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ABSTRACT

Zhang, C. and Chen, L., 2016. A fourth-order Runge-Kutta method with eighth-order accuracy and
low numerical dispersion for solving the seismic wave equation. Journal of Seismic Exploration, 25:
229-255.

In this paper, we give a fourth-order Runge-Kutta method with the eighth-order accuracy and
low numerical dispersion for solving the seismic wave equation, which is called the ENAD-FRK
method in brief. We first give the theoretical deduction and stability conditions for this new method
in detail. And, we derive numerical dispersion relations of the ENAD-FRK method in 2D acoustic
case and compare numerical dispersions against the eighth-order Lax-Wendroff correction (LWC)
scheme and the eighth-order Staggered-grid (SG) finite difference method. Meanwhile, we compare
the memory requirement and the computational efficiency of the proposed method against the
eighth-order LWC scheme for modeling 2D seismic wave fields in a two-layer heterogeneous
acoustic medium. Last, we apply the ENAD-FRK method to simulate 2D seismic wave propagating
in a three-layer homogenous transversely isotropic elastic medium, a two-layer homogenous isotropic
elastic medium and a Marmousi model. Simulation results indicate that the ENAD-FRK method can
greatly save both computational costs and storage space as contrasted to the eighth-order LWC
scheme. Meanwhile, Both comparisons of numerical dispersion analysis and numerical experimental
results show that the ENAD-FRK method can effectively suppress numerical dispersion caused by
discretizing the seismic wave equation when too coarse grids are used against the eighth-order LWC
scheme and the eighth-order SG method.

KEY WORDS: Runge-Kutta method, NAD operator, seismic wave equation, numerical dispersion,
wave simulation.
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spatial derivatives included in the converted ODEs. Then, we derive stability
conditions for this new method in detail. Meanwhile, we deduce numerical
dispersion relations of the ENAD-FRK method in the 2D acoustic case and
compare the numerical dispersion against the eighth-order LWC scheme and the
eighth-order SG method. Last, we apply the ENAD-FRK method to simulate 2D
seismic wave propagating in a two-layered heterogeneous acoustic medium, a
three-layered homogenous transversely isotropic elastic medium, a two-layered
homogenous isotropic elastic medium and a Marmousi model. Numerical
simulation results show that the ENAD-FRK method can significantly reduce
numerical dispersion and greatly enhance simulation accuracy. It indicates that
the ENAD-FRK method can be used to simulate seismic wave-fields propagating
in complex medium and has great potentiality of application in seismology

exploration.
THEORY OF THE ENAD-FRK METHOD
The fourth-order Runge-Kutta method for solving ODE

Consider the following ordinary differential equation

du/dt = L(u) , 0]
where u = u(x,t), with x € R? denoting the space variable and t denoting the
time variable, and L(u) is a known function with respect to u. We can
numerically solve eq. (1) as an ordinary equation using the following

fourth-order Runge-Kutta method (Chen et al., 2010)

u? = u” + BLALLW") ,

u® = u" + BAL@EY) ,

1 (2)
u® = u” + AtLu®) ,
L "t = Ya(—u" + u® + 2u® + u®) + (1/6)AtLL@®) ,
where At is the time step, u” = u(nAt), u?, u®, and u® are intermediate

variables.

To save storage space and improve calculation speed, eliminating the
intermediate variables of u¥, u®, and u® in scheme (2), we can obtain the
computational equations as follows

u* = u” + LAtLQU") + %AeL2Qu") ,
3
u™t! = Ysu” 4+ BAL(U") + %su* + VsAtL(u*) + (1/6)AL2(u*)



232 ZHANG & CHEN

where u* is an intermediate variable, L2 = L-L.

Transformation of wave equations

In 2D anisotropic media, the seismic wave equations describing the elastic
wave propagation are given by

p(d%u/0t?) = (do;;/ox;) + £ , i =123 “4)
where the subscript j takes the values of 1 and 3, p = p(x,z) and ¢,; are the

density and stress tensor, respectively, u; and f; denote the displacement and the
force source component in the i-th direction.

Using the stress-strain relations, we transform eq. (4) into the following
vector equation

d?U/ot2 = D-U + F , @)
where U = (u,,u,,u,)", F = [(1/p)f},(1/p)f,,(1/p)f;]", and D is the second-order
partial differential operator. For examples, for the 2D homogenous isotropic
case, D, is defined by

A+2p 0 p & 0 A+p &
p ox* pot p OxOz
2 2
D, = 0 ﬁ[a—,+ 0 2] 0 ,
p\ox~ 0Oz
A+p & 0 ﬁ_&i+i+2,u ol
p  0Oxoz p ox? p o
and for the 2D transverse isotropic case D, is defined by
w0 w0 C3+Cy O
p o' p &t p  Oxoz
D2 = O .cﬁ_a_z__;.ﬁia_z 0
p o p o
Cyte, O Cy 00 &
p  OxOz p x> p oz

where N, u, ¢;; are the elastic constants.

Let w, = du/dt i = 1,2,3) and W = (w,,w,,w;)". Then eq. (5) can be
rewritten as
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au/ot = W
. (6)
dW/ot = DU + F
Let V. = (U,W)', then eq. (6) can be rewritten as follows
dV/ot = LV + F | )

0 T _
where L is the differential operator defined by L = [ j ,and F =
(0,F)". D 0 Jes

The ENAD-FRK method

Apparently, eq. (7) is a system of ODEs, which can be solved by the idea
of solving ODEs. So, we take the following two steps to solve eq. (7).

First, we use the local interpolation method (Yang et al., 2003) to
approximate the second- and third-order spatial derivatives of displacement u
and particle-velocity w, which are included in the right-hand side of eq. (7), by
the linear combinations of u, w, and their spatial gradients at the grid point (i,j)
and their neighboring grid points. These computational equations of the
eighth-order nearly-analytic discrete operator (Tong et al., 2013; Zhang et al.,

2014a,b) for approximating the second- and third-order derivatives are listed in
Appendix A for detail.

Second, after the high-order derivatives are discretized, eq. (7) is
converted to a system of semi-discrete ODEs with respect to t and can be solved
by the four-order Runge-Kutta method [egs. (3)]. In other words, we can apply
egs. (3) to solve the semi-discrete ODEs (7) as follows

VE = V' + BAIL(V"Y) + %ARLA(VY)

, (8)
Vi = V0 4 BAIL(VY) + 26V + VALL(VH) + (1/6)ARLA(V)

where At is time step, V* is intermediate variable, V" = V(nAt) and L2 = L-L.

Eqs. (8) are called the ENAD-FRK method in brief. Because of using the
Taylor series expansion, the errors of d™*u/dx™3z' 2 < m+/! < 3) are
O(Ax*+Az®) by using the interpolation equations presented in Appendix A. In
other words, the ENAD-FRK method is an eighth-order accuracy scheme in
space for the 2D case. When the fourth-order Runge-Kutta method is used to
solve the Hamiltonian system (7), the temporal derivative error should be
O(At"). Therefore, the theoretical errors of the ENAD-FRK method are
O(At + Ax®+ AZP).
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STABILITY CRITERIA

To keep numerical iterations stable, the temporal increment At must
satisfy the stability condition of the ENAD-FRK method. In the section, we
derive the stability conditions of the ENAD-FRK method for 1D and 2D cases.
Following the Fourier analysis and the analysis process proposed by Yang et al.
(2006), through a series of mathematical operations, we obtain the following
stability condition for the 1D homogeneous case (see Appendix B)

At < o, (h/c) = 0.69313(h/cy) , ©)

where h = Ax denotes the space increment, «,,, is the maximum value of the
Courant number defined by o = c,At/h with the acoustic velocity.

For the 2D homogeneous case, the stability condition of the ENAD-FRK
method under the condition h = Ax = Az is obtained (Appendix B) and is
identical to eq. (9).

As for the elastic case, it is usually complex to derive the exact or
analytical stability condition of a numerical scheme for elastic wave equations.
When the ENAD-FRK method is applied to solve the 2D elastic wave equation,
the stability condition can not be directly determined. But we estimate that the
temporal grid size should satisfy the following stability condition

At < At,,, =~ 0.693(h/c,,) , (10)

where t,,, is the maximum temporal increment that keeps the ENAD-FRK
method stable for the 2D case, c,,, is the maximum P-wave velocity, and h =
Ax = Az is the space increment.

NUMERICAL DISPERSION

In this section, we analyze the numerical dispersion relation of the
ENAD-FRK method for the 2D acoustic wave equation (see Appendix C),
following those methods proposed in references (Dablain, 1986; Vichnevetsky,
1979; Yang et al., 2012).

Dispersion relations (C-2) and (C-3) show that the numerical dispersion
of the ENAD-FRK method is a non-linear function of the propagation angle 6
and the Courant number «. Thus we choose wave propagating azimuths of § =
0°, 15°, 30°, 45° to investigate the effect of wave propagation directions on the
numerical dispersion for the 2D case and compare the ENAD-FRK method
against the eighth-order LWC method and the eighth-order SG method.
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Fig. 1 shows the variation of numerical dispersion errors along with the
sampling ratio S. The abscissa S = h/A denotes the spatial sampling ratio,
which shows the ratio of the spatial step h and the wavelength . Four curves
shown in Fig. 1 denote different propagation directions § = 0°, 15°, 30°, 45°,
respectively. The curves plotted in Figs. 1(a)-(b) are the numerical dispersion
ratio of the ENAD-FRK method for the Courant numbers 0.2 and 0.5,
respectively. From Figs. 1(a)-(b), we can observe that the ENAD-FRK method
has very small numerical dispersion. Figs. 1(c)-(d) and Figs. 1(e)-(f) give the
numerical dispersion curves of the eighth-order LWC method and the
eighth-order SG method, respectively. Compared with Figs. 1(a)-(b), the
numerical dispersion shown in Figs. 1(c)-(f) is more serious.

Table 1 shows that the maximum phase velocity errors of the ENAD-FRK
method, the eighth-order LWC method, and the eighth-order SG method for the
Courant numbers 0.1, 02, 0.3, 0.4, 0.5, and 0.6. The maximum dispersion
error of the ENAD-FRK method is less than 4%, whereas the eighth-order
LWC method is about 18.77% and the eighth-order SG method is about
22.96%. Table 2 gives the maximal difference of the numerical dispersion
between different propagation directions of the ENAD-FRK method, the
eighth-order LWC method, and the eighth-order SG method for the Courant
numbers 0.1, 02, 0.3, 0.4, 0.5, and 0.6. The maximal difference of the
eighth-order LWC method is about 16.07% and the eighth-order SG method is
about 29.41 %, while the ENAD-FRK method is less than 2 %. This implies that
the ENAD-FRK method has very small numerical dispersion and less numerical
dispersion anisotropy. In short, the ENAD-FRK method has much less
numerical dispersion than the eighth-order LWC and SG methods.

Table 1. The maximum dispersion errors in different wave propagation directions for different
methods.

Courant The ENAD-FRK The eighth-order LWC The eighth-order SG
0.1 0.024230 0.187670 0.178835
0.2 0.025160 0.185550 0.171797
0.3 0.028331 0.181909 0.159290
0.4 0.033784 0.176561 0.139844
0.5 0.037653 0.169181 0.110501

0.6 0.027902 0.159197 0.229598
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Fig. 1. Numerical dispersion ratios of the ENAD-FRK, the eighth-order LWC, and the eighth-order
SG for the Courant numbers 0.2 and 0.5, in four directions of § = 0°, 15°, 30°, and 45°.
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Table 2. The maximum differences of the maximum dispersion errors in different wave propagation
directions for different methods.

Courant The ENAD-FRK The eighth-order LWC The eighth-order SG
0.1 0.018076 0.157039 0.154933
0.2 0.017993 0.157563 0.159867
0.3 0.017744 0.158388 0.169268
0.4 0.017472 0.159410 0.185806
0.5 0.017875 0.160390 0.216831
0.6 0.012082 0.160734 0.294144

NUMERICAL EXPERIMENTS

In order to further investigate the computational efficiency and the
numerical dispersion of the ENAD-FRK method, we apply this method to
simulate 2D seismic wave-fields propagating in a two-layer heterogeneous
acoustic medium, a three-layer homogenous transversely isotropic elastic

medium, a two-layer homogenous isotropic elastic medium, and a Marmousi
model.

Two-layer heterogeneous acoustic model

In our first example, we choose a two-layer heterogeneous acoustic model
with varying velocities, which is shown in Fig. 2. The computational domain
is 0 < x,z < 25 km. The vertical interface is at a depth of 12.5 km. The
explosive source with f, = 28 Hz is at the centre of the computational domain.
The spatial increment and time step are h = Ax = Az = 50 m and At =
0.0025 s, respectively. The source function has the following expression

f(ty= —5.76f35[1 —16(0.6f,t—1)2] X exp[—8(0.6f,t—1)?] . (11)

Figs. 3a and 3b show the snapshots at T = 2.0 s on the coarse grid of Ax
= Az = 50 m, generated by the ENAD-FRK method and the eighth-order LWC
method, respectively. From Figs. 3(a,b), we can observe that the wave-fronts
of acoustic waves simulated by these two methods are basically identical, though
the computational cost of the ENAD-FRK method is more expensive than the
eighth-order LWC method for the same number of grid points because more
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variables including displacement, particle-velocity, and their gradients are
simultaneously calculated in the ENAD-FRK method. However, the snapshot
[see Figs. 3(a)] generated by the ENAD-FRK method has much less numerical
dispersion even though the spatial size is 50 m, whereas the eighth-order LWC
method suffers from serious numerical dispersion [see Fig. 3(b)]. It indicates
that the ENAD-FRK method can be used to simulate large-scale models with
coarse grids.

Distance (km)
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Fig. 2. Two-layer heterogeneous acoustic model with varying velocities.

For exactly eliminating the numerical dispersion, Fig. 3(c) generated by
the eighth-order LWC method shows the snapshot at T = 2.0 s under the same
Courant number with Figs. 3(a,b) and on a fine grid of Ax = Az = 25 m,
corresponding to the numbers of grid points of 1001 X 1001. While for the
same computational domain, the number of mesh points for the ENAD-FRK
method is only 501 X 501 on the coarse grid of Ax = Az = 50 m. As a result,
the memory requirement of the ENAD-FRK method is approximately 25.05%
of that of the eighth-order LWC method.
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Fig. 3. Snapshots of wave-fields at time 2.0 s, generated by (a) the ENAD-FRK (Ax = Az = 50 m),
(b) the eighth-order LWC (Ax = Az = 50 m), and (c) the eighth-order LWC (Ax = Az = 25 m).

Comparison between Fig. 3(a) and Fig. 3(c), demonstrates that our
proposed method can provide the same accuracy as the eighth-order LWC
method on a fine grid under the same Courant number. But their computational
costs are different. It took the ENAD-FRK method about 714 s to generate
Fig.3(a), whereas it took the eighth-order LWC method about 1801 s to
generate Fig. 3(c). It suggests that the computational efficiency of the
ENAD-FRK method is about 2.52 times of that of the eighth-order LWC
method on a fine grid to achieve the same accuracy without visible numerical
dispersion. Note that our all numerical experiments are performed on a 2-core
Pentium-4 computer with 2.33G memory.
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Three-layer homogeneous transversely isotropic model

In our second example, we select the elastic wave equations in a 2D
homogenous transversely isotropic medium as follows

p(0%u,/0t?) = ¢,,(0%u,/0X?) + C44(0%0,/022) + (Ci3+Cy4y)(0%u,/0x02) + 1, ,
(12)
p(02U3/0t2) = (Cy3tCyq)(0%u,/0X0Z) + C44(0%u5/3X2) + C45(0%u4/322) + 1, ,

where u,,u; denote the displacement components in the x- and z-directions,
respectively. ¢,;, 3, €33 and c,4 are elastic constants, p is the medium density,
f, and f; are the force source components in the x- and z-directions.

In this numerical experiment, we use a three-layer model with parameters of
elastic constants and medium densities given in Table 3. The model domain is
0 = x,z < 12 km. The explosive source f, = f; = f(t), of the Ricker wavelet
with a frequency of f, = 12 Hz is located at the centre of the computational
domain. The temporal and spatial increments are chosen at At = 2 ms and Ax
= Az = 40 m, respectively. The receivers R1 and R2 are (6 km, 6 km) and
(5km, 6km), respectively.

Table 3. Parameters used in a three-layer model.

Layer Thickness Cpy Ci3 c33 om P

(No.) (km) (GPa) (GPa) (GPa) (GPa) (g/em?)
1 4.0 45.0 9.6 37.5 12.0 1.0
2 4.0 32,5 7.5 19.5 6.5 2.0
3 4.0 40.8 13.2 50.6 25.0 4.2

Fig. 4, generated by the ENAD-FRK method, shows the snapshots of the
X- and z-directions displacement component at time T = 1.2 s. Fig.5, generated
by the ENAD-FRK method, shows the wave-fields seismograms of the
horizontal displacement component and the vertical displacement component at
receivers R1 and R2 from T = 0 to T = 1.2 s. From Figs. 4 and 5, we can see
that the ENAD-FRK method shows very clear results and has no visible
numerical dispersion. It suggests that the ENAD-FRK method can be efficient
to suppress the numerical dispersions and can provide the accurate results for
the elastic wave modeling in a three-layer homogeneous transversely isotropic
medium of the 2D case.



FOURTH-ORDER RUNGE-KUTTA METHOD 241

Distance (ki)

12

Depth (k)
Depth (km)

(a) horizontal displacement component (b) vertical displacement component

Fig. 4. Snapshots of elastic wave fields at time 1.2 s, generated by the ENAD-FRK method.

0.8 08
06 (@) Horizontal companent of A1 06 (b} Verical componant of R1
o4 04
02 02
] !
E 1] a 0
g =
k-]
8 02 & 02
g 04 E 04
2 2
0.6 06
o8 08
1 1
. s f . \ "

a 0z 04 06 0g 1 12 02 04 06 os 1 1.2

o
Tirr (s) Time (s)
[1:] T T T T T o8
od {e) Horizontal component of A2 | -
o4l . o4t
02 1 o2t
g 8
=
ICEL a g o
- <
i - b k
E 0z & 02
E o4 4 E 04t
z
086 s 06
o8 : o8t
al . 4t
s L L L s L L L s 4
o o2 04 a8 o8 1 12 o 02 o4 06 o8 1 12
Time () Tirme (g)

Fig. 5. Elastic wave fields seismograms generated by the ENAD-FRK method.
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Two-layer homogeneous isotropic model

In our third example, we choose the elastic wave equations in a 2D
homogeneous isotropic medium as follows

p(82u,/012) = (N+2)(92u,/0%2) + u(02u,/972) + (N+ p)(02u5/0x3z) + f,,
(13)
p(02u,/012) = (N +p)(320,/3%02Z) + p(d2,/9x2) + (N+2u)(92u,/022) + f,

where u,, u; denote the displacement components in the x- and z-directions,
respectively. A, u are Lamé parameters, p is the medium density, f; and f; are
the force source components in the x- and z-directions.

In this experiment, we simulate the elastic wave [see eq. (13)] propagating
through a two-layer homogenous isotropic medium for the 2D case. The size of
the computational domain is 0 < x,z < 9.6 km and the horizontal interface is
at the depth of z = 3.84 km. We take the Lamé parameters and densities of \,
= 1.12 GPa, p, = 2.592 GPa and p, = 1.8 g/cm’ in the upper part, and \, =
7.35 GPa, p, = 13.125 GPa and p, = 2.1 g/cm’ in the lower layer,
respectively. The explosive source, f; = f; = f(t), of the Ricker wavelet with
a frequency f, = 14 is located at O(4.8 km, 3.12 km). Spatial and temporal
increments are chosen as Ax = Az = 30 m and At = 0.0032 s.

Fig. 6 shows the snapshots of the x- and z-direction displacement
component at time T = 1.5 s, generated by the ENAD-FRK method, the
eighth-order LWC method, and the eighth-order SG method, respectively. From
Fig. 6, we can see that the results of the eighth-order LWC method (c, d) and
the eighth-order SG method (e, f) show serious numerical dispersion in the
low-velocity layer and at the strong interface, whereas Figs. 6(a,b) generated by
the ENAD-FRK method show very clear result and has no visible numerical
dispersion even for the large vertical velocity contrast. It demonstrates that the
ENAD-FRK method is very effective in suppressing numerical dispersion for

simulating the elastic wave propagation through a two-layer homogenous
isotropic medium of the 2D case.

Marmousi model

In the last numerical example, the Marmousi model shown in Fig. 7 is
chosen to demonstrate the performance of the ENAD-FRK method for the
complex heterogeneous case. As shown in Fig. 7, the wave velocity varies from
1.5 km/s to 4.0 km/s. We choose the temporal increment At = 0.001 s and the
spatial increment Ax = Az = 24 m, respectively. The number of mesh points
is 384 x 122. Hence, the computational domain of this model is 0 < x <
9.192 km and 0 < z < 2.904 km. The source with the frequency f, = 15 Hz



FOURTH-ORDER RUNGE-KUTTA METHOD

Distance (ki)

96

() horizontal displacement component

Distance (kin) e

(c) horizontal displacement component

0 Distance (k) o

Depth (ki)

(€) horizontal digplacement component

243

Distance (ki)

9.6

Depth (k)

(b) vertical displacement component

Distance (ki) -

Depth (kin)

(d) vertical displacement component

Distance (km) 5%

Depth (kin)

() vertical displacement component

Fig. 6. Snapshots of elastic wave fields for the two-layer model at time 1.5 s, generated by the
ENAD-FRK (a, b), the eighth-order LWC (c, d), and the eighth-order SG (e, f), respectively.
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is the same as that used in our first model, and is located at (x,z) = (4596 m,
24 m). In this example, the 2-times absorbing boundary condition presented by
Yang et al. (2002) is used to eliminate the reflections at the artificial boundaries.

Distance (km)

Fig. 7. The Marmousi model (The acoustic velocity varies from 1.5-4.0 km/s).

Fig. 8 displays the wavefield snapshots generated using the ENAD-FRK"
method at time T = 0.6 s, 0.9 s, 1.2 s and 1.5 s, respectively. In Fig. 8, these
snapshots are clean and have no visible numerical dispersion. It illustrates that
the ENAD-FRK method can effectively suppress numerical dispersion for the
complex heterogeneous case even with a large spatial increment. Meanwhile,
this numerical experiment also shows that the ENAD-FRK method has strong
adaptability even if the velocity varies from 1.5-4.0 km/s.

Distance (km)

(a) T=0.65

Distance (km) Distance (km)

Depth (km)

(c) T=1.28

Fig. 8. Snapshots of seismic wave fields for the Marmousi model at a time of T = 0.6s, 0.9s, 1.2
s, and 1.5 s, generated using the ENAD-FRK method.
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Fig. 9, generated by the ENAD-FRK method, shows a clear waveform
on the surface without visible numerical dispersion. The synthetic seismogram
is recorded from 384 receivers from x = 0 km to x = 9.192 km with spacing
of 24 m on the surface. This numerical result illustrates that it is efficient for
the ENAD-FRK method to combine with the 2-times absorbing boundary
condition (Yang et al., 2002). This experiment further indicates that the
ENAD-FRK method can be used to simulate seismic-wave propagating in
complex media.

Distance (km)

Fig. 9. Synthetic seismogram on the surface for the Marmousi model, generated by the ENAD-FRK
method.

CONCLUSIONS AND DISCUSSION

In this paper, we give the ENAD-FRK method with eighth-order accuracy
and low numerical dispersion for solving seismic wave equations. The partial
differential wave equations are first transformed into a system of ordinary
differential equations (ODEs), and then the time derivatives are approximated
using the fourth-order Runge-Kutta method, while the space derivatives are
calculated using the nearly analytic discrete operator with the eighth-order
accuracy. So the ENAD-FRK method is eighth-order accurate in space and
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fourth-order accurate in time. Because the approximating equations listed in
Appendix A are dependent on values of the displacement and the particle
velocity, together with their gradients, the ENAD-FRK method can effectively
suppress numerical dispersion using few sampling points per minimum
wavelength.

We derive the stability conditions of the ENAD-FRK method for solving
1D and 2D seismic equations (see Appendix B). Meanwhile, we deduce the
numerical dispersion relations of the 2D case (see Appendix C) and analyze
numerical dispersions. The maximum dispersion error of the ENAD-FRK
method is less than 4 %, whereas the eighth-order LWC method is about 18.77 %
and the eighth-order SG method is about 22.96%. The maximal difference of
the eighth-order LWC method is about 16.07% and the eighth-order SG method
is about 29.41%, while the ENAD-FRK method is less than 2%. This
comparison shows that the ENAD-FRK method has very small numerical
dispersion and less numerical dispersion anisotropy.

We compare the memory requirement and the computational efficiency of
the ENAD-FRK method against the eighth-order LWC scheme for modeling 2D
seismic waves fields in a two-layer heterogeneous acoustic medium. The
memory requirement of the ENAD-FRK method is approximately 25.05% of
that of the eighth-order LWC method and the computational efficiency is about
2.52 times of that of the eighth-order LWC method on a fine grid to achieve the
same accuracy without visible numerical dispersion.

Last, we apply the ENAD-FRK method to simulate 2D seismic waves
propagating in a three-layer homogenous transversely isotropic elastic medium,
a two-layer homogenous isotropic elastic medium and a Marmousi model. All
numerical experiments are performed on a 2-core Pentium 4 computer with
2.33G memory.

All numerical examples demonstrate that the ENAD-FRK method is more
efficient than the high-order methods such as the eighth-order LWC method and
the eighth-order SG method in suppressing the numerical dispersion. Simulation
results also show that the ENAD-FRK method has weak numerical dispersion
and high computational accuracy. It implies that the ENAD-FRK method can be
used to model seismic wave fields propagating in more complex medium and
has great potentiality of application in seismic exploration.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of
China (Grant Nos. 41464004 and 41230210) and the Science Foundation of the
Education Department of Yunnan Province (N0.20137152).



FOURTH-ORDER RUNGE-KUTTA METHOD 247

REFERENCES

Blanch, J.O. and Robertsson, A., 1997. A modified Lax-Wendroff correction for wave propagation
in media described by Zener elements. Geophys. J. Internat., 131: 381-386.

Chen, S., Yang, D.H and Deng, X.Y., 2010. An improved algorithm of the fourth-order
Runge-Kutta method and seismic wave-field simulation. Chinese J. Geophys. (in Chinese),
3: 1196-1206.

Dablain, M.A., 1986. The application of high-order differencing to scalar wave equation.
Geophysics, 51: 54-66.

Dong, L.G., Ma, Z.T., Cao, J.Z., Wang, H.Z., Gong, J.H., Lei, B. and Xu, S.Y., 2000. A
staggered-grid high-order difference method of one-order elastic wave equation. Chinese J.
Geophys. (in Chinese), 43: 411-419.

Kelly, K.R., Wave, R.-W. and Treitel, S., 1976. Synthetic seismograms: a finite-difference
approach. Geophysics, 41: 2-27.

Lax, P.D, and Wendroff, B., 1964. Difference schemes for hyperbolic equations with high order
of accuracy. Commun. Pure Appl. Mathem., 17: 381-398.

Moczo, P., Kristek, J. and Halada, L., 2000. 3D 4th-order staggered-grid finite-difference schemes:
stability and grid dispersion. Bull. Seismol. Soc. Am., 90: 587-603.

Moczo, P., Kristek, J., Vavrycuk, V., Archuleta, R.J. and Halada, L., 2002. 3D heterogeneous
staggered-grid finite-difference modeling of seismic motion with volume harmonic and
arithmetic averaging of elastic moduli and densities. Bull. Seismol. Soc. Am., 92:
3042-3066.

Saenger, E.H., Gold, N. and Shapiro, S.A., 2000. Modeling the propagation of elastic waves using
a modified finite-difference grid. Wave Motion, 31: 77-92.

Tong, P., Yang, D.H., Hua, B.L. and Wang, M.X., 2013. A high-order stereo-modeling method
for solving wave equations. Bull. Seismol. Soc. Am., 103: 811-833.

Vichnevetsky, R., 1979. Stability charts in the numerical approximation of partial differential
equations. a review. Mathemat. Comput. Simul., 21: 170-177.

Virieux, J., 1986. P-SV wave propagation in heterogeneous median: Velocity-stress finite-difference
method. Geophysics, 51: 889-901.

Wang, L., Yang, D.H. and Deng, X.Y., 2009. A WNAD method for seismic stress-field modeling
in heterogeneous media. Chinese J. Geophys. (in Chinese), 52: 1526-1535.

Yang, D.H., Chen, S. and Li, J.Z., 2007a. A Runge-Kutta method using high-order interpolation
approximation for solving 2D acoustic and elastic wave equations. J. Seismic Explor., 16:
331-353.

Yang, D.H., Liu, E., Zhang, Z.J. and Teng, J.W., 2002. Finite-difference modeling in
two-dimensional anisotropic media using a flux-corrected transport technique. Geophys. J.
Internat., 148: 320-328.

Yang, D.H., Peng, J.M., Lu, M. and Terlaky, T., 2006. Optimal nearly-analytic discrete
approximation to the scalar wave equation. Bull. Seismol. Soc. Am., 96: 1114-1130.

Yang, D.H., Song, G.J., Chen, S. and Hou, B.Y., 2007b. An improved nearly analytical discrete
method: an efficient tool to simulate the seismic response of 2-D porous structures. J.
Geophys. Engin., 4: 40-52.

Yang, D.H., Teng, J.W., Zhang, Z.J. and Liu, E., 2003. A nearly-analytic discrete method for
acoustic and elastic wave equations in anisotropic media. Bull. Seismol. Soc. Am., 93:
882-890.

Yang, D.H., Tong, P. and Deng, X.Y., 2012. A central difference method with low numerical
dispersion for solving the scalar wave equation. Geophys. Prosp., 60: 885-905.

Yang, D.H., Wang, N., Chen, S. and Song, G.J., 2009. An explicit method based on the implicit
Runge-Kutta algorithm for solving the wave equations. Bull. Seismol. Soc. Am., 99:
3340-3354.

Zeng, Y.Q. and Liu, Q.H., 2001. A staggered-grid finite-difference method with perfectly matched
layers for poroelastic wave equations. J. Acoust. Soc. Am., 109: 571-2580.



248 ZHANG & CHEN

Zhang, C.Y., Li, X., Ma, X. and Song, G.J., 2014a. A Runge-Kutta method with using
eighth-order nearly-analytic spatial discretization operator for solving a 2D acoustic wave
equation. J. Seismic Explor., 23: 279-302.

Zhang, C.Y., Ma, X., Yang, L. and Song, G.J., 2014b. Symplectic partitioned Runge-Kutta method
based on the eighth-order nearly analytic discrete operator and its wavefield simulations.
Appl. Geophys., 11: 89-106.

Zhang, Z.J., Wang, G.J. and Harris, J.M., 1999. Multi-component wave-field simulation in viscous
extensively dilatancy anisotropic media. Phys. Earth Planet. Inter., 114: 25-38.

Zheng, H.S,, Zhang, Z.J. and Liu, E., 2006. Non-linear seismic wave propagation in anisotropic
media using the flux-corrected transport technique. Geophys. J. Internat., 65: 943-956.

APPENDIX A
APPROXIMATION OF EIGHTH-ORDER DERIVATIVES

In order to obtain the approximation equations of eighth-order derivatives
in eq. (7), Tong et al. (2013) derived these approximate equations. For
convenience, here we present the approximation equations of the displacement
as follows:

92, /0x2 = (1/AX){(T/S)[U; 1, ] +(64/27) [0, ] =50,

+ (1/AX){(1/36)[(8U; 5 /%) = (3U; 45, /IX)] + (8/9)[(Bu,_, /%) — (D, SN}, (A-1)
92u,,/022 = (1/AZ2){(T/54) U)o+, o] + (6472 W)y +u, ] —5u, )

+ (1/A2){(1/36)[(3;_»/0Z) = (3U, 1 4,/9Z)] + (8/9)[(du;_,/02) — (U, ., /32)]} ,  (A-2)
0%, /0x3z = (T/216AXAZ)[W; 545 + Ujsapsz = Yogpss — Wagyoal

+ (16/2TAXAZ) [0y oy + Uippper — Wipper — Uiy k-1

+ (1/144AX)[(0u; 5 »/0Z) = (U1 +2/0Z) + (OU;_1 42/ 0Z) — (U1 _,/07)]

+ (1/144A2)[(3u;_ 2/ 0X) = (04 5 15/ 0X) + (0 45—/ 0X) — (O _5 4 42/ 0X)]

+ 29AX)[(0u;_ x-1/0Z) = (U, 41/02) + (U, 4 11/0Z) — (DUy4 -1 /02)]

+ (2/9A2)[(0;_ —1/0X) = (U4 41/0X) + (U4 -1 /0X) = (OU;_ 41 /0X)] , (A-3)
0w, /0x° = (1/AX°){ = (31/144)[u;_, , — 45, ] — (88/9) [, , — Uy, ]}

+ (AR = (1/24)[(u;_,/3%) +(3U; 5, /3X)] — (8/3)[(u;_ ,/3X) + (3u; 1, /X)]

—15(du;,/3x)} | (A-4)
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8w, /02° = (UAZ){~BUTAD)U;, ,—, o] — B8/~ 1]}
+ (UAZ){—~(1124)[(U5,_/82) + (00, 2/02)] — (B/3) (D, 1/02) + (B, /02)]
~15(u;,/02)} , (A-5)

0°0;,/0x3Z" = (31/864AXAZ)[U; 5440 — Wiyyy + Uiy —

i Uj_5 k42

+ 2u,, — PO
+ (4427AXAZ) Wiy jor = Woppoy + Wpgeoy = Ujoypey + 20
= 2u,,,]
— (V144AZ)[(3U;_pyo/3X) + (BUyy0000/0%) + (U;_342/0%)
+ (@35 2/%) — 2(0U5,5,/OX) — 2(3U,_,,/0X)]
— (AI9AZ)[(BU; 41/ X) + (B, 11 /OX) + (DU, 1 1/0X) + (DU 1 /0X)
— 2(0uy,,,/0%) — 2(3y;_, /3%)]
— (1/144AXAZ)[(Av;_, k—»/0Z) + (00,45 42/ 0Z) — (U _5 41,/ 0Z)
— (04 -,/02)]
— (419AXAD)[(BU_, —1/82) + (B, 1 1,/02) — (O, 4,/02)
— (U1, 02)] (A-6)
3;,/0x0z = (31/864AK*AZ) g 440 — Wgn + Wggss — Uiragea
+ 2uj,, — 20, 4 40]

+ (44127TAKAZ) [ jy = Ujoypmy + Wk — Y

] ivik-1 T 2uj,k—l

— 2uj,k+1]
— (1/144A5%)[(u; 5, »/3Z) + (BU494+2/02) + (U;_;,4,/02)
+ (0U)44-2/02) — 2(0U;44,/02) — 2(dy;,_,/32)]
— (4/9AXH) (AU, /02) + (B4 1 4 11/0Z) + (Y, 41/0Z) + (U4, - 1/02)

— 2(0y;41/92) — 2(du;_,/02)]
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— (1/144AXAZ)[(0U;_5 y 5/ 3X) + (U1 1/ 3X) = (OU; 5 42/ IX)
— (045 k—/9X)]
- (4/9AxAz)[(8uj_1_kfl/6x)+(auj+1'k+1/6x)—(8uj_1.k+1/éx)
— (U4 4 /X)) (A-T)

where Ax, Az denote the space increment in the x- and z-directions,
respectively.

Similarly, the corresponding computational equations related to the

particle-velocity v can be obtained simply by substituting u by v into
(A-1) ~ (A-T).

APPENDIX B
DERIVATION OF STABILITY CRITERION

1D case

To derive the stability criterion of the ENAD-FRK method for the 1D
acoustic case, we consider the harmonic solution of eq. (8). Substitute the
harmonic solution

[uf, (8u/0x)}, v}, (Av/0x)1"

= [u", (8u"/9dx), v", (8v"/3x)]"exp[i(w,,nAt + kjAX)] , (B-1)

into eq. (8) with the eighth-order derivatives, we can obtain the following
equations

[u™*, (@u™'/ax), v**1, (av*t/ax)]T = H[u", (du"/ox), v, (0v™/ax)]* ,  (B-2)
hll h12 h13 h14
h21 h22 h23 h24

where the amplification matrix is defined by H =
h31 h32 h33 h34

h41 h42 h43 h44
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hy, = (ia?/ht)[(176/9)sind + (31/72)sin26]
+ (io*/ht)[—(95489/1458)sind — (7001/1458)cosbsing
+ (43/162)sin360 + (589/93312)sin46] ,

hy, = —(@*/)[15 + (16/3)cosd + (1/12)cos26]

+ (o*/)[(27715/648) + (4357/162)cosd — (107/972)cos26
— (13/162)cos36 — (11/7776)cos40] ,
where o = cAt/Ax denotes the Courant number, § = kAXx, i = /—1.

From the amplification matrix H, we can numerically obtain the following
stability criterion of the ENAD-FRK method for the 1D case by solving the
eigenvalue problem |N\(H)| < 1 for all eigenvalues \(H), [ = 1,2,3,4,

o < o, = 0.69313 (B-3)

where o, denotes the maximum Courant number.

2D case

To obtain the stability condition of the ENAD-FRK method for the 2D
acoustic case, for simplicity we consider the harmonic solution of eq. (8) under
the condition Ax = Az = h. Substituting the solution

Ui, = Uexp{i[w,mnAt + k(jAx cosf + [Azsind)]} (B-4)

where

Ui, = [uf, (du/ax)7 , (0u/az)},, V1, (av/ax);} ,, (av/9z)} ] ,
U™ = [u", (0u"/9x), (0u"/dz), v", (3v"/9x), (ov"/az)] ,
into eq. (8) with relations (A-1) to (A-7), we can obtain the following equation
[u"*!,(3u"*!/9x),(0u"*/dz),v" !, (3v"*1/9x)]"
= GJ[u",(0u"/0x),(du"/dz),v",(av"/0x),(dv"/dz)]" . (B-5)

Due to the complexity of the elements g;; of the amplification matrix G,
here we only show the first row of G as follows
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g1 =1+ [=5 + (64/2T)cost + (7/54)cos2¢ + (64/2T)cosn
+ (7/54)cos2n]o? + [(849925/139968) — (31775/8748)cost
— (129059/559872)c0s2¢ + (223/8748)cos3E
+ (299/279936)cos4t — (11/2916)cos(£ —3n)
— (31/11664)cos(2£ —3n) — (2339/34992)cos(£ —31)
— (31/373248)cos(2£ —21) — (31/11664)cos(3% —21)
— (31/373248)cos(4£ —21) + (4129/4374)cos( —n)
+ (49/17496)cos2(£ —n) — (2339/34992)cos(2¢ —n)
— (11/2916)cos(3¢ —n) — (31775/8748)cosn
— (129059/559872)cos2y + (223/8748)cos3n
+ (299/279936)cosdn + (4129/4374)cos(£ +1n)
+ (49/17496)cos(2£ +21) — (2339/34992)cos(2£ +1)
— (31/373248)cos(4£ +21) — (11/2916)cos(3¢ +1n)
— (2339/34992)cos(£ +27) — (31/373248)cos(2£ +4n)
— (31/11664)cos(3¢+2n) — (11/2916)cos(£ +31n)
— (31/11664)cos(2¢ +3n)]a* |
g,, = iha?[—(8/9)sing — (1/18)cosésing] + iho*[(871/486)sing
+ (1301/46656)costsing — (13/1458)sin3t — (11/46656)sind¢
+ (1/972)sin(¢ —31) + (1/1944)sin(2¢ —37)
+ (133/5832)sin(¢ —27) + (1/62208)sin(2¢ —4n)
+ (1/1944)sin(35 —21) + (1/62208)sin(4¢ —21)
— (128/729)sin(¢ —n) — (7/23328)sin2(£ —7)

+ (157/5832)sin2E —n) + (1/972)sin(3¢ —n)



254 ZHANG & CHEN

— (128/729)sin(£ +n) — (7/23328)sin2(£ +1)
+ (157/5832)sin(2E +1) + (1/62208)sin(4£ +21)
+ (1/972)sin(3¢ +n) + (133/5832)sin(¢ +27)
+ (1/62208)sin(2¢ +4n) + (1/1944)sin(3¢ +27)
+ (1/972)sin(¢ +3n) + (1/1944)sin(2& +31)] |
g,; = iha®[—(8/9)siny — (1/18)cosnsing] + iha[(—1/972)sin(2¢ —n)
— (1/1944)sin(2& —31) — (133/5832)sin(¢ —21)
— (1/62208)sin(2& —4n) — (1/1944)sin(3& —21)
— (1/62208)sin(4¢ —21) + (128/729)sin(& —1)
+ (7/23328)sin2(¢ —n) — (133/5832)sin(2& —1)
— (1/972)sin(3¢ —n) + (871/486)sinn)
+ (1301/46656)cosnsing — (13/1458)sin3n
— (11/46656)sindn — (128/729)sin(£ +1)
— (7/23328)sin2(¢ +n) + (133/5832)sin(2¢ +1)
+ (1/62208)sin(4£ +21) + (1/972)sin(3 +1)
+ (157/5832)sin(¢ +2n) + (1/62208)sin(2¢ +41)
+ (1/1944)sin(3& +21) + (1/972)sin(% +37)
+ (1/1944)sin2& +37)] |
g =t + ta[—(5/3) + (64/81)cost + (7/162)cos2¢
+ (64/81)cosy + (7/162)cos2y]

g5 = itha2[—(8/27)sin — (1/54)sintcost] |

81 = itha2[—(8/27)siny — (1/54)sinycosn] ,

where Ax = Az = h, ¢ = khcosf, n = khsind, a = cyAt/h, i = +/—1. kcosf
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and ksing are the wave numbers, 6 is the wave propagation angle with respect
to the x-axis.

From the amplification matrix G, we can numerically obtain the following
stability criterion of the ENAD-FRK method for the 2D case by solving the
eigenvalue problem |A\(G)| < 1 for all eigenvalues \(G), [ = 1,2,...,6.

a < Qe =~ 0.69313 (B-6)

where «,, denotes the maximum Courant number.

APPENDIX C
DERIVATION OF THE NUMERICAL DISPERSION RELATION

To obtain the numerical dispersion relation of the ENAD-FRK method for
the 2D acoustic case, we consider the harmonic solution of eq. (8) while Ax =

Az = h and substitute the solution

n
Uj,[

Ulexp{i[w,mnAt + j(khAx cosf) + I(khsin6)]} (C-1)
where

Ui, = [uj,, (du/ox)},, (du/oz); , Vi, (@V/9X)} . (0v/0z)] )]

U% = [u, (au’/dx), (du’/az), v°, (av°/9x), (av°/dz)] ,

into eq. (8) with relations (A-1) to (A-7) to obtain the following dispersion
equation

Det(e" Iy — G) = 0 , (C-2)

where v = w,,,At, i = +/—1, G is the same as that presented in eq. (B-5) and
I is a sixth-order identity matrix.

For convenience, we suppose ¢, = w,./k, kK = 27/\, o = cAt/h, S =
h/\, £ = khcosf, and 7 = khsinf. By solving the dispersion eq. (C-2), we can
get the following ratio of the numerical velocity (c,,,) to the exact velocity (c,)

R = ¢ n/co = y2masS (C-3)

where v satisfies eq. (C-2), which is a nonlinear function with respect to « and
S.





