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ABSTRACT

Zhong, W., Chen, Y., Gan, S. and Yuan, J., 2016. L,, norm regularization for 3D seismic data
interpolation. Journal of Seismic Exploration, 25: 257-267.

Sparse reconstruction of seismic data aims to reconstruct the missing traces from
noise-contaminated or incomplete seismic datasets with a sparsity regularization. The L; and L,
regularizations are the two most widely used methods to constrain the transform-domain coefficients.
However, because of the NP-hard difficulty of L, regularization and non-sparsest solution of L,
regularization, the traditional approach cannot get the optimal solutions to the seismic interpolation
problems. We propose a novel L,,, regularization model to solve the seismic interpolation problem
and borrow the efficient iterative half-thresholding solver from the signal-processing field to solve
the proposed L, regularization model. Both 3D irregularly sampled synthetic data and field seismic
data with 50 % randomly missing traces show accurate reconstructions using the proposed approach.
Comparisons with the traditional L, and L, regularizations also confirm the effectiveness of the
proposed approach. Because of the simple and efficient implementation of the iterative
half-thresholding algorithm, the proposed approach can be conveniently used in the industry.
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INTRODUCTION

Sparse reconstruction has attracted a lot of attentions in recent years,
which aims to reconstruct the sparse solution from noise-contaminated or
incomplete datasets. The sparse reconstruction problem, simply speaking, refers
to recovering m from the observation d according to a forward modeling
equation (Gan et al., 2015; Chen et al., 2015):

d=Am + n , (1)

where A is the forward operator, and n is the ambient noise vector. In the
exploration geophysics field, the m usually refers to a transformed domain
coefficients vector and d refers to the observed data with regularly or irregularly
missing traces. The L, norm regularization can be used to solve m by using a
balanced objective function between the L, norm of data misfit and the L, norm
of the model vector (Wang et al., 2015). However, L, is usually NP-hard, with
the complexity of the model proportional to the number of variables, and solving
the model is generally intractable when N is large. Alternatively, L,
regularization can be relaxed to L, regularization (Daubechies et al., 2004; Chen
et al., 2014), which can be transformed into an equivalent convex quadratic
optimization problem, and thus can be solved efficiently. Under some mild
conditions, the sparsity-based solution can be equivalent to that from L,
regularization (Donoho, 2005). Because of these reasons, the L, regularization
is becoming more and more popular in the field of sparse optimization.
However, it often introduces extra bias in estimation under some situations, and
cannot recover a signal with the least measurements when applied to
compressive sensing (Meinshausen and Yu, 2009). Thus, a further modification
of the sparse recovery model is still required. One of the efforts tried in the
literature is the general L, regularization (Chartrand, 2007). In this paper,
inspired from the signal-processing field, we propose a novel L,, norm
regularization tailored for reconstructing irregularly sampled seismic data. The
fast solver of L,, norm regularization is applied to 3D seismic data
reconstruction and is demonstrated to be superior than the alternative iterative
soft thresholding and hard thresholding methods. Both 3D synthetic and field
seismic datasets with irregularly sampled traces show accurate reconstruction
using the proposed approach when a high percentage of traces are missing,
which is obviously better than L, and L, regularizations.

THEORY
Formulation of seismic interpolation

The basic target of seismic interpolation is to solve the following
equation:
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d =Md, , 2)
where d is the observed data which is regularly or irregularly sampled, d, is the
unknown data needed to be reconstructed and M is the sampling matrix.
Because of the seriously badly-posed problem of eq. (2) due to many zero
entries in M, we need to add some regularizations when solving eq. (2). An

appropriate way is to enforce sparsity in a transform domain (Chen et al., 2014,
2015):

min | d — Md, |3 + R(Sd,) , 3)
d,
where R denotes a regularization function enforcing a sparsity constraint and S
denotes the forward sparse transform. Let m = Sd,, then eq. (3) can be
transformed into:

min | d — Am |3 + R(m) , )

where A = MS™!, S7!is the inverse of the sparse transform S. Selection of the
regularization function is of great importance when solving problem (4). There
existed a lot of methods in the literature according to different regularization
functions. Two most widely used approaches are based on L, and L,
regularizations.

Several regularized optimization models

The L, regularization problem aims to find the solution to the following
model:

min || d = Am |3 + A m |, 5)

m
where |- ||, denotes the L,-norm, which corresponds to the number of non-zero
entries for a given vector and | - ||, denotes the L,-norm. X is a regularization

parameter. Eq. (5) can be understood as a penalized least-squares data misfit
with penalty | m |,, and \ balances the two objective terms. To deal with such
NP-hard difficulty, eq. (5) is relaxed to the following L, regularization:

min || d = Am |3 + X m |, (©6)

where |- |, denotes the L;-norm. Even though L, is becoming more and more
popular,there are still some problems. For example, it often introduces extra
bias in estimation under some situations, and cannot recover a signal with the
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least measurements when applied to compressive sensing (Meinshausen and Yu,
2009). Thus, a further modification of the sparse recovery model is still
required. One of the efforts tried in the literature is the general L, regularization
(Chartrand, 2007; Chartrand and Staneva, 2008):

min | d —Am |} + X[ m |3, 7
where |- ||g (0 < p < 1) is the L, quasi-norm.

L,,, regularization and its fast solver

Krishnan and Fergus (2009) demonstrated the very high efficiency of L,,,
and L, regularization when applied to image deconvolution. Xu et al. (2012)
showed the representativeness of L, , regularization among all L, regularizations.
Their results basically revealed that the L, regularizations can assuredly generate
more sparse solutions than L, regularization, and 1/2 plays a representative role
because whenever 1/2 < p < 1, the smaller the p is, the sparser the solutions
yielded by L, regularizations can be and the solutions stay relatively constant
when 0 < p < 1/2. Inspired by these discoveries, we proposed a novel L,
regularization for seismic interpolation here:

min [ d — Am |} + X\ m || . (8)

In order to solve eq. (8) efficiently, similar to the iterative shrinkage-
thresholding method for L, regularization. We use an efficient iterative
half-thresholding method for L,,, regularization, proposed by Xu et al. (2012):

m,,, = T[mn + AH(d - Amn)] P (9)
where []" denotes adjoint and T denotes the half-thresholding operator:
Tlv(m)] = (10)

@73)v(m){1 + cos[(2/3) — (2/3)arccos((7/8)(| v(m)|/3)~*2)]}
for [vim)| > v
(11
0 for [v(m)| < v

v(x) denotes the amplitude of each position-coordinate vector x and v is a
pre-defined threshold value.
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EXAMPLE

We use one synthetic example and one field data example to demonstrate
the performance of the L,, norm regularizations for reconstructing missing
seismic data. Both synthetic and field data examples are based on 3D datasets.
We compare the L, norm regularization with both L, and L, regularizations.
We use the well-known iterative hard thresholding operator to enforce the L,
regularization and use iterative soft thresholding operator to enforce the L, norm
regularization. For choosing the threshold value, we use the percentile
thresholding strategy, assuming that a constant percentage of the coefficients in
the transformed domain are significant to represent the whole seismic records.
For the fair comparison, we choose the best results for each different
approaches. In order to numerically compare the reconstruction performance,
we define the signal-to-noise ratio (SNR) (Zhong et al., 2015) as:

SNR, = 10log,{[d.[3/ | d, - d,[3} . (12)
where d, = S™'m, is the reconstructed data after the n-th iteration.

The synthetic example is a post-stack 3D dataset, as shown in Fig. 1.
Fig.1a shows the original 3D synthetic data example, and Fig. 1b shows the
irregularly sampled data with 50% randomly missing traces. The synthetic data
contains three plane-wave components. We apply the L,,, regularization with its
fast solver onto the decimated 3D dataset and obtain the recovered data as
shown in Fig. 2c. As a reference, we also obtain the result by L, and L, regul-
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Fig. 1. Synthetic data example. (a) Original 3D synthetic data example. (b) Data with 50% randomly
missing traces.
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arizations with the traditional iterative soft and hard thresholding solvers and
show them in Figs. 2a and 2b. Fig. 3 shows the error sections for three
different approaches, after amplifying the error sections 20 times. It is obvious
that the L, regularization causes the least reconstruction error. It is apparent
that the L;, norm regularization can obtain the least reconstruction error, and
the L, norm regularized result seems to obtain the largest reconstruction error.
The SNRs of Figs. 2a, 2b, and 2c are 22.45 dB, 25.03 dB, and 28.21 dB,
respectively. The L, regularization obtains the highest SNR for the synthetic
example.
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Fig. 2. Reconstructed sections for the synthetic example using (a) L,-norm regularization; (b) L,-
norm regularization, and (c) L,,-norm regularization.
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Fig. 3. Error sections for the synthetic example (amplified 20 times) using (a) L,-norm
regularization; (b) Ly-norm regularization, and (c) L,,-norm regularization.

The field data example is a pre-stack 3D dataset coming from a 2D
survey. The original field data is shown in Fig. 4a and the decimated data with
50% traces randomly removed is shown in Fig. 4b. After using three different
regularization approaches, we can obtain the three reconstructed results as
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shown in Fig. 5. Fig. 6 shows the reconstruction error sections using three
different approaches. As we can see, the recovered data using L,,, regularization
is better than L, and L, regularizations, because of the more continuous
recovered events and less estimation error. The SNRs of Figs. 5a, 5b, and 5¢
are 10.77 dB, 11.53 dB, and 12.76 dB, respectively. The L,,, regularization still
obtains the highest SNR.

In the examples, we choose the 3D FFT transform as the sparsity
promoting transform. Please note that other sparsity-promoting transforms will
cause similar performance. We do not use local windows to process the data.
Although the plane assumption of the 3D FFT transform can be better satisfied
in local windows, processing in local windows lacks the global constraint since
FFT in local windows is more like a local transform. Since the difference
between the three regularization methods when using the fast iterative solvers
is just the thresholding function, the run time of the three methods are almost
the same.
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Fig. 4. Error sections for the synthetic example (amplied 20 times) using
(a) L1 norm regularization, (b) LO norm regularization, and (c) L1=2 norm regularization.
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True data

Fig. 5. Field data example. (a) Original 3D field data example. (b) Data with 50% randomly missing
traces.
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Lo norm

Fig. 6. Reconstructed sections for the field data example using (a) L,-norm regularization; (b) L,
norm regularization, and (c) L,,-norm regularization.
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Fig. 7. Error sections for the field data example using (a) L,-norm regularization, (b) L,-norm
regularization, and (c) L,,-norm regularization.
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CONCLUSIONS

Conventional L, and L, regularizations cannot obtain the optimal solutions
when applied to solve the seismic interpolation problem because of the NP-hard
difficulty of L, regularization and the non-optimal sparsity constraint of L,
regularization. We borrow the L;, norm regularization and its fast thresholding
solver from the signal-processing field and apply them onto the seismic
interpolation problem for reconstructing highly incomplete seismic data. The
performance on both 3D synthetic and field seismic data with 50% randomly
missing traces show very promising results. Compared with L, and L,
regularizations, the L, regularization can obtain obviously better result. The
fast iterative half-thresholding solver enforcing L,, regularization can be
conveniently used in the industry.
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