN)’, N> 7
which is much smaller than that from wavelet CN~!. In this article, shearlet is

selected for its directional sensitivity, optimal sparse representation, and easy
to implement.

DTV method

Harmonic analysis methods are not perfect because they are often
confused by ringing artifacts. Total variation is a powerful tool for denoising
and suppressing the ringing artifacts. However, this method suffers from
oil-paintings in the case of complex textures and shading. Many efforts have
been made to overcome this shortage. DTV is one of the good works. Different
from traditional TV, DTV adds direction information to calculate the variation
which strengthens the dominant direction component. This model has a higher

sensitivity to the direction which is more effective in processing signals with
dominant direction.

TV of a discrete signal f(x,y) is defined as

V@ = Y, | Vi |,

= XZ;«/{[fo(x,y)P + VR ®)
where Vf, and V’fy denote horizontal and vertical difference, respectively
Vix.y) = [VE(x.y), Vi, (x,y)]
VE(xy) = f(x,y) — f(x—L1y) )

Vi (xy) = fx,y) — fx,y—1) .
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Tang and Ma (2011), Lari (2014) adopted TV minimization to shrink
coefficients. In eq. (8), the TV can be reformulated as a vector inner product

V() = Y, [ Vi) [, = Y, sup(Vix,y),0 (10)
X,y X,y

where t is a unit vector in the /, norm ball. Let f, and f, represent Vf (x,y) and
Vi, (x,y), respectively. Eq. (10) can be extended as

TV() = sup((f,.f,),r)
cosf sinf

sup{(£,f,), ([E/N{E+ LI AR+ 12]) )

—sinf cosf

sup((f,.£,), ([(F,cos0 — £,sind)/y {2+ 12}, [(F,sinf+£,cosO) /{24 £2}]) )

Il

sup([(ﬁcos()—fxfysin0)/\/{ff+fj}] - [(fxfysin0+f;zcose)/\/{f2x+f§}]>

Il

sup(v{f2+12}cosh) , 1D

where the operators - and (,) represent matrix product and vector inner product,
respectively. From eq. (11), the upper bound of TV is obtained when 6 equals
to zeros. The unit vector r is (f/A/{f;+£}, f,/A//{f;+12}), i.e., the same direction
with TV. The upper bound is not related to the variable 6. So the original TV
is isotropic as a consequence of the isotropic unit vector in the /, norm ball.
When the norm ball is replaced by an anisotropic ellipse, it renders TV the
direction sensitivity as shown in Fig. 2a. When TV is projected onto an ellipse
to search for an extreme value, the DTV can be represented by the original TV
through a rotation matrix K, and scale matrix L,.

The mapping between the original TV and DTV is
v(i,j)vEEw = K,,Lav(i,j)vEBI , (12)
where o« represents the major axis of the ellipse,
cosf —sinf a 0

K, = , L = ) (13)
sin@  cosf 01
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Fig. 2. The direction sensitivity of subband. (a) The projection difference between TV and DTV.
(b) A subband from synthetic data. (c) The value of DTV with a = 3. (d) The value of DTV with
a =>5.

DTV is computed by the following inner production:

DTV (f) = sup{(t,.£,).x(af))

sup((f.f,))

I

a0 cosf sinf
sup((f,.£,), (£~ B+ BILIE N {E+]) - )

01 —sinf cosf
a0 cosf —sinf
= sup((f.f)| L (EANIE+ENIENIE+E) )
01 sinf  cosf

Il

sup((af,{,fj),r(l, -9)) . (14)
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The final derivation indicates that the upper bound is dependent on 6.

For the anisotropy of ellipse, the minimum can be linked with the
direction of TV. Fig. 2b shows a subband by shearlet transform from synthetic
seismic record with a dominant direction § = /3. Its TV value is calculated by
projecting onto the ellipses in terms of « = 3 and @ = 5 shown in Figs. 2c-d,
respectively. These figures reveal that each subband obtained by shearlet
transform has its own dominant direction and DTV can find out the dominant
direction. In addition, a bigger « leads to a higher amplitude.

THE PROPOSED METHOD

The condition may be more complex because of the diversity of noise in
field data which will be the next work. In this article, we dedicate to the noise
in the following model:

s=f+n , (15)

where s is the acquired noisy data, f denotes the noise-free signal to be
estimated, and n is the random noise which is considered as a stationary and
Gaussian process. In an ideal case, the noise is Gaussian distributed according
to the Central Limit Theorem (Zhong et al., 2015).

As shown in the last section, shearlet transform can be used to obtain
direction information of seismogram. Direction of every subband changes
regularly as the ¥, ( (W) rotates with the shear parameter. The proposed method
integrates shearlet transform and DTV to reconstruct seismic record with
direction features and less distortion.

In order to combine shearlet transform and DTV, the following object
function is proposed

f,o = argmin ), [% || SH(s) — £]|3 + ADTV, )] , (16)
fI i

where SH;(s) is the i-th subband of the shearlet transform. For computation
simplicity, the fast finite shearlet transform (FFST2.0) (Hauser and Steidl, 2013)
is adopted for numerical computation. f; is the corresponding denoised subband.
It should be noted that eq. (16) is separable with respect to the subband. Then
a simplicity formulation can be reached

f, = argmin' | SH(s) — £,]2 + ADTV,,(f) , (17)
f,
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where f] is the result of i-th subband. Taking eq. (12) into consideration, the
object function (17) has another description as

f, = argmin' | SHis) — |3 + NK,L,TV(f) . (18)

f;
Auxiliary variable u and v are taken to represent the processing subband
SHi(s) and its TV, TV(f) respectively. Through the derivation of the variation

f,, the process becomes the optimal problem of v:

v = argmin |u — NATK,L,v|? . (19

vVEB,

Since the function is quadratic, its second order Taylor expansion about
point v’ is written as:

G(v) = G(v') + (v — v)TOATK,L)T(\ATK,L,v' — u)

+ (v — v)TOATK,L,)TNTK,L)(vV — v

IN

GV + (v — V)TNATK,L )"N\ATK,L v' — u)
+ %(v — v)'D(v — v , (20)
where D is a symmetric diagonal matrix such that

D = AATK,L)'TAATK,L,) = No?AAT . 21)

Because of the positive semi-definite (psd) of matrix AAT, there is a
positive scalar ¢ that makes el—AAT be a psd matrix where I denotes identity
matrix. A choice of D can be &\’¢’l. Under such conditions, an iteration
minimization method can be hold by G(v) < G(v'). Inserting the choice into
eq.(20), it is written as:

G(v) < N2 ||lv — yv) |+ C (22)
where C is an independent constant of v’ and

Yv) = v+ (12eNoHWTu — Wv') , W = ATK,L, . (23)
This means that the new estimation about v has the same formulation with y(v').

Besides, the element in new result of iteration should satisfy unit ball constraint.
This is achieved by a shrinkage operator as:
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v(x.y) Iveen |, < 1
v(x,y) = . (24)
v(x,y)/ || v(X,y) || 9 else

The following Algorithm 1 gives a pseudo-code implementation of the
proposed method. Other versions can refer to the work of majorization-
minimization algorithm (Figueiredo et al., 2007). The number of subbands is set
as N in shearlet transform. The variable u; is used to represent the i-th subband.
There are two main steps to deal with every u;. First, we need to search for a
dominant direction 6 of the current subband. Then, under the dominant

direction, the iteration method for eqs. (23) and (24) is used to suppress the
random noise.

Algorithm 1. Seismogram Denoising by DTV in ST

Input: s, «, i, 0, N\, &, mlter

Output: s’

Initialization: i = 1,6 = 0,v =0

1: [u,N] = FFST(s)

2: repeat

3: forj = 0:w/6:2w

4: subDir(j) = DTV, ;[SH(s)] as in (14)
5: end

6: 6 = min(subDir;), W = AK,L,

7: for k = 1:mlter

8: Viu, < Vi + (172eNaA)WT(u, — Wv,)
9: v(x,y) = shrik[v(x,y)] as in (17)

10: end

1: ) =u, — Wy

12: untili > N

13:s" = IFFST(f")

Output: s’
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EXAMPLES

To validate the proposed method, there are two numerical experiments
including synthetic data and field data. Define Signal-to-noise ratio (SNR) to
measure the effectiveness of algorithms as

SNR = 10log,[ | x ||

% —x[31 . (25)

where x and X denote the original trace and estimated one, respectively. SNR
and visibility are taken as criteria to check out the scheme. Three relative
schemes are taken as comparison including DTV denoising, shearlet shrinkage,

and FX decon. FX decon is a useful tool using in random noise suppression
(Canales, 1984).

There are several parameters used in Algorithm 1. The regularization
parameter A grows as the noise level increases. \ is set to be 0.01 for all the
noise-free data and 0.1 for the noisy data in this article. The FFST is used with
two scales, 13 subbands (12 for different direction part and one for low
frequency). A large scale parameter o improves the result if the dominant
direction feature is reliable and there are few components in non-dominated
direction. In the article, the value of « varies from 13 to 5 with increasing noise
level. The search of dominant direction 6 for subband has been discretized into
a /6 grid. It is sure that fine tuning of the parameter leads to better results. But
the results under the current parameter are enough to show the efficiency of the
proposed method.

Synthetic data

A geological model with three layers is applied to synthesize the simulated
data. The sands are of higher impedance than shale, but halite is the most. The
stratigraphic structure sketch map is presented in Fig. 3a. The seismogram is
obtained by convolution between reflection coefficient series (Fig. 3b) and
wavelet. In this article, a 30-Hz Ricker wavelet is utilized with sample interval
2ms. Part of the simulated seismic trace is plotted in Fig. 3c.

In practice, a seismogram is often distorted by noise, which interferes
with the analysis of seismic feature. In the simulated record testing, the
Guassian random noise with variance ¢* = 0.2 is added into the original signal
to examine the performance of the proposed scheme, as shown in Fig. 3d.

As seismic data has a sparse representation in shearlet framework, shearlet
shrinkage is taken as a comparison. DTV minimization is used to process the
noisy seismic data directly to show the essential of shearlet transform. In
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addition to the above-mentioned two methods, FX decon is taken as an outside
of wavelet transform approach for comparison. The four schemes are used to
process a series of synthetic data with different levels of contamination. The
denoising result ROC is shown in Fig. 4. It can be seen that the proposed
method is better than the others. At the same time, the combination between
shearlet and DTV is more robust against the noise judging from the steepness
of the curves.

] ] (G] d)

Fig. 3. Simulated seismic record. (a) Synthetic stratigraphic model; (b) reflection coefficient;
(c) simulated trace; (d) noisy seismogram with noise variation o> = 0.2.

From Fig. 4, it is clear that the proposed scheme has a better performance
than the others. This is because the proposed method incorporates the
advantages of both methods. Natural seismic record contains different direction
information. When DTV is used individually to do denoising, it cannot deal with
all the direction information as shown in the performance curve.

The result with noise variation ¢ = 0.2 is shown in Fig. 3d. It can be
concluded that noise is suppressed effectively by shearlet shrinkage as shown in
Fig. 5a. However, there are still some non-smooth artifacts left, particularly
around the discontinuities. DTV minimization also suppresses the random noise
which is obvious in the dominant direction. But when it comes to other
direction, the scheme is less effective as seen in Fig. 5b. The FX decon retains
many features and removes noise effectively. But it also introduces continuous
deviation around 400 ms as shown in Fig. 5c. The fourth method is to use DTV
to process each subband. Using the direction information of each subband is our
characteristic. The output from the proposed method is shown in Fig. 5d, where
the noise is suppressed without bringing in artifacts too much and the features
and waveform are held well.
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Fig. 4. ROC for denoising SNR with different schemes.

In order to illustrate the result clearly, a randomly selected synthetic trace
(19th) is exhibited in Fig. 6. Shearlet shrinkage can individually remove most
of the noise, but it also introduces some artifact near singularities as shown in
Fig. 6¢c. When it happened to DTV strategy individually, some artifacts are
deduced. But it is not uniform for the direction of edge, which can be an
important factor as shown in Fig. 6d. FX decon can also decrease the influence
of noise. But the method brings some waves which do not exist in the original
data as shown in Fig. 6e. The trace obtained by the proposed method is
effective which removes most noise and whose wave structure is preserved very
well. In every subband, shearlet extracts one direction component of the
seismogram and noise can be uniform and direction free. DTV obtains the
direction information and enhances the dominant direction part.

Fig. 7 shows the residual sections corresponding to Figs. 5a-d. There are
no obvious original signal components inside as shown in Figs. 7a-d. The
proposed method has effectively removed noise without destroying seismic
feature.
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Fig. 7. Difference sections. (a) Difference result by shearlet shrinkage; (b) Difference result by DTV
method. (c) Difference result by FX decon. (d) Difference by proposed method.

Field data

The proposed algorithm is also tested for its applicability on field seismic
data. The adopted seismic section, shown in Fig. 8a, comes from a portion of
some basin area of Sichuan province. It has 512 traces, each consisting of 512
sample points with sample interval 2 ms. This data contains random noise which
can be used to confirm the effectiveness of the proposed scheme.

The proposed DTV-synthetic shearlet transform method can suppress
noise effectively as shown in Fig. 8b. Two aspects are used to verify that our
process has removed noise without eroding strata information. First, the
difference between the denoising result and original seismic section is exhibited
in Fig. 8c. In the difference section, there is no significant strata structure. It
is the evidence that the layer structure is not affected obviously. Secondly, one
trace from the section is given, including original signal, its denoising result,
and the different between them. They are listed in the left, middle and right of
Fig. 8d, respectively. The same conclusion can be reached that the proposed
scheme has a good ability to process the seismic data random noise attenuation.
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Fig. 8. The field data experiment. (a) Original section; (b) result by proposed method; (c) difference
of the original record and the denoised result; (d) signal trace comparison: original trace (left),
processed result (middle), difference trace (right).

CONCLUSIONS

In this paper we concentrate on a shearlet-based DTV method for seismic
random noise attenuation. Shearlet is an elegant tool for sparse representation
of seismic data by decomposing it into several subbands. Each subband has its
own dominant direction which helps DTV significantly improve the performance
of denoising. This combination gives a new way to take advantages of harmonic
analysis and TV. The new method also effectively expands the scope of the
application of DTV. Signal with multiple directional characteristics can be
processed by this scheme to remove random noise. The numerical experiments
with synthetic and field data demonstrate that the proposed method has good
performance on random noise suppression and recovers seismic events
effectively.



RANDOM NOISE ATTENUATION 337

The proposed approach contains several iterations which needs high
computational cost. The second aspect is that the statistical characteristics of the
noise in the real seismic record are complicated. How to improve the
computational efficiency and make the method more practical would be our
future work.
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