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ABSTRACT

Meier, M.A. and Duren, R.E., 2016. Theory for a low frequency marine dipole seismic source.
Journal of Seismic Exploration, 25: 285-298.

At low frequencies, the far-field amplitude in a homogeneous half space excited by a dipole
source is comparable to that from a monopole source if the total applied force is the same. The
dipole far field amplitude depends on the amount of force but not on the size of the source element.
Dimensions determine the mass load imposed by surrounding fluid on the source element and,
consequently, the acceleration of the element resulting from a given force. Limiting acceleration to
avoid cavitation is a consideration affecting the design of source element dimensions.
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INTRODUCTION

Modern marine seismic source technologies excite acoustic waves hv
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far-field amplitude. The other is a source ghost which cancels out radiated
wavefields at low frequencies. A dipole source operates differently, exciting
acoustic waves by oscillatory translation rather than by volume modulation, and
its ghost reinforces radiated wavefields at low frequencies rather than canceling
(Duren and Meier, 2008; Hixson, 2009; Meier and Duren, 2014; Meier et al.,
2015a,b). These features benefit the dipole source for low frequency marine
seismic acquisition.

SPHERICAL SOURCES

We examine spherical sources which may be considered idealized
representations of marine seismic sources. The wavefield created by a spherical
source is readily solved by matching the general solution of the wave equation
to boundary conditions describing the source dynamics (Blackstock, 2000). The
boundary condition for a spherical monopole is given by

u,(r = a) = ue ™t (1)

describing a pulsating sphere with a boundary at radius a that is oscillating
radially with peak velocity of u,. The monopole describes a source acting on the
surrounding fluid by modulating volume, a manner consistent with modern
commercial marine sources. The wave equation solution in a homogeneous

whole space for a monopole source with the described boundary condition is
given by

u, = u[1/(1 = jka)l[(@*r?) — jka(a/r)]e 0=t )

where k = w/c,, and ¢, is the speed of wave propagation in the homogeneous
medium. The monopole flow field has a term that scales with 1/r2, often
referred to as the near-field component of the wavefield, and a term that scales
with 1/r, often referred to as the far-field component. Both near and far-field
flows are radial and uniform in all directions, as shown in Fig. 1. They are 90
degrees out of phase with each other, and their phase relative to the monopole
boundary motion given in eq. (1) depends on the magnitude of ka, or
correspondingly, frequency. The near-field component dominates at distances
r < NM2m, where N = 27/k is the wavelength of propagating waves. This region
is often referred to as the near-field. The far-field component dominates at
distances r > A2, often referred to as the far-field region.

The boundary condition for a spherical dipole is given by

w(r =a) = ue™2 , (3)
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Fig. 2. Arrows indicate direction and relative magnitude of near-field flow every 15 degrees around
a circle centered on a dipole. Dipole translation is in the vertical direction.
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Fig. 3. Arrows indicate direction and relative magnitude of far-field flow every 15 degrees around
a circle centered on a dipole. Dipole translation is in the vertical direction.
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theory, the drag force on a uniformly moving body in such a fluid is zero, an
observation often referred to as d’Alembert’s paradox after the French
mathematician. The reaction force associated with the above 1/r* term can be
shown to be zero, consistent with d’Alembert’s observation.

Wavefield pressure relates to flow, Vp = —p du/dt, where p, is the
medium density. The monopole and dipole pressure corresponding to the flow
fields in eqs. (2) and (4), respectively, are

Pm = PoCollo[—jka/(1 — jka)](a/r)e*C-0-e0 ©)
and
Pa = PColl,{ —jka/[2 — 2jka — (ka)’]}
X [(az/rz) — jka(a/r)]cos()e”k(r‘”)“”‘1 . (6)
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Fig. 4. The wavefield pressure amplitudes for monopole and dipole sources in a whole space,
indicated by dashed and solid lines respectively, and normalized by p.c.u,, are plotted for various
values of ka. The magnitude of the boundary condition, u,, is the same for both sources. The
direction is § = 0°. Boundaries, r = a, are indicated by open and filled circles for monopole and
dipole fields, respectively. For the case ka = 10, the monopole and dipole pressures overplot each
other.
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The monopole pressure scales with 1/r and has the same frequency
dependence as the far-field flow in eq. (2). The dipole pressure has both
near-field and far-field components, with distinctive dependencies on ka, similar
to dipole flow. Figs. 4 and 5 show the magnitude and phase relative to boundary
motion for both monopole and dipole pressure wavefields and several values of
ka.

It is the far-field radiation characteristic that is of greatest importance to
seismic exploration. Logistically, it is important that source dimensions are
allowed to be small relative to radiated wavelengths. If we consider the low
frequency condition, ka < < 1, also implying that radiated wavelengths are
much greater than the source dimensions, far-field pressures for monopole and
dipole sources are approximated from egs. (5) and (6),
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Fig. 5. The pressure wavefield phases for monopole and dipole sources in a whole space, indicated
by dashed and solid lines respectively, and referenced to boundary velocity, are plotted for various
values of ka. The boundaries, r = a, are indicated by open and filled circles for monopole and
dipole fields, respectively. Phase due to propagation is not included.
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Put = —pocouo(ika)(a/r)ej[k(r_a)_w[] ’ (7)
Par = —PColy[(ka)*/2](a/r)]coshelkr—a et ®)

where the subscripts mf and df are used to denote the monopole far-field and
dipole far-field, respectively. The ratio between the dipole and monopole
far-fields is given by

Pat/Pme = (—Jjka/2)cost . 9

Given the condition that ka < < 1, we conclude that the dipole far-field in a
whole space is much smaller than that of the monopole.

Clearly, the homogeneous whole space solution suggests a dipole source
has poorer radiation characteristics and no apparent advantages over a monopole
source at low frequencies. This conclusion may strongly discourage
consideration of dipole sources for marine seismic applications. However,
interest in the concept of marine dipole seismic sources is regained, especially
for low frequencies, when consideration includes other issues inherent in marine
seismic exploration, such as half space effects and forcing requirements.

HALF SPACE

Marine seismic sources are typically towed behind seismic vessels and
operate near the sea surface. These sources may be ideally represented as
monopole type sources in a half space. The presence of the sea surface
substantially impacts the radiation characteristics of a monopole source,
especially at wavelengths much larger than the tow depth of the source. In this
case, the low frequency radiation characteristic of the monopole source is
greatly attenuated and loses much of its advantage over the dipole source. In
contrast, the low frequency radiation characteristic of the dipole source is
amplified by the sea surface.

A single monopole source positioned in a half space with a
pressure-release surface, that is, the pressure is zero on the surface, may be
equivalently represented as two opposite polarity monopole sources in a
homogeneous whole space, on either side and equidistant from the half space
surface. This is known as the image source construction. The radiated field is
the linear superposition of the source and image fields. The source pair may be
described as a doublet, but should not to be confused with a dipole. The

pressure far-field solution for a monopole in the half space may be obtained
from

Phi = Pmt — dcosf) — p,{r + dcosf) |, (10)
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where the superscript H is used to denote a half space solution, d is the distance
between the monopole and half space boundary, and r now references the
midpoint position between the source and its image. For kd < < 1, implying
low frequencies with wavelengths much larger than d, the pressure far-field is
approximated by

iy = —poCou,(ka)(2kd)(a/r)cosf ellk—a—et (11)

For a dipole source in a half space under the same conditions, the pressure
far-field is approximated by

pis = —p.cou (ka)’(a/r)cosh elkr-a-el (12)
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Fig. 6. The far-field pressure amplitudes for ka = 0.01 and direction § = 0°, normalized by p,c,u,,
of monopole and dipole sources in a half space are plotted. The monopole far-field depends on kd.
The magnitude of the boundary condition, u,, is the same for both sources.
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Both dipole and monopole pressure fields have a cosf radiation pattern.
Fig. 6 shows the monopole and dipole far-field pressure amplitudes for the low
frequency case, ka = 0.01, and several values of kd ranging from 0.100 to
0.025. For a source depth of six meters and propagation velocity of 1500 meters
per second, this range for kd corresponds to a frequency range of 4 to 1 Hz.
Recall the dipole far-field pressure is independent of kd at low frequencies.

The ratio between the dipole and monopole far-fields in a half space is
given by

p/ple = a/2d . (13)

The far-field amplitudes of the dipole and monopole are similar in order,
which is a very different result from the whole space case. Even so, source
dimensions smaller than the tow depths may normally be expected, a < d. In
this case, the dipole far-field is still somewhat smaller than the monopole.

FAR-FIELD AMPLITUDE AND FORCING

The far-field ratios given in eqs. (9) and (13) hold for the case when
dipole and monopole boundaries modulate with the same peak velocity given by
u,, as described in egs. (1) and (3). However, from a design point of view, the
peak boundary velocity is not necessarily the best reference for comparing
far-field amplitudes. A source is designed to deliver a force on the surrounding
fluid medium. It takes considerably more force to achieve a given oscillatory
peak boundary velocity for a monopole than it does for a dipole. So, a more

useful reference for comparison is the force needed to achieve a desired far-field
amplitude.

Force delivered on a surrounding fluid medium can be determined from
pressure on the source boundary. A force acting on a surface element relates to
the pressure on that element, and is expressed in scalar and vector form by

dF - A = pdS |, (14)
dF = pdS , (15)

where i is the surface normal, dS = fAdS. The total force is obtained from
integration over the source surface, recognizing that integrating scalar force is
different from integrating vector force and gives different results delineating the
basic nature of the source. For example, a net scalar force and no net vector
force describes forcing to drive volume modulation, but not translation.
Contrastingly, a net vector force and no net scalar force describes forcing to
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drive translation, but not volume modulation. Surface integrals can be related
to volume integrals through integral theorems,

$ pds = | v-@rds)av | (16)
S v

Il

$ pas = | vpav . a17)
S v

Eq. (16) shows that surface integration over scalar force relates to volume
integration of force divergence, and eq. (17) shows that surface integration over
vector force relates to volume integration of pressure gradient. Loosely
speaking, finite values from (16) and (17) describe a "pressure source" and
"pressure gradient source" nature, respectively.

The pressure on the boundaries of monopole and dipole elements are
given by evaluation of the corresponding wavefield solutions given in egs. (5)
and (6),

Pu(f = @) = pc,[—jka/(l — jka)e™" | (18)
Po(t = a) = p,cu,{[—jka—(ka)*)/[2—2jka—(ka)*]}cosh e . (19)

Evaluating the surface integrals in eqs. (16) and (17) for the pressure on
the surface of the monopole element gives the total forcing required to drive the
monopole surface in pulsation with peak velocity of u,. Surface integration of
the scalar quantity in eq. (14) gives a finite result whereas surface integration
of the vector quantity in eq. (15) gives zero. This shows the monopole is a type
of "pressure source". The monopole forcing for ka < < 1 is:

F, = —jwpudma’e et (20)

Evaluating the surface integrals in egs. (16) and (17) for the pressure on
the surface of the dipole element gives the total forcing required to drive the
dipole surface in translational oscillation with peak velocity of u,. In this case,
surface integration of the scalar quantity gives zero whereas surface integration
of the vector quantity gives a finite result. This shows the dipole is a type of
"pressure gradient source". The dipole forcing for ka < < 1 is:

Fy = —jwp,u,(2/3)a’e % . 21

The monopole and dipole far-field pressures in a half space can be written in
terms of the total respective applied forces;
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phi = —JjkF,(d/2ma)cosh [ekT-a-wl/r] | (22)
pliy = —jkF,(3/2m)cosh [ekr-a-el/r] | (23)

where F,, and F, are force magnitudes defined by the relations F,, = F,e ' and
F, = Fe 3.

Reconsidering the ratio of far-field amplitudes between monopole and
dipole for the case of equal force magnitudes, F, = F,, gives

[p’[}f/pﬁf] F’FFN = 3a/d . (24)

In the case of equal forcing, the far-field amplitude of a dipole source in
a half-space is comparable to that of a monopole source in the same space.
Fig.7 shows the far-field pressure amplitudes for the low frequency case ka =
0.01 and the same values of kd as in Fig. 6. For sufficiently low frequencies,
the dipole far-field pressure is slightly greater than the monopole. The far-field
pressures are the same if the source radius is one-third the tow depth, a = d/3.
With regard to radiation characteristics, the monopole source has no substantial
advantage over the dipole source. Each may be comparably considered, and
factors other than radiation characteristics may determine the favorability of one
over the other.

MARINE DIPOLE DESIGN CRITERIA

The far-field pressure ratio in eq. (24) has dependence on the source
dimension, a, and the source depth, d, that comes strictly from monopole
far-field pressure given in eq. (22). The dipole far-field pressure, given in
€q.(23), has no dependence on the source dimension or depth, provided the
requirements ka, kd < < 1 are satisfied. The dipole far-field pressure depends
on the force applied, F,, but not on the size of the source. This important result

shows that a far-field amplitude specification does not directly establish any
requirement on the source dimension.

However, a far-field amplitude specification does directly establish a
forcing requirement. Force causes acceleration, and source dimension enters into
design criteria if there is a maximum acceleration that should not be exceeded.
For example, boundary accelerations exceeding acceleration due to gravity may
result in undesirable cavitation effects. Dipole forcing given in eq. (21) produces

the boundary velocity given in eq. (3). Taking the time derivative to obtain
boundary acceleration gives

a,(r = a) = —joue % . (25)
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Fig. 7. The far-field pressure amplitudes for ka = 0.01 and direction § = 0°, normalized by p.c,u,,
of monopole and dipole sources in a half space are plotted. The monopole far-field depends on kd.
The forcing is the same for both sources, F,, = F,.

Combining with the forcing equation and using

F, = mayr = a) , (26)

to define a quantity referred to as "entrained mass", m,, gives

m, = (2/3)ra’p, , 27)
which is, equivalently, one half the mass of the displaced fluid. The entrained
mass represents the fluid load on the dipole source, and grows with increasing
source size. The entrained mass must be sufficiently large so that the source
boundary does not exceed g for a desired dipole forcing magnitude,
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m, > F,/g . (28)

By way of example, the required radius of the source element may be
expressed directly in terms of the far-field pressure,

a > (rpgikp,g)'"” . (29)

Table 1 shows example values for a one Hertz dipole source. Note that
the source element dimensions are orders of magnitude smaller than the 1,500
meter wavelength of a one Hertz wavefield in water.

Results shown in Table 1 describe time harmonic amplitudes. Commercial
application of a marine dipole source will involve finite sweep durations over
a desired range of frequencies. The design of marine dipole sweeps to deliver
adequate source energy over a frequency band incorporates many of the same
design elements used for modern controlled seismic sources. Increased ambient
environmental noise levels at low frequencies add to the challenge of delivering
sufficient energy. In addition, trace density, determined by source and receiver
station intervals, plays a role in discerning the seismic response from ambient
environmental noise and unwanted modes. Seismic survey design procedures
using a marine dipole source will need to determine forcing, sweep function,
and sampling density required to achieve back scatter response amplitudes at
desired frequencies that meet particular seismic survey objectives.

Table 1. Producing a one Hertz far-field pressure given in column two at a distance of 1,500 meters
along the dipole axis (¢ = 0°) requires a dipole force magnitude shown in column three. The radius
shown in column four is needed to keep boundary acceleration less than g.

A One Hertz Dipole Source

Distance Far-field pressure Dipole forcing Radius
r (m) par (Pa) Fy (kN) a (m)
1,500 0.01 7.5 0.71
0.1 75 1.54
1.0 750 3.32
CONCLUSIONS

We have shown that a dipole source has radiation characteristics in the
low frequency band that may be useful for marine seismic applications. The
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dipole element dimension does not affect the far-field amplitude, and can be
made orders of magnitude smaller than the radiated wavelength. The far-field
amplitude does depend on the dipole forcing level, and desired far-field
amplitude levels determine dipole forcing specifications. To avoid cavitation, the
entrained mass must be sufficiently large to prevent acceleration from becoming
too large.

Since dipole radiation is comparable to monopole radiation at low
frequencies, factors other than radiation characteristics decide which may be a
more effective marine seismic source. Improving low frequency output from
existing commercial marine sources has proven very difficult. Their monopole
nature requires that the effective boundary peak velocity must increase
proportionally with the square of decreasing frequency in order to maintain the
same far-field amplitude. This corresponds to radial displacement increasing
with the cube of decreasing frequency, requiring very large volume modulation
which can be challenging to implement. The marine dipole is a fixed volume,
generating acoustic radiation by translation rather than volume modulation.
Axial translation of a fixed volume, even over a large displacement, can be a
simpler mechanical action to implement. Translation can be driven by an
actuator and reaction mass internal to the dipole source element. Engineering
and logistical issues may well favor the dipole marine source over monopole for
low frequency seismic applications.
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