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ABSTRACT

Kang, S.-G., Ha, W., Shin, C., Hong, J.K. and Jin, Y.K., 2016. Frequency domain reverse time
migration for acoustic-elastic coupled media using the wavefield separation method. Journal of
Seismic Exploration, 25: 57-85.

Recent research results concerning frequency domain reverse time migration based on the
adjoint-state of the acoustic wave equation have highlighted several limitations imposed by the use
of an acoustic-based algorithm. In marine seismic exploration, targeted areas are located within
elastic media. Elastic wave components, such as S-waves, surface waves and mode converted waves
can remain obscured by reverse time migration based on the acoustic wave equation in the targeted
media. Several research papers addressing the topic of acoustic-elastic coupled media with full
waveform inversion have shown that this method can generate more accurate inversion results for
P-wave velocity models than acoustic-based algorithms. This paper formulates the frequency domain
reverse time migration for acoustic-elastic coupled media based on the adjoint-state of the wave
equation. It goes on to adopt the wavefield separation method to reduce the effects of crosstalk
artifacts on migrated images. The validity of the proposed algorithm is demonstrated using a
synthetic dataset generated by elastic staggered grid time modeling. The image of the frequency
domain reverse time migration for acoustic-elastic coupled media calculated using the wavefield
separation method is then compared to the results of the acoustic reverse time migration and reverse
time migration for acoustic-elastic coupled media using a conventional zero-lag cross-correlation
approach. Comparison of the migration images revealed that the images of acoustic-elastic coupled
media from the wavefield separation method resolved geological structures with greater accuracy and
exhibited fewer noise-contaminated components than those obtained from the acoustic and
conventional acoustic-elastic coupled media imaging methods. We also analyze the reverse time
migration method’s sensitivity to correct P- and S-wave inputs and density model assumptions.

KEY WORDS: frequency domain, reverse time migration, acoustic-elastic coupled media,
adjoint-state wave equation, marine seismic data, wavefield separation.
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INTRODUCTION

Migration methods are used in seismic data processing to obtain an
accurate image of subsurface geologic structure. Migration involves the
geometric repositioning of the return signals to detect where an event is being
hit by seismic waves rather than where the feature was originally sensed.
Seismic exploration is being applied to increasingly complex regions, which may
contain steep reflectors or sudden seismic velocity variation. The structure in
these regions requires further refinement of algorithms used to process and
interpret seismic data. Reverse time migration algorithms that use two-way wave
equations are appropriate for this application because they preserve the true
amplitude of seismic data and deal with multi-path and steeply dipping structures
(Whitmore, 1983; Baysal et al., 1983; McMechan, 1983; Loewenthal and
Mufti, 1983; Shin et al., 2001, 2003; Plessix and Mulder, 2004; Xu et al.,
2010; Kim et al., 2011; Lee et al., 2012). Shin et al. (2003) proposed reverse
time migration in the frequency domain using the adjoint-state of the acoustic
wave equation to improve computational efficiency. To enhance the resolution
of the migrated image, Kim et al. (2011) proposed a source wavelet estimation
method that was based on the full Newton method. Lee et al. (2012) introduced
the frequency domain reverse time migration using the L,-norm to minimize
outlier effects on seismic data.

Previously, marine seismic data were processed using acoustic-based
algorithms. As a result, elastic effects in marine seismic data, such as shear
reflections, mode-converted waves and amplitude-offset variations, are
neglected. Several lines of research regarding the wave propagation modeling
and full waveform inversion of acoustic-elastic coupled media have been
pursued to overcome the acoustic algorithm’s limitations in dealing with elastic
waves effects in marine survey data. Studies of acoustic-elastic coupled media
have used continuity conditions for the normal stresses and components of
particle velocity at the interface between acoustic and elastic media. Komatitsch
et al. (2000) proposed a spectral element approach, Zienkiewicz et al. (2005)
presented a finite element method and Lee et al. (2009) designed a
displacement-based finite difference method for wave propagation modeling.
Choi et al. (2008) and Kim et al. (2009) proposed the frequency domain full
waveform inversion for acoustic-elastic coupled media using a finite element
approach, and Bae et al. (2010) developed waveform inversion in the Laplace
domain for acoustic-elastic coupled media. Kang et al. (2012) proposed the
Laplace-Fourier domain full waveform inversion of acoustic-elastic coupled
media. These authors demonstrated full waveform inversion for acoustic-elastic
coupled media that used only the pressure field in marine seismic data. Their
approach generated inverted P- and S-wave velocity and density models,
including inverted P-wave velocity models superior to those generated by the
acoustic approximation method.
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In this study, we develop the frequency domain reverse time migration
method for acoustic-elastic coupled media in order to evaluate elastic wave
imaging of sub-marine geologic structure. We generate forward data for the
reverse time migration by performing finite element wave propagation modeling
for acoustic-elastic coupled media in the frequency domain. Next, we calculate
migration images for acoustic-elastic coupled media in the frequency domain
from zero-lag cross-correlation between the partial derivative wavefields of
acoustic-elastic coupled media with respect to the P- and S-wave velocities and
the observed seismic data. The migration images are effectively computed using
the back-propagation algorithm (Lailly, 1983; Tarantola, 1984; Pratt et al.,
1998). To eliminate crosstalk artifacts and noise in our migration images, we
employ the wavefield separation method (Chung et al., 2012) to separate the
pure P-wave migration image from the S-wave and other noise-contaminated
components in an acoustic-elastic coupled system. Our migration algorithm uses
the 2D isotropic elastic wave equation to describe the elastic effects of wave
propagation in the subsurface.

We also perform numerical tests on synthetic datasets to verify the
proposed reverse time migration algorithm. Modified elastic Hess and IFP/UH
Marmousi-2 models generated data that mimicked the geometry of a marine
survey using a time-domain staggered grid elastic modeling method (Symons et
al., 2006; Virieux, 1986). We present three types of migration images and
compare them in the Numerical Examples section below. A migrated seismic
image from the reverse time migration for acoustic-elastic coupled media using
the wavefield separation method is then compared with results of acoustic
reverse time migration and migration images from the reverse time migration
for acoustic-elastic coupled media using a conventional approach (without the
wavefield separation method). We also generated a migration image from
smoothed input models to evaluate the method’s sensitivity to model inputs,
namely their impact on the migration image from acoustic-elastic coupled media.

FORWARD MODELING OF ACOUSTIC-ELASTIC COUPLED MEDIA
USING THE FINITE ELEMENT METHOD IN THE FREQUENCY DOMAIN

For 2D marine seismic exploration, survey targets lie beneath the
seafloor. Fig. 1 shows a simple diagram of wave propagation for 2D seismic
surveys. In acoustic-elastic coupled media, wave propagation in the water
column occurs as longitudinal pressure variation, which is best described by the
acoustic wave equation. Wave propagation beneath the seafloor occurs as
particle displacements, which are best described by the isotropic elastic wave
equation. We applied wave propagation modeling for acoustic-elastic coupled
media using the finite element method to generate forward data for frequency
domain reverse time migration.
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Fig. 1. Diagram of the two-dimensional acoustic-elastic coupled media.

The Fourier-transformed acoustic wave equation is defined as follows:
— ()P = (0*p/ox?) + (3%plaz?) + (1)

where w is the angular frequency, p(x,z,w) is the Fourier-transformed pressure
field in acoustic media, c(x,z) is the P-wave velocity in the acoustic medium and
f is the source term.

For elastic media, the wave equation in the frequency domain can be
expressed as

—ppw?h = (3/3%)[(N + 2w)(30/3x) + N(37/92)]

+ (3/02){ul(09/0x) + (3h/dz)]}

2)
—ppw’¥ = (8/3x){u[(39/0x) + (0h/dz)]}

+ (8/02)[N@OR/3X) + (N + 2u)(3V/82)]

where pg(x,z) is the density, \(x,z) and w(x,z) are the Lamé parameters and
h(x z,w) and V(X,z,w) are the Fourier-transformed horizontal and vertical
displacements, respectively.

At the interface between acoustic and elastic media, the continuity
condition for the normal component of particle velocity (Zienkiewicz et al.,
2005) is
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Vpn = p,(h",%")n , 3)

where n is the unit normal vector from the interface, (h”,¥") denotes the second
derivatives of the horizontal and vertical displacements and p,(x,z) is the density
of the acoustic media. The stress continuity condition (Komatitsch et al., 2000)
can be expressed as

on = —pn , @)
where ¢ is the symmetric second-order stress tensor.

The Fourier-transformed wave equations and continuity condition for
acoustic-elastic coupled media are expressed in a matrix formulation with

stiffness and mass matrices of acoustic and elastic wave equations using the
finite element method as follows (Choi et al., 2008):

2 p f
KA+Q/CZMA pszQA pszQA P
[QE]T K}] __pEw?_MH KIZ ﬁ = 0 | (5)
i 21 2 _ 2ng2
[Q7] K K?-p.0'M . 0

where K* denotes a stiffness matrix for acoustic media, K'', K'2, K*' and K*
indicate the stiffness matrices for elastic media, M* designates a mass matrix for
acoustic media, M'! and M** are the mass matrices for elastic media and Q* and
Q° represent the interface boundary matrices in the respective acoustic and
elastic media. The term P is the frequency domain pressure field vector, h and
v are Fourier-transformed horizontal and vertical displacements (respectively)
in vector form for elastic media, and f indicates the source vector (pressure

field), which is generated by an air-gun at the upper surface of the water
column.

We simplify eq. (5) using the complex impedance matrix S by the finite
element method for acoustic-elastic coupled media:

Si =T, 6)

where 0 represents frequency domain wavefields for acoustic-elastic coupled
media, which consist of pressure fields and the vertical and horizontal
displacements. We apply a perfectly matched layer (PML) boundary condition
(Cohen, 2002) to eliminate reflection events from the left, right and bottom of
the model’s boundaries.
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observed seismic data as follows (Pratt et al., 1998; Shin et al., 2003):

Nshot Wax

U = L | Re{fi(SH)'a*(w)dw . (11)
0

s=1

We calculate the virtual sources of acoustic-elastic coupled media with
respect to the P- and S-wave velocities because they represent the most pertinent
elastic model parameters (Chung et al., 2012):

f, = —(3S/dVpu, , (12)
and
f,, = —(8S/Vs)i, , (13)

where f,, and f are the virtual source vectors of the P- and S-wave velocities,
respectively.

We can calculate the P- and S-wave migration images of acoustic-elastic
coupled media using the respective virtual source vectors as follows:

Nshot Winax
[V, = 5 Re{fT (ST)'d*(w)}dw | (14)
and
Nshot Winax
[V, = 5Re{ 1SN 1d%(w)}dw (15)

where [,], and [,], are the respective P- and S-wave migration images for the
acoustic-elastic coupled media.

The inverse of the pseudo Hessian matrix (Shin et al., 2001) can
compensate the imaging value of reverse time migration by multiplying the
imaging condition terms.

Wmax  Nshot Nshot

[¥l, = 50 [ s=ZlRe{F‘Ep(ST)‘lfi’;‘(w)} / [ ), Diag{F"F,} + xI]dw ,(16)

s=1
and

Wmax  Nshot Nshot

[¢15=5 [ZRe{ FT(S") ld*(w}/[ZDlag{F F.} + xl]do , 17)
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where F,, and F,, are the virtual source matrices, which consist of the virtual
source vectors f,, and f, at all grid points, respectively. Diag{F|(F,} is the
diagonal elements of the pseudo-Hessian matrix, and x is a damping factor (Shin
et al., 2001).

We can calculate P- and S-wave migrated images for acoustic-elastic
coupled media from marine seismic data by imaging conditions in eqs. (16) and
(17). Migrated images based on the 2-D isotropic elastic wave equation may not
resolve detailed geological structures however, because they contain crosstalk
artifacts. We adopt the wave separation method for acoustic-elastic coupled
media to reduce crosstalk effects in the elastic media. Chung et al. (2012)
proposed the wavefield separation method for elastic reverse time migration.
This method calculates elastic migration images by zero-lag correlation between
the decomposed virtual source and the decomposed backpropagated potential
wavefields using divergence and curl operators. Chung et al.’s (2012) approach
generates better images than those generated by conventional zero-lag
cross-correlation methods. Similar to elastic migration, our migration algorithm
calculates the P- and S-wave migration images using zero-lag cross-correlation
between the virtual source and back-propagated wavefield. Following the
wavefield separation method of Chung et al. (2012), we can rewrite the final
migration step applied to acoustic-elastic coupled media using the divergence
and curl operations as follows:

Wy Nshot

Wl = | [ X Re{(VF,)TV-(SH %))}
0 s=1
Nshot
/ [ Y. Diag{(V-F,)"(V-F,,} + xl]dw |, (18)
s=1
and

Wmax Nshot

W= § [ X Re{(VXF)TVx(SH) dw)]}
0 s=1

Nshot

/ [ Y, Diag{(V xF,)"(VXF,} + x1]dw . (19)

s=1

We thus obtain fully separated migration images of the P- and S-wave
velocities for acoustic-elastic coupled media.
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NUMERICAL EXAMPLES

In this section, we demonstrate our proposed migration algorithm using
the Hess and IFP/UH Marmousi-2 models. First, we compare the frequency
domain reverse time migration for acoustic-elastic coupled media and the
wavefield separation method with acoustic reverse time migration based on the
Hess model. To generate synthetic data, we employ elastic 2D staggered grid
time modeling using the first-order elastic wave equation (Symons et al., 2006;
Virieux, 1986). We modify the original elastic Hess models by including an
overlying water column of 400 m depth for a reverse time migration evaluation
of marine synthetic data. We use the first derivative of the Gaussian function
with a maximum frequency of 10 Hz to generate the source wavelet. Figs. 2a
and 2b are the P- and S-wave velocities of the Hess model, respectively, and
Fig. 2c is the density. We assume a 300-channel hydrophone streamer recording
pressure data over a grid of 20 m unit cells, with a source firing 385 shots at
40 m intervals and at typical marine seismic survey depths. The recording time
is 12 s. Fig. 3 shows the 151st-155th shot data, as generated and extracted from
synthetic data via staggered grid time modeling. When performing reverse time
migration, we assumed that the true P- and S-wave velocities and density values
are known. We performed frequency domain reverse time migration for acoustic
and acoustic-elastic coupled media using the conventional zero-lag
cross-correlation method [egs. (16) and (17)] and the wavefield separation
method [egs. (18) and (19)] for comparison. Fig. 4 shows the migration image
of the acoustic-based frequency domain reverse time migration. Figs. 5a and 5b
show the migration images of the P- and S-wave velocities, respectively, which
were calculated via the frequency domain reverse time migration for
acoustic-elastic coupled media using the conventional zero-lag cross-correlation
method. The comparison between the migration images of the acoustic based
algorithm (Fig. 4) and the P-wave image from the reverse time migration for
acoustic-elastic coupled media (Fig. 5a) demonstrates that the reverse time
migration image of acoustic-elastic coupled media can resolve more detailed
geologic structures, such as specific sediment layers and the boundary of the salt
body, than the migration image generated by the acoustic-based algorithm. In
addition, the reverse time migration for acoustic-elastic coupled media can
construct migration images of the S-wave velocity, although these images are
of a lower quality than P-wave velocity images. We used the wavefield
separation method to construct more high-resolution migrated images for
acoustic-elastic coupled media. Figs. 6a and 6b show the migration images of
the frequency domain reverse time migration for acoustic-elastic coupled media
using the wavefield separation method. Fig. 6a shows the migration image based
on P-wave velocity from a decomposed wavefield, as computed using the
divergence operation, while Fig. 6b shows a migration image based on S-wave
velocity from a decomposed wavefield, as computed using the curl operation.
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(©)

Fig. 2. Hess model: (a) P-wave velocity, (b) S-wave velocity and (c) density.



REVERSE TIME MIGRATION 67

Channels
00 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Time (sec)

10
1

12

Fig. 3. Synthetic Hess model data that were generated by a staggered grid modeling algorithm in
the time domain (151st-155th shot gathers).
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Fig. 4. Migrated image of the Hess model via acoustic-based frequency domain reverse time
migration.
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Fig. 5. Migrated images of the Hess model via the frequency domain reverse time migration for
acoustic-elastic coupled media using the conventional zero-lag cross-correlation method: (a) P-wave
migration image and (b) S-wave migration image.
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Fig. 6. Migrated images of the Hess model via the frequency domain reverse time migration for
acoustic-elastic coupled media using the wavefield separation method: (a) P-wave migration image
and (b) S-wave migration image.
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Comparison of these migration images with those rendered by the
conventional method (Fig. 5), shows that the wavefield separation method
represents geologic structure with greater sharpness and more detail. The lower
part of a salt body, sediment layers and fault boundaries are especially well
defined in the images calculated using the wavefield separation method. The
migration image based on wavefield separation and S-wave velocity shows a
more resolved salt dome boundary and sediment layers than the image generated
by conventional method. For a more detailed comparison, we examine the depth
profiles of the true P-wave velocity and each of the migration images in Fig. 7.
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Fig. 7. Depth profile of the Hess model and the migrated images: (a) depth-true P-wave velocity
profile, (b) depth-migrated image of the acoustic-based frequency domain reverse time migration,
(c) depth-migrated image of the frequency domain reverse time migration for acoustic-elastic coupled
media using the conventional zero-lag cross-correlation method and (d) depth-migrated image of the
frequency domain reverse time migration for acoustic-elastic coupled media using the wavefield
separation method.
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Fig. 7a depicts the depth-true P-wave velocity profile at 6 km, as
extracted from Fig. 2a. Figs. 7b, 7c and 7d show the depth-migrated profiles
at 6 km as calculated from migration images based on the acoustic-based
algorithm (Fig. 4), the acoustic-elastic coupled media from the conventional
zero-lag cross-correlation method (Fig. 5a) and the wavefield separation method
(Fig. 6a). Fig. 7a specifically notes geological structures detected from P-wave
velocities (1st-6th sediment layers and salt boundaries) for comparison among
the different migration image profiles. The migration image based on P-wave
velocity from the frequency domain reverse time migration for acoustic-elastic
coupled media using the wavefield separation method (Fig. 7d) consists of more
discrete imaging components and shows sedimentary features from 0.5 km to
1 km and the salt dome boundary from 1.5 km to 2.5 km more clearly than
images generated by the acoustic-based algorithm and the conventional zero-lag
cross-correlation method. The 6th geological layer beneath the salt body was
also well defined in images generated by the wavefield separation method but
not in those generated by the other two methods. Comparison of the migration
images and the depth-migrated profiles shows that the frequency domain reverse
time migration for acoustic-elastic coupled media can render geologic structures
in greater detail than the acoustic-based algorithm and requires a wavefield
separation method to construct accurate migration images.

We also calculated migration images using the IFP/UH Marmousi-2 model
(Martin et al., 2002), which includes various geological structures such as shale,
faults, a sand layer charged with natural gas, an unconformity, a gas and oil cap
along the bottom part of the model, and other features. Fig. 8 shows the
IFP/UH Marmousi-2 model assuming a water depth of 500 m. For this
migration test, we generated synthetic marine data using staggered grid
modeling based on the first-order elastic wave equation. The source wavelet is
the first derivative of the Gaussian function with a maximum frequency of 15
Hz. We assumed a 600-channel streamer to record data within a grid with a 10
m unit cell, and 802 shots at 20 m intervals discharged beneath the water’s
surface. The recording time is 12 s. Fig. 9 shows five shot gathers
(301st-305th), which were extracted from the synthetic data. First, we conduct
the migration test using the true P- and S-wave velocities and the density input
models following the previous Hess model case. Fig. 10 shows the migration
image of the acoustic-based algorithm. Figs. 11a and 11b show the migrated
images based on P- and S-wave velocities (respectively) from the reverse time
migration for acoustic-elastic coupled media using the conventional zero-lag
cross-correlation method. Figs. 12a and 12b show the migrated images based
on P- and S-wave velocities as calculated from the reverse time migration for
acoustic-elastic coupled media using the wavefield separation method. The
migration image based on P-wave velocity from the acoustic algorithm (Fig. 10)
reveals the location and shape of an anticline, but offers only limited resolution
for the interior of the anticline. However, the migration image based on P-wave
velocity (Fig. 11a) according to the reverse time migration of acoustic-elastic
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Fig. 8. IFP/UH Marmousi-2 model: (a) P-wave velocity, (b) S-wave velocity and (c) density.
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coupled media using the conventional zero-lag cross-correlation method resolves
the interior of the anticline in greater detail compared to the migration image
from acoustic reverse time migration. The migration image based on the P-wave
velocity from the reverse time migration for acoustic-elastic coupled media using
the wavefield separation method (Fig. 12a) represents the anticline in greater
detail and with sharper lines indicating sedimentary layers, as compared to the
migration image generated by the conventional acoustic-elastic coupled method
(Fig. 11a). Although the migrated S-wave image is not as accurate as the
P-wave image, the wavefield separation method constructs better S-wave
migration images (Fig. 12b) than the conventional algorithm (Fig. 11b). Fig. 13
shows depth profiles for the true P-wave velocity and each migrated P-wave
image at 10.8 km. Fig. 13a shows the depth-true P-wave velocity profile, Figs.
13b, 13c and 13d depict the depth-migrated image profiles based on migrated
images of the acoustic-based algorithm (Fig. 10), the conventional
acoustic-elastic coupled algorithm (Fig. 11a) and the wavefield separation
method (Fig. 12a), respectively. Compared with the profile from the true model,
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Fig. 9. Synthetic IFP/UH Marmousi-2 model data generated by a staggered grid algorithm
(301st-305th shot gathers).
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Fig. 10. Migrated image of the IFP/UH Marmousi-2 model via acoustic-based frequency domain
reverse time migration.

(b)

Fig. 11. Migrated image of the I[FP/UH Marmousi-2 model via the frequency domain reverse time
migration for acoustic-elastic coupled media using the conventional zero-lag cross-correlation
method: (a) P-wave migration image and (b) S-wave migration image.
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upper geologic structures (1st and 2nd layers) are well defined in the image
calculated from reverse time migration for acoustic-elastic coupled media using
the conventional zero-lag cross-correlation method and the wavefield separation
method. The acoustic-based reverse time migration method however does not
reveal accurate geologic structures in the upper parts of the target model. In
addition, the acoustic image also does not render the substructure below 2 km
depth (3rd-7th layers). The P-wave image of the acoustic-elastic coupled media
from the conventional algorithm does not clearly show the substructure below
2.5 km (5th-7th layers) in the depth-migration image profile because the image
consists of low values at boundaries of geologic structures. The depth-migration
image profile of the acoustic-elastic coupled media from the wavefield
separation technique (Fig. 13d) however, accurately describes the positions of
the subsurface geologic structures with more discrete signal events for the entire
target model.

(b)

Fig. 12. Migrated image of the IFP/UH Marmousi-2 model via the frequency domain reverse time
migration for acoustic-elastic coupled media using the wavefield separation method: (a) P-wave
migration image and (b) S-wave migration image.
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We performed migration tests for 2 types of synthetic data, which were
generated via staggered grid time modeling with the Hess and IFP/UH
Marmousi-2 models. The frequency domain reverse time migration for
acoustic-elastic coupled media could then reconstruct geological structures with
greater accuracy compared to the acoustic-based migration algorithm, especially
for deeper areas of the target model. We furthermore confirmed that the
wavefield separation method is necessary to calculate the migration image for
acoustic-elastic coupled media.
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Fig. 13. Depth profile of the IFP/UH Marmousi-2 model and the migrated images: (a) depth-true
P-wave velocity profile, (b) depth-migrated image of the acoustic-based frequency domain reverse
time migration, (c) depth-migrated image of the frequency domain reverse time migration for
acoustic-elastic coupled media using the conventional zero-lag cross-correlation method and (d)
depth-migrated image of the frequency domain reverse time migration for acoustic-elastic coupled
media using the wavefield separation method.
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Fig. 14. Smoothed IFP/UH Marmousi-2 models (smoothing parameter = 20). (a) P-wave velocity,
(b) S-wave velocity and (c) density.
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(b)

Fig. 15. Migrated image of the smoothed P- and S-wave velocity and density models via the
frequency domain reverse time migration for acoustic-elastic coupled media using the wavefield
separation method: (a) P-wave migration image and (b) S-wave migration image.

We also performed additional migration tests with IFP/UH Marmousi-2
synthetic data to examine the sensitivity of results to the input models for
acoustic-elastic coupled media. For these tests, we used IFP/UH Marmousi-2
models smoothed using the Seismic Unix software system’s smooth2 function,
set with a smoothing parameter of 20 (Fig. 14). Figs. 15a and 15b show
migrated images from the reverse time migration for acoustic-elastic coupled
media using all smoothed input models. Figs. 16a and 16b show the migrated
images of the reverse time migration for acoustic-elastic coupled media using
the true P-wave velocity model with smoothed S-wave velocity and density
models. Fig. 17 shows the migrated images of the reverse time migration for
acoustic-elastic coupled media using the true S-wave velocity model with
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smoothed P-wave and density models. Fig. 18 shows the migrated images of the
reverse time migration for acoustic-elastic coupled media using the true density
model with smoothed P- and S-wave velocity models. Comparison of the
migration images (Figs. 15, 16, 17 and 18) shows that reverse time migration
for acoustic-elastic coupled media requires accurate models for imaging. The
P-wave velocity model is the most important factor in calculating migration
images because migrated images, which are calculated from the true P-wave
velocity with smoothed S-wave and density input models, provide the best
migration image (Fig. 16). According to the migration images in Fig. 16, the
accuracy of the P-wave velocity model affects the P- and the S-wave migration
image. An accurate S-wave model does not improve the quality of the migration
images (Fig. 17). An accurate density model does improve image quality but is
inadequate and limited to the P-wave image (Fig. 18).
Distance (km)
8 10

(b)

Fig. 16. Migrated image of the true P-wave velocity and smoothed S-wave velocity and density
models via the frequency domain reverse time migration for acoustic-elastic coupled media using the
wavefield separation method: (a) P-wave migration image and (b) S-wave migration image.
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(b)

Fig. 17. Migrated image of the true S-wave velocity and smoothed P-wave velocity and density
models via the frequency domain reverse time migration for acoustic-elastic coupled media using the
wavefield separation method: (a) P-wave migration image and (b) S-wave migration image.

CONCLUSIONS

We described a reverse time migration for acoustic-elastic coupled media
in the frequency domain to examine elastic wave effects in marine seismic data,
including shear reflections and mode-converted waves. Reverse time migration
was used to generate both P- and S-wave images, in keeping with methods for
full waveform inversion of acoustic-elastic coupled media. We then applied a
wavefield separation method based on the decomposed wavefield, which was
used in the elastic medium to improve the fidelity of the migrated image. We
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compared the results of our migration algorithm for acoustic-elastic coupled
media that used the wavefield separation method to images generated by the
conventional zero-lag cross-correlation method and the acoustic approach using
synthetic datasets that were generated by elastic staggered grid time-domain
modeling. The numerical results demonstrated the applicability of the wavefield
separation method for use in acoustic-elastic coupled media and for generating
P-wave migration images more accurate than those generated by the acoustic
migration algorithm.

(b)

Fig. 18. Migrated image of the true density and smoothed P- and S-wave velocity models via the
frequency domain reverse time migration for acoustic-elastic coupled media using the wavefield
separation method: (a) P-wave migration image and (b) S-wave migration image.
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For a more detailed comparison, we examined the depth profiles of the
true velocity for each type of migration image. The depth-migration image
profiling of acoustic-elastic coupled media from the wavefield separation
technique accurately detected the position of subsurface geologic structures with
discrete signal events throughout the entire target model. These numerical tests
show that the frequency domain reverse time migration for acoustic-elastic
coupled media can more accurately image geologic structures than the
acoustic-based migration algorithm, especially in deeper areas of the target
model. The wavefield separation method plays an important role in generating
migration images from acoustic-elastic coupled media.

We also examined the images’ sensitivity to the subsurface models using
the IFP/UH Marmousi-2 model. The results demonstrated that a correct P-wave
velocity model is more important than a correct S-wave velocity. Reverse time
migration images for acoustic-elastic coupled media strongly depend on accurate
density estimates.

The frequency domain reverse time migration for acoustic-elastic coupled
media with wavefield separation method can be used in prestack depth migration
for field data. Future studies will focus on the application of our reverse time
migration to field data from extreme environments, such as Antarctic region,
Arctic permafrost, and containing steep reflectors or sudden seismic velocity
variation.
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ABSTRACT

Daley, P.F. and Krebes, E.S., 2016. A linearized group velocity approach for two-point gP ray
tracing in a layered orthorhombic medium. Journal of Seismic Exploration, 25: 87-101.

_Using a linearized approximation for the quasi-compressional phase velocity, v in an
orthorhombic anisotropic medium, which is a subset of the related quasi-compressional (qP) wave
propagation in a general 21 parameter anisotropic medium, a linearized compressional group velocity
may be derived as a function of group angles only. In addition, linearized analytic expressions for
the components of the slowness vector in terms of group velocities and angles are also obtained.
These expressions are used to define two nonlinear equations which are a generalization of Snell’s
Law. The solutions of these are used to determine the propagation directions of the reflected and
transmitted rays due to an incident ray at an interface between two orthorhombic media. The axes
of anisotropy, in both media are, in general, not aligned with the interface separating them.
Computer code has been written to consider ray tracing in media defined by a type of large scale
3D finite element blocking (blocky structures). However, a plane parallel layered medium will be
used in preliminary investigations. Additionally, in each of these elements (layers) the anisotropic
parameters are initially assumed to be constant, although provisions for at least minimal spatial
variations of the anisotropic parameters have been considered.

KEY WORDS: orthorhombic media, two-point ray tracing, group velocity,
layered anisotropic media.

INTRODUCTION

In the geophysical literature related to wave propagation in anisotropic
media, specifically quasi-compressional qP waves in a medium displaying
orthorhombic symmetry, a linearized approach to derive an approximate phase
velocity expression for quasi-compressional qP wave propagation has been
presented in Backus (1965) and more recently by PSencik and Farra (2005).

0963-0651/16/$5.00 © 2016 Geophysical Press Ltd.
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These and other methods, such a perturbation theory, have been employed
to formulate expressions for quantities related to the propagation of qP waves
as well as for the two shear wave modes, gS; and gS,, in a general 21 parameter
anisotropic medium (Every, 1980; Every and Sachse, 1992; Jech and PSencik,
1989; PSencik and Gajewski, 1998; Song and Every, 2000; Song et al., 2001;
Psencik and Farra, 2008). Once linearized phase velocity approximations have
been obtained, eikonal equations with comparable accuracy may be written.
From these, using the method of characteristics, (Courant and Hilbert, 1962;
Cerveny, 2002) the formulae for the vector components of group velocity may
be obtained.

Employing an extension of this method of approximation, Daley and
Krebes (2006) obtained expressions for the qP group velocities in an
orthorhombic anisotropic medium, expressed in terms of group angles. It was
further shown that for a weakly anisotropic medium the average deviation of this
approximation from the exact expression for the qP group velocity, in an
orthorhombic medium, over a range of polar angles for a number of azimuths,
®, was of the order of a few percent, for media that could be classified as
weakly anisotropic. The expression for the qP group velocity was also compared
with the linearized qP group velocity expressions obtained using the First Order
Ray Tracing (FORT) method presented in P3en¢ik and Farra (2005), with
similar accuracy, for an orthorhombic medium. For this reason it was chosen
for use in preliminary ray tracing procedures where speed, together with
reasonable accuracy, was required.

It will be convenient to first consider the case where the anisotropic
parameters and orientation of anisotropy are assumed constant within any finite
element. What is required to be determined is an analogue of Snell’s Law at the
plane interface between two adjacent elements. Within the context of
"two-point" ray tracing this topic will be treated in what follows for an
orthorhombic anisotropic medium.

THEORETICAL BACKGROUND

The linearized quasi-compressional (qP) phase (wavefront normal)
velocity, v p(n,), in an orthorhombic medium may be written in Voigt notation,
where the density (p) normalized stiffness coefficients, A, i=GCiip, (1, =
1,2,...,6) have the dimensions of velocity squared, as

Vép(nk) = A“nf + Apnj + Ayn; + E,ninj + E13n%n% + Eypmni , (1)

n = (n;,n,,n;) = (sinfcose,sinfsing,cosd) )
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(Backus, 1965; Daley and Krebes, 2006) where (6,¢) are the polar and
azimuthal angles associated with the phase or wavefront normal velocity, Vp.
The E;; are the anellipsoidal terms, specifying the deviation of the slowness or
ray surface from the ellipsoidal in the "i j" symmetry plane, (ij = 12,13,23).
Their definitions are as follows

Ejp, = 2(A + 2A4) — (A + Ayp) 3)
E13 = 2(A13 + 2A55) - (Au + A33) s 4)
Eyy = 2(Ay + 2A4) — (Ay + Ay) . ®)

These expressions may be compared to those given for an arbitrary anisotropic
orthorhombic medium and presented in Gassmann (1964) or Schoenberg and
Helbig (1996) as an indication of the how linearization simplifies the phase
velocity expression.

The 3D phase velocity propagation direction vector, n, is defined by
€q.(2). The related slowness vector in terms of these quantities is of the form

P = (P1,p2P3) = {[nl/qu(nk)]7[n2/VqP(nk)],[n’j/qu(nk)]} . (6)

It was shown in Daley and Krebes (2006) that the slowness vector p, for
the gP case may be further approximated for the linearized case and written in
terms of group velocity quantities, those being the azimuth and polar ray angles
$ and O, and the group/ray velocity, V,(0,9), as

P = (p1,P2sps) = {[NIVqP(Nk)/AM]s[N2VqP(Nk)/A22]’[N3VqP(Nk)/A33]} . (7)
In the above N is the orthonormal group (ray) vector defined by
N = (N;,N,;,N;) = (sinOcos®,sinOsin®,cos0) . (8)

It is along the ray that energy propagates from one point in a medium to
another. The linearized group velocity expression for a qP ray in an
orthorhombic medium is given by the formula

[1/VE(NY] = (N/A;) + (NY/Ayp) + (NY/As)

- (E12N%N§/A11A22) - (ElaN%Ng/AnAaz) - (E23N%N§/A22A33) > )

with the E;; being previously defined in egs. (3)-(5). Eq. (9) may be expressed
in terms of (6,9) using eq. (8).
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As the slowness vector p = (p;,p,,ps) is assumed to be known, the sines
of the group angles (¢, = sin©, & = sind) will be used as an alternate
parameterization of group velocity and related quantities. In the ellipsoidal case
(E;;, = E;5; = E3 = 0) & and &, may be obtained analytically as

&1 = (p/py)[(cos?®/AT) + (sin*®/A3,)]™"/A%,

X {1l + (p,/ps)’[(cos?®/AT)) + (sin®®/A%,)]"'/AL} ™, (10)
and

£, = (App/A;p)/[1 + (Ayp)/A;p)T* . (11)
The radial component of the slowness vector, p, ,is defined as
p. = (pi + p)”* . (12)

The relationship between the phase angles (6,¢) and the group angles
(6,9) in the ellipsoidal case are calculated by equating individual components
in egs. (6) and (8) which are used to derive eqs. (10)-(12).

SNELL’S LAW ANALOGUE

Given a three dimensional slowness surface that may be rotated at any
orientation with respect to the model axis system, it would be expected that
Euler Angles be introduced. However, as one of the motivations for this work
is to introduce 3D ray tracing in an orthorhombic anisotropic medium in the
simplest possible manner, this will not be done. When more complex ray tracing
methods (comparatively) are addressed, such as FORT, this will be necessary.
As the slowness vector in terms of phase angles and velocities is not used here,
one level of theoretical and numerical complexity has been removed, allowing
for the subsequent formulation.

Two orthorhombic media in welded contact are separated by a plane
boundary with the axes of anisotropy in both the upper (1) and lower (2)
medium being aligned with some Cartesian model coordinates system within
which the plane boundary is parallel to the horizontal (x,,x,) model coordinate
plane. As previously mentioned, this is a very simplistic problem type, but once
solved may be extended to more complex geometries with minimal effort.

Given that the incident ray angles (0,,9;,) are known it is required to
determine the ray angle and magnitude of the ray velocity for either the
reflected ray in the upper medium or the transmitted ray in the lower medium.
Specifically, the two horizontal components of the slowness vector, p, = (p,,p,)
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at the point of incidence at an interface, measured with respect to the model
coordinates, are required to be determined. Once this is done, the third
component of the slowness vector, p;, follows. It has been initially assumed that
the plane interface is aligned with the model coordinate axes as are the qP
slowness surfaces in both media. As a consequence of these assumptions, the
projections of the slowness surface onto the p;p; and p,p; planes may be
realized. From eq. (7), the continuity of the horizontal components of the
slowness vector may be stated in terms of (£,,£,) by the two equations

Fi¢.6) = pAy — £ - g%)%vqp(fl’fz) =0, (13)
Fy(£1,8) = pAy — §16,Vp(§1,8) =0 . (14)

These coupled nonlinear equations are required to be solved numerically.
For coupled equations of this type Newton’s Method, or some variant, would
be a reasonable choice as a solution method, the standard formulation of which
is given here for completeness,

£ = & — Fk(£1’£2)[gk(£1’$2)]-1 s (15)

where £k = (El?EZ)T’ Fk(£1’£2) = [F1(219$2)7F2(81,22)]E and the Jacobian
$(€1,€,), is defined as

dF,/3¢,  OF,/0%,
gk(sufz) = . (16)
dF,/08, OF,/dL, |,

Its inverse is given by

dF, /08,  —0F,/0%,
[$(&1LED]7! = (1/Dy) . (17)
—0F,/0¢,  dF,/0f, |,

D, = [(0F,/0£,)(9F,/0%,) — (OF,/0¢,)(OF,/0&))], . (18)
The superscripts "T" and "—1" indicate transpose and inverse, respectively.

The partial derivatives of F(g;,g,),(j = 1,2) with respect to £, and £,
analytic expressions for the partial derivatives of Vee(§1,€,) with respect to £,
and £, are given in the Appendix. The initial "guesses" for the two components
of the quantity £, may be found using the ellipsoidal (degenerate) egs. (10) and
(11). Once &£ = (£,,£,) has been determined to within a specified tolerance, the
group velocity and as a result, the three components of the slowness vector in
the medium of reflection or transmission, may be determined using eqs. (7).
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SNELL’S LAW ANALOGUE AT A PLANE INTERFACE WHERE THE
AXES OF ANISOTROPY ARE NOT ALIGNED WITH THE INTERFACE

For this problem, it is assumed that the slowness vector p, relative to the
model coordinates is known. To solve the problem, that is to determine the
polar ray angles (O,%) relative to the model coordinates, the angles in the
rotated system (B’ = O+y, &' = ®+{) must be determined, under the
assumption that the polar and azimuthal rotation angles (v,¢{) are also known.
The primed angles define the slowness vector, p’, in the rotated coordinate
system and the angle pair (v,{) specifies the relationship between (0,%) and
©',9").

With p;, = (p;,p;) known, a system of nonlinear equations in terms of §;
and &; is required to be determined where

I

¢l = sin(@+7y) = sin®’ (19)
and

&) = sin(®+¢) = sind’ . (20)

The following nonlinear system is, apart from the "primed" notation, the

same as that for the unrotated (unprimed) case and may be solved in a similar
manner.

Fi(€1,6) = piAn — Ve@LEDEI(L — £9)" =0, 02y
Fo(61.82) = prAy — V(€1.E0)E1E = 0 . (22

What is required to solve this system using numerical methods is initial
estimates for £ and &;. This, as previously done, may be accomplished by
assuming the ellipsoidal case and solving for (&Denp. and (&3)eyp. using the
sequence of eqgs. (10)-(12) in the "primed" system. As the system of nonlinear
equations above is essentially the same as the unrotated problem, the solution
for this case follows.

Once (£1,¢;) has been determined, the three components of the slowness
vector in the primed system may be obtained. Given that the vector p’ is
known, p may be obtained using the inverse of the rotational transforms given
by egs. (19) and (20).

It should be noted that the orientation of the local vertical axis in both
slowness space and ray space must be taken in the proper sense as a reflected
and transmitted ray and slowness vertical component of each individual vector
have different signs. It is often better to do away with the signs and measure the
angles as acute with respect to either the positive or negative direction of the
vertical axis and one of the horizontal axes in model coordinates.
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RAY TRACING METHOD

Assume a medium composed of N plane parallel homogeneous anisotropic
layers where both the source and receiver are located at the surface. The source
is situated at the origin of a Cartesian system aligned with the plane layered
medium, with the vertical Cartesian axis, X5, chosen to be positive downwards.
A description of unconverted qP ray propagation is given by the two coupled
nonlinear equations in terms of £, and &, as

M
R0k = rl1-@)1* — ¥ {nlhE)!1-E]1M1-ED!1")
j=1
M
=Y (nthy(E) - ED M- ()% = 0, (23)
j=1
M
Ry(£1,6) = t(E) 1w — L {nlhi(E) 1 (ED L —(ED)'1%)
j=1

M
=Y i) E)IT-(ED'H = 0, (24)
j=1

where M(M < N) is the deepest layer traversed by the ray. The integers n; are
the number of P-ray segments in the j-th layer, with the superscripts "*" and
"V" indicating whether the ray segment(s) are upward or downward
propagating. As upward and downward propagating ray segments within a layer
do not generally make the same angle with vertical or horizontal axes they are
considered separately. The thickness of the j-th layer is taken to be h,. What
should be noted in eqs. (23)-(24) is that there are no "primes" on the £, (i =
1,2). However, they are implied by the use of the "*" and "{" notation. The
angle @, [(£,)!(1—(£3)!,p)"] is the angle measured in a positive (clockwise)
direction relative to the x, axis from the source to a receiver on the surface at
r = (x},x5), withr = |r|.

Embedded in these two equations are the two coupled nonlinear equations
for the analogue of Snell’s Law discussed in an earlier section. Thus, this
"two-point" ray tracing scheme is quite computationally intensive. The method
or methods used in the solution of these numerical problems include those of
Newton among others. The technique chosen is usually based on previous
experience. It should however be capable of dealing with more complex
situations, a detail to be kept in mind when devising the ray tracing code. In the
next section examples will be presented.

Finally, the traveltime along the ray may also be written in terms of the
sines [(£)]'(1 = 1,2), j=1, M) of the angles O}, &', j=1, M) as
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M
AEN I (EDT] = Xonih/{l — [E)EVRAVIED (D))
j=1

+

™=

nih/{1 — [E)FYPYVIED.ED] . (25)

j=1

COMMENTS ON THE SOLUTION AND NUMERICAL RESULTS

The problem discussed here may be approached in a number of ways,
depending on what the ray tracing code is being used for. It will be assumed
that ray tracing for the purposes of synthetic seismogram production,
Born-Kirchhoff migration or some related task is being considered.

The 3D ray tracing algorithm for qP rays in an orthorhombic anisotropic
medium is reasonably complex. However, for it to be used in a productive
manner, a relatively sophisticated model building program is an essential
addition. In 2D, a grid with all of the anisotropic parameters, together with
other required quantities, could be specified at each node of this grid. At
present, a realistic 3D grid is not an option unless top level computer hardware
is available. Few persons would have access to this current generation of "super
computers”. A reasonably fast laptop with 2 - 4 gigabytes of memory should be
adequate if the model is specified as a "blocky type structure", composed of
slabs or wedges or other similar types of constituents, separated by plane
interfaces. For some applications these interfaces may be smoothed, but the ray
tracing program should be written to handle jump discontinuities in the
anisotropic parameters defining each of the blocks in the model. Although these
types of model building programs exist, obtaining a freeware type is not as easy
as might be expected. Those which are in the public domain usually require
more than a minimum of effort to be of use for an existing ray tracing program.
It is highly advisable to choose and become acquainted with one of these and
then proceed to write the ray tracing code. It should not have to be mentioned
that the possibility of errors in these types of codes is high. Additionally, the
known 3D model building software requires at least one, usually two, licensed
numerical software packages, which introduces more inconveniences. If
alternatives in the public domain are used to replace the equivalent of the
licensed packages, integrating these into the model building code can produce
another source of error as well as an increased development time. This leaves
the preferable option of spending the time to write one’s own (not an
insignificant undertaking).

The ray tracing described here is computationally fast. Most of the time
required is iterating to a solution, which increases if bad initial guesses are used.
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Consequently, shooting the initial ray of a linear sequence at near vertical
incidence is done followed by considering a line of receivers, increasing in
distance at polar angle increments from the origin, at a constant azimuth. This
is applicable to both offset shooting and shooting to some reference depth.

In the first example considered here a plane layered three layer model is
used. The surface layer is chosen to be isotropic. Layer two has an
orthorhombic type structure similar to olivine, with the third layer being an
orthorhombic sandstone type medium. In layer 2 the symmetry axes are not
aligned with "model coordinates" but rather rotated about the vertical axis by
an angle "® = 30°", measured from the positive x;-axis. In the third layer,
a rotation of the ray (slowness) surface(s) of "O,, = 15°" about the x,-axis is
introduced.

Two-point ray tracing which varies somewhat from that described in the
text is first considered. Rather than solve for ©]' and ®}*, (j = 1,2,3), the
parameters used are e}* (G = 1,2,3) and offset. This was done so that the Pt
(G = 1,2,3) could "float" to provide an indication of how the azimuthal rotation
in the second layer affects the arrival at the surface receivers, which are a fixed
distance apart. Put another way, what is done here is to keep the azimuthal

phase angle constant for a given ray, maintain a constant receiver spacing and
solve for the polar ray angle.

Three views of this is given in Fig. (1). The scale varies along all axes
in the figure to produce plots that are easily viewed. It should be noted that
proper ray 3D plotting software could significantly enhance the presentation of
results. A similar plot for a number of azimuths is given in Fig. (2). Again, the
ray azimuthal angles, in each layer, along each ray, are not used as solution
parameters. The anisotropic parameters used are given in Tables 1 and 2. Next,
a ray tracing problem is considered in which the polar and azimuthal ray angles
in each layer and along each ray, together with the distance between the surface
located source and receivers are required to satisfy certain conditions. This is
the type of ray tracing which was discussed in this paper. Upon viewing Fig.3,
where results are presented for this case, it may be seen that the progression of

the receiver location describes a straight line from the source to the furthest
offset.

An alternate example uses the same model as in the previous case and the
"two-point" ray tracing described in the text is used. Here a number of azimuths
are chosen and the rays are computed from a source located at the surface down
to some reference depth (Fig. 4). The motivation for this is that there are
occasions in seismic processing when a "time to depth" map is useful. If the
coverage is sufficient the computed data may be used in migration programs.
Usually, the coverage must be enhanced which may be done using any number
of methods or strategies. The pursuit of these is beyond the scope of this work.
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Fig. 1. Three layer model. The first layer is isotropic, the second layer is orthorhombic with a
rotation in the x - y plane about the z-axis and the third layer is also orthorhombic with a rotation
in the x - z plane. The line shot is very close to two-point ray tracing, requiring some minor
tweaking. The analogue of Snell’s Law at an interface is a system of two coupled nonlinear equation
in two unknown angles (sines of the transmitted or reflected angles). The x- and y-axes in the three
panels have different scaling to enhance the effects of the rotations of the orthorhombic ray surfaces.
The line is shot at an angle of 70 degrees with respect to the x-axis. The modified two-point ray
tracing algorithm consists of two coupled nonlinear equations in two unknown angles per layer in
which is embedded the other nonlinear equation set for Snell’s Law. Different scaling parameters
are used on three panels to improve visibility.
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Table 1. The anisotropic parameters (density normalized stiffnesses) in the three layers in Voigt
notation. The A,; have the dimensions of velocity squared (km?/s?).

Ay Ap Ay Ay Ass Ag  Ap Ap Ay
7.00 7.00 7.00 250 250 250 2.00 2.00 2.00
9.900 6.023 7.093 1.964 2.448 2.438 1.926 2.074 2.225

10.00 9.84 594 200 1.60 2.18 3.60 225 240

Table 2. The anellipsoidal parameters in the three layers. The E;; have the dimensions of velocity
squared (km?/s?) and are defined in terms of the A, ; using egs. (3)-(5) in the text.

E, E;; E;
0.0 0.0 0.0
-2.319 —3.053 —0.81
-3.92 —5.04 —2.98

, 5
p g
25 0 ! x(®=0)

Fig. 2. Three layer model. The model used is the same as that in Fig. 1, except that a number of

quasi-azimuthal lines are displayed. The modified ray tracing procedure using the polar angle © and
a fixed distance between adjacent receivers are again used as the dependent variables.
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Fig. 3. Three layer model. The model used is the same as that in Fig. 2, except that the polar angle
© and azimuthal angle ® are used as the dependent variables. The surface receivers for some
azimuthal line are now in a straight line at the surface.

CONCLUSIONS

The basic formulae and solution method for tracing quasi-compressional
(gP) rays in a plane layered orthorhombic anisotropic medium where the axes
of anisotropy (polar and azimuthal) in any of the layers may be rotated with
respect to the general Cartesian coordinate system have been presented. A
linearized form of the P ray velocity is used for this. Proceeding in this manner
removes one "level" of nonlinear equations. Included in this discussion is a
presentation of an analogue of Snell’s Law for reflected and transmitted rays at
an interface separating two layers. In general, the "two-point" ray tracing
problem consists of two nonlinear equations (Snell’s Law) embedded in two
nonlinear (qP) ray tracing equations. Writing the shear ray velocities as is done
for the qP group velocity does not present itself in a manner as that for the gP
case. Obtaining accurate group velocity expressions for the two possible shear
wave modes is also a fairly complex undertaking.
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Fig. 4. Three layer model. In this case what is wanted is time to some reference depth. A sampling
of three azimuths are shown. The anisotropic parameters describing the layers are given in Tables

1 and 2.
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APPENDIX
PARTIAL DERIVATIVES OF THE GROUP VELOCITY

The partial derivatives of the functions F,(¢,,£,) = and F,(¢,,&,) with
respect to sin®@ = £, and sin® = £, are given by

[0F,(§,,6))/0¢,] = — {(1 —gg)vzvqp(fl’gz)

+ 21(1_E%)Vz[avqp(fpgz)/a&]} d (A-1)
[0F,(§,,£,)/0¢,] = _{[5152/(1_E%)%]qu(gl,gz)
= E(1-£)"[0Vp(£1,£)/08,]} (A-2)

and

[0Fy(§1.862)/081] = —{& V(61,80 + E5:[0Vep(€1,£2)/0811} (A-3)
[0Fy(£1,£2)/08] = —{&Vep(§1.82) + £16[0Vp(E1,62)/08,]} (A-4)

The partial derivatives of the group velocity, Vp(£,,£,), with respect to
¢, and &, are obtained using the following sequence of steps:

O/EN/ V(1 ED] = —[2Vep(£1,2)0V o1, £2)/0%1/ Vip(£1,E))

= _[2quP(E1,52)/6&]/\/31)(&1752) ’ (A-5)

[0Vep(§1.£)/08] = —[Vap(E1,£)/2100/08)[1/Vip(E1,6D] (A-6)

O/OE)1/Vip(E 1 E] = 26{(1—ED/AL + E/Ay — 1Ay

— 2E 81851 - ED/A LAy

— Eu(1-£)(1-2ED/AnAs;

— Exfi(1-28)/AnAs} (A-T)
(/05 )[1/Vep(E1, 6] = 286{—EV/A + E/Ay — Epti(1-£)/AA,

+ EpflE)/AnAy + Eptl(1—£D/A Ay

- Ezsf%(l“f%)/AzzAw} . (A‘S)





