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ABSTRACT

Liu, W., Cao, S., Liu, Y. and Chen, Y., 2016. Synchrosqueezing transform and its applications in
seismic data analysis. Journal of Seismic Exploration, 25: 27-44.

Time-frequency representation has been widely used in seismic data analysis because it can
reveal a lot of information hidden in the seismic amplitude profiles. The short-time Fourier
transform and wavelet transform are two popular methods to decompose a signal from time domain
to time-frequency domain. However, the applications of both approaches are limited due to the
trade-offs between time and frequency resolutions. The synchrosqueezing transform (SST) is a
wavelet-based time-frequency reassignment method, which can produce an improved time-frequency
resolution. In this paper, we extend the application of SST to hydrocarbon detection, ground roll
suppression and random noise attenuation. In hydrocarbon detection, the SST shows high resolution
in both time and frequency dimensions than continuous wavelet transform (CWT), which facilitates
a better delineation of the location of low-frequency anomalies more clearly. In ground roll
suppression, the SST performs better than the commonly used high-pass filtering and f-k filtering
which damages the seismic reflections more or less. In random noise attenuation, the SST can be
significantly more effective in both the removal of random noise and the preservation of useful
reflection events compared with f-x deconvolution.

KEY WORDS: synchrosqueezing transform, hydrocarbon detection, ground roll suppression,
random noise attenuation, continuous wavelet transform.
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INTRODUCTION

Time-frequency decomposition maps a 1D signal in the time domain into
2D image in time-frequency domain, which can characterize the local
time-frequency properties and instantaneous frequency. As a powerful tool for
the analysis of seismic data, time-frequency decomposition has been widely used
in seismic data processing and interpretation. A widely used approach of
time-frequency decomposition is the short-time Fourier transform (STFT)
(Allen, 1977) which generates a localized time-frequency representation of a
time series by applying the Fourier transform over a chosen time window
(Gabor, 1946). However, the predefined window length limits the
time-frequency resolution of STFT (Cohen, 1995). An alternative is the wavelet
transform (WT) which applies the Fourier transform in small window to achieve
a local time-frequency representation (Chakraborty et al., 1995). Unfortunately,
a single scale encompasses a frequency band and is inversely proportional to the
time support of the dilated wavelet. Moreover, it cannot be directly compared
with other local time-frequency analysis methods. The S transform (Stockwell
et al., 1996) is a combination of STFT and WT, it not only eliminates extra
requirement of fixed window length for STFT but also is characterized by
multi-resolution analysis of WT. Wigner-Ville distribution (Jeffrey, 1999; Wu
et al., 2010) and Cohen distribution (Cohen, 1966) have higher time-frequency
resolution, but the existence of interference or the cross-product terms limits
their application. Matching pursuit (Mallat, 1993; Wang, 2007; Zhang et al.,
2010) is another time-frequency analysis method which obtains time-frequency
representation by decomposing a seismic trace into a series of wavelets that
match its time-frequency signature. Despite its higher time-frequency resolution,
it suffers from the expense of huge computational cost due to the redundancy
of atom library. Portniaguine and Castagna (2004) described seismic signal
spectral decomposition as an inverse problem, which produces solutions with
better time and frequency resolution. Yuan and Wang (2013) proposed a sparse
Bayesian learning reflectivity inversion in the Fourier domain to produce a
super-resolution reflectivity, which can be used to effectively detect the
boundaries of layers. Han and van der Baan (2013) presented the instantaneous
spectra combined with Empirical Mode Decomposition (EMD), which facilitates
the interpretation of reservoir thickness.

Synchrosqueezing transform (SST) (Daubechies et al., 2011) is an
approach originally introduced in the context of audio signal analysis
(Daubechies, 1996). It is a wavelet-based time-frequency representation and has
a firm theoretical foundation. Meanwhile, the SST is also an adaptive and
invertible transform that improves the readability of a wavelet-based
time-frequency map (Li and Liang, 2012). Li and Liang (2012) proposed a
generalized SST and it was used to extract a simulated gearbox fault signature
from a noisy signal and detect gearbox faults. Meignen (2012) presented a novel
algorithm based on SST and applied it to sampling and denoising of
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multicomponent signals. Thakur et al. (2013) implemented SST to examine
characteristics of a key paleoclimate change in the last 2.5 million years, which
contributes to our understanding of the link between solar forcing and climate
response on very long time scales. Herrera (2014) employed SST to depict
amplitude variations of channel and fault on horizontal slices, which is helpful
to calculate subtle thickness variations. Wang (2014) introduced SST to the
channel and subtle fault characterization which is helpful in more accurately
locating the various reflections and facilitating further interpretation. Chen
(2014) applied SST to detecting anomalies of high-frequency attenuation and
deep-layer weak signal. Herrera (2015) utilized SST to achieve the separation
and identification of P- and S-waves with subtly different frequency contents in
the time-frequency domain. Chen (2015) applied SST in delineating the
karstification of the Boonsiville field, Texas.

In this paper, we show the further application of SST in seismic data
analysis including hydrocarbon detection, ground roll suppression and random
noise attenuation. The paper is arranged as follows: the theory of SST and the
principles of hydrocarbon detection, ground roll suppression and random noise
attenuation are introduced in the second section. In the next section, we utilize
a non-stationary synthetic example to show the high resolution of SST in both
time and frequency compared with CWT. In order to further demonstrate the
applicability of SST in the seismic data processing and interpretation, field data
examples are also presented. The advantage of SST is highlighted in comparison
with CWT in hydrocarbon detection. For ground roll suppression, we make a
comparison between the SST and other two conventional approaches. Then the
SST and f-x deconvolution are used to attenuate random noise and their
performances are evaluated. The last section presents the conclusions which
indicate that the SST is a promising tool for time-frequency analysis, including
hydrocarbon detection, ground roll removal and random noise attenuation.

THEORY
Synchrosqueezing transform

The CWT is defined as the inner product of the family of wavelet y, (t)
with the signal f(t), which can be formulated as

Wf (a7b) = (f(t)v‘//a,b (t)>

= 5 f(t)(1//a)y*[(t—Db)/aldt , (1)

where y* is the complex conjugate of ¥, b is the time shift and a is the dilation
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parameter or scale. W, (a,b) are the wavelet transform coefficients representing
a concentrated time-frequency map, which is used to extract the instantaneous
frequency (Daubechies et al., 2011).

Daubechies et al. (2011) found that there is a physical limit to reduce the
smearing effect in the time-frequency representation by the CWT. According to
Plancherel’s theorem (energy in the time domain equals energy in the frequency
domain), eq. (1) can be rewritten as:

Wi (a,b) = (1/27) s (I a)fE)*@g)e M dt @)

where ¢ represents frequency, and 1,@(2) is the Fourier transform of £(t).
Besides, the frequency of the wavelet ¢ is modified by the scale a. Also, b is
represented by its Fourier pair e/,

In the frequency dimension, if the wavelet \,Z*(E) is concentrated around
its central frequency £ = w,, then W;(a,b) will be concentrated around the scale
a = wy/w (the ratio of the central frequency of the wavelet to the central
frequency of the signal). However, the wavelet transform W;(a,b) often spreads
out over a region around the scale a = wy/w on the time-scale dimension. If the
smearing along the time dimension can be neglected (Daubechies and Maes,
1996), the instantaneous frequency w;(a,b) can be computed as:

w(a,b) = —j[W;(a,b)]7'(3/ab)W; (a,b) . €)

The information from the time-scale dimension is transferred to
time-frequency domain because the (b,a) is converted to [b,w;(a,b)]. W;(a,b) is

computed only at discrete values a,, with a, — a,_, = Va,, and its
synchrosqueezed transform T; (w,b) is determined only at the centres w, of the
frequency range [(w, — Vw/2),(w, + Vw/2)] with w, — w,_; = Vo:

Trwb) = (Vo) Y Wi@.bai*Va, . @

a:|w(a,b)—w,| Vw2

Eq. (4) shows that the new time-frequency representation T; (w,b) is only
synchrosqueezed along the frequency axis (Li and Liang, 2012).

The SST is invertible and the reconstruction of the original signal from
the synchrosqueezed transform T; (w;,b) can be expressed as:

fb) = Re[C;' | W, (a,b)a""da]
0
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~ Re[C;' Y. W, (a,b)a;>Aa]
k

Il

Re[C;' Y, Ty (wpb)Aw] . (5)
!

where C, = 2 S @*(E)(df/é) and C, is dependent on the selected wavelet.
0

Instantaneous spectral analysis

The high-frequency components of seismic waves decays rapidly as
seismic waves propagate due to the presence of oil and gas, which results in
low-frequency shadows on seismic section. This low-frequency anomaly is
usually employed to detect hydrocarbon reservoir, for which the accuracy of
time-frequency decomposition is vitally important. The SST provides good
time-frequency resolution and is therefore effective in detecting low-frequency
shadows caused by hydrocarbon reservoir. We use the Morlet mother wavelet
to perform time-frequency decomposition based on eq. (4), and then the
instantaneous spectra are extracted to exhibit the low-frequency anomaly
associated with hydrocarbon reservoir.

Time-frequency filtering with the SST

Time-frequency filter has been widely applied to attenuate the ground roll
components (Askari and Siahkoohi, 2008). According to the information
obtained from the SST of seismic data, we can design an effective
time-frequency filter. This process can be expressed as:

y(t) = SST YSST[f()IH(,D} , (6)

where SST and SST™' denote synchrosqueezing transform and inverse
synchrosqueezing transform, respectively. H(t,f) is the time-frequency filter,
which generally is designed as eq. (7) based on the difference between seismic
signals and ground roll in time-frequency map.

1 f € [fit)-B)/2, f(t)+B(t)/2]
H(t,f) = , (7
0 others

where f; (t) is the instantaneous frequency of seismic signals, B(t) is the
bandwidth of time-frequency filter.



32 LIU, CAO, LIU & CHEN

Threshold denoising

The wavelet threshold denoising algorithm has been adopted as a
successful method, which has several merits such as convenient and efficient
calculation and better performance for components with low SNR. In the paper,
eq. (8) is served as threshold function to attenuate random noise combined with
the SST.

R Sgn(sz,f)(‘st,f| - a)\) ‘St,f| = A\

Sl,f = > (8)

0 IS;¢] <A

where « determines the threshold function type: hard threshold (« = 0) or soft
threshold (o« = 1). A\ denotes the threshold and is expressed as:

A = +/Qlogn) o, , 9)

where n is the number of time samples and ¢, is the noise standard deviation
and can be estimated by (Herrera, 2014):

0, = 1.4826 median{|W;(a, ,b) — median[W;(a ., ,b)]|} , (10)

where W (a,, ,b) are the wavelet coefficients at finest scale and 1.4826 is a
normalizing factor.

EXAMPLES
Synthetic data

In order to demonstrate the effectiveness of SST in seismic data analysis,
we first test the SST with a non-stationary synthetic signal (Fig. 1). For
comparison, the time-frequency representation based on CWT is also applied to
this data. This signal is comprised of a constant 20 Hz sine wave from 0 to 1s,
a 10 Hz cosine wave from 1 to 2 s, a 100 Hz Morlet wavelet at 0.6 s, a 45 Hz
zero-phase Ricker wavelet at 1.4 s and a 70 Hz 180° phase shifted Ricker
wavelet at 1.8 s.

Both CWT and SST are applied to the synthetic data, respectively.
Time-frequency representations based on CWT and SST are shown in Figs. 2(a)
and 2(b), respectively. It can be seen that the CWT can reveal all components
in synthetic signal but the time-frequency resolution is poor especially for the
frequency resolution of the Morlet wavelet and two Ricker wavelets. In contrast,
the SST shows an enhanced time-frequency resolution. It is also obvious that the
SST produces sparse time-frequency map and all components in the synthetic
signal are depicted well compared with CWT.
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Fig. 1. Synthetic example: 20 Hz sine wave from 0 to 1 s, 10 Hz cosine wave from 1 to 2 s, 100
Hz Morlet wavelet at 0.6 s, 45 Hz Ricker wavelet at 1.4 s and 70 Hz Ricker wavelet at 1.8 s.
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Fig. 2. Time-frequency representation of the synthetic data. (a) CWT result, note that the frequency
resolution is poor, especially for the Morlet wavelet at 0.6 s, the Ricker wavelets at 1.4 s and 1.8s.
(b) SST result, showing an enhanced time and frequency resolution.

Fig. 3(a) shows the reconstructed signal from SST, from which it can be
observed that the SST has a perfect reconstruction. The reconstruction error is
shown in Fig. 3(b). It is obvious that the reconstruction error is very close to

Zero.
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Fig. 3. Reconstructed signal (a) and reconstruction error (b). Note that there is no observable
difference between reconstructed signal and original signal, and the reconstruction error is
approximately zero.

Hydrocarbon detection

In this section, we apply the SST to a field data and compare the
performance with that of the CWT. Fig. 4 is real seismic data that shows bright
amplitude (white ellipse), indicating a known hydrocarbon zone. We take the
trace No. 20 shown in Fig. 5 as a single-trace example. The time-frequency



SYNCHROSQUEEZING TRANSFORM 35

representations corresponding to CWT and SST are shown in Fig. 6. It can be
seen that both of them indicate the strong low-frequency anomaly, but the SST
exhibits a sparser image and cleaner representation owing to the higher
time-frequency resolution.

Time(s)

Fig. 4. Real seismic data. Bright amplitudes indicated by a white ellipse is a known hydrocarbon
zone.

Amplitude

35 36 37 38 39 4 4.1 42 43 44 45
Time(s)

Fig. 5. Individual trace at No. 20 in Fig. 4.
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Fig. 6. No. 20 time-frequency representation from (a) CWT and (b) SST. Both of them indicate the
strong low-frequency anomaly around 4.0 s, but the SST result shows much clearer delineation.

Figs. 7(a) and 7(b) show the frequency slices from the CWT with
frequencies of 25 Hz and 40 Hz, respectively. Figs. 7(c) and 7(d) show the
corresponding frequency slices from the SST. The target area has been proved
to contain gas by exploiting the well.

As we see from Fig. 7, both low-frequency slices exhibit high-amplitude
anomalies (yellow ellipse and white arrow), but the frequency slices from the
SST provide much higher resolution compared with CWT, which is helpful in
detecting the location of anomaly more clearly, thus facilitating further
interpretation.

Ground roll suppression

Ground roll is a source-generated surface wave whose vertical component
is composed of dispersive Rayleigh waves whose different frequency
components have different velocities (Bereford-Smith and Rango, 1988). On
seismic records, the ground roll often interferes with seismic data and overlays
the useful reflections. Commonly used processing techniques for attenuating
ground roll mainly include frequency filtering, and f-k filtering.

We applied the SST to a real shot gather contaminated by ground roll
(Fig. 8) and designed a filter based on eq. (7) to suppress the ground roll
components localized in both time and frequency domain. Then, the shot gather
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after denoising is reconstructed by the inverse SST. Comparisons are made
between the results of the SST, high-pass filtering and f-k filtering to evaluate
the effect of the SST. The denoised shot gather and its difference with the
original shot gather are indicated in Figs. 9(a) and 9(b). As seen in Fig. 9, the
ground roll is suppressed effectively and the signals underlying the ground roll
are well recovered. The shot gathers after high-pass filtering and f-k filtering
are shown Figs. 10(a) and 11(a), respectively. Their differences with the
original shot gather are indicated in Figs. 10(b) and 11(b), respectively.
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Fig. 7. Frequency slices for gas indication. (a) CWT spectrum at 25 Hz, (b) CWT spectrum at
40Hz, (c) SST spectrum at 25 Hz and (d) SST spectrum at 40 Hz. The SST shows a sparser
representation than the CWT, which might potentially help locate the reservoir with higher accuracy.
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Fig. 8. A seismic shot gather contaminated with ground roll.

From Figs. 9(a), 10(a) and 11(a), it can be observed that all the three
approaches can suppress the ground roll well. However, comparison of Figs.
9(b), 10(b) and 11(b) indicates that almost no seismic reflection has been
removed using the SST. It works better than high-pass filtering and f-k filtering,
which damage the useful seismic reflections more or less.

Fig. 12 shows the time-frequency representation of trace 80 before and
after ground roll suppression with SST. The box in Fig. 12(a) covers an area
corresponding to the time-frequency representation of the ground roll. Fig. 12(b)
indicates that the time-frequency spectrum of seismic reflection is more obvious
after ground roll suppression.

Random noise attenuation

Random noise attenuation plays an important role in seismic data
processing for enhancing the seismic reflections and reduce the interpretation
risks (Chen and Ma, 2014; Chen and Fomel, 2015). In this paper, we propose
to use the time-frequency analysis approach for separating the useful seismic
signals and random noise. The difference between the useful signals and noise
is more obvious in time-frequency domain because of a higher time-frequency

resolution of the SST. Thus, the SST is used to attenuate random noise in
seismic data. '
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Fig. 9. Ground roll attenuation. (a) Denoised shot gather using SST; (b) its difference with the
original shot gather.
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Fig. 10. Ground roll attenuation. (a) Denoised shot gather using high-pass filter; (b) its difference
with the original shot gather.
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Fig. 11. Ground roll attenuation. (a) Denoised shot gather using f-k filter; (b) its difference with the
original shot gather.

100 100
80 o0
a0 80
70 70 i ‘,'
g o g o
S 50 ? o ;
g w é «:}
30 w8
i o & o
10} 10+
i —— : l
0 05 1 15 2 25 3 0 0s 1 15 2 25 3
Time{s) Time(s)
a b

Fig. 12. (a) Time-frequency representation of trace 80, the box covers an area corresponding to the
ground roll. (b) Time-frequency representation of trace 80 after the ground roll attenuation.
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Fig. 13 is a seismic record contaminated with random noise which has
1000 traces, 321 sampling points, the time sampling interval of 2 ms. For
comparison, the commonly used f-x deconvolution (Canales, 1984; Yang and
Wang, 2011) is also applied to this data. As seen in Fig. 13, the SNR of seismic
data is low due to the presence of noise, and the continuity of seismic events is
poor, which makes the interpretation and evaluation of the reflection events
difficult. After using SST and f-x deconvolution, we obtain denoised seismic
data that are shown in Figs. 14(a) and 14(c), respectively. Figs. 14(b) and 14(d)
show the difference between the denoised data and original data, respectively.
From the denoising performance, it is evident that the SST can suppress most
of the noise effectively and the signals underlying the random noise are
recovered well, the seismic data becomes clearer and seismic reflections become
more continuous, which is beneficial for the following processing and
interpretation. In addition, there are nearly no effective reflections in the
removed noise section [Fig. 14(b)]. In contrast, although the f-x deconvolution
can also attenuate random noise well, it seems to damage some effective
reflections to some extent, which can be found in the removed noise section
using f-x deconvolution [Fig. 14(d)].

Fig. 15 shows the time-frequency representation of trace 500 before and
after random noise attenuation with SST. It can be seen that the random noise
is effectively attenuated, meanwhile, the seismic reflections are highlighted.

Trace No.
1000 100 200 300 400 500 600 700 SOQ _00 100

1250 F

1300

Fig. 13. Real seismic data with random noise.
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Fig. 14. Random noise attenuation. (a) Denoised seismic record using SST; (b) Removed noise for
SST; (c) Denoised seismic record using f-x deconvolution; (d) Removed noise for f-x deconvolution.

CONCLUSIONS

The SST is mathematically formulated and invertible, which makes it able
to provide a more robust time-frequency analysis than those EMD based
approaches and to reconstruct signal from the time-frequency domain in order
to remove some types of noise in the seismic data according to the
time-frequency difference between noise and useful signals. We have introduced
the SST with several applications to seismic data analysis, which shows
promising results in both synthetic data and field data. The synthetic example
shows higher time-frequency resolution compared with CWT. The field data
examples indicate that the SST can be applied to detect hydrocarbon reservoir,
suppress ground roll and attenuate random noise. We find that the SST is more
helpful in delineating the location of seismic reflections more accurately
compared with CWT. The SST works better than the high-pass filtering and f-k
filtering in ground roll suppression. The SST can not only attenuate the random



SYNCHROSQUEEZING TRANSFORM 43

noise well, but also can preserve more useful reflections compared with the
commonly used f-x deconvolution.
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Fig. 15. (a) Time-frequency representation of trace 500 before random noise attenuation; (b)
Time-frequency representation of trace 500 after random noise attenuation using SST. The seismic
reflections are highlighted after random noise attenuation.
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