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ABSTRACT

Chen, X., Han, L., Yang, H. and Shang, S., 2015. qP wave numerical simulation in viscoelastic
VTI media by one-way wave equation. Journal of Seismic Exploration, 24: 439-454.

Theoretical and practical studies show that the subsurface media has not only the anisotropic
properties but also the anelastic properties. These properties are commonly denoted by the
viscoelastic model. The conventional elastic isotropic seismic wavefield simulation could not provide
sufficient foundations for the modern acquisition, processing and interpretation of the seismic data.
In this article, we proposed a new qP wavefield modeling method in the viscoelastic VTI media by
using the one-way wave equation. The one-way wave equation method can simulate the seismic
reflection wavefield fast and accurately even in complex structure areas. The method has many
advantages compared with the full-way wave equation method especially in the large-scale simulation

problems, such as high calculating efficiency, low memory requirement and no interference of direct
and multiple waves.
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INTRODUCTION

The anisotropic and anelastic properties of the subsurface media are very
important for the seismic data processing and interpretation. These properties
have already been investigated both experimentally and theoretically by many
others (i.e., Lucet and Zinszner, 1992; Lamb and Richter, 1966). Carcione
(1990, 1995, 2007) studied the attenuation and quality factor in the anelastic
anisotropic media and simulated the wavefield, which gave the foundation of the
forward modeling in the anelastic media. The viscoelastic anisotropic media is
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a common represent of the anisotropic and anelastic media. Wu et al. (2005,
2006, 2007) studied the quasi-P wave forward modeling in viscoelastic VTI
media using the finite difference method. Zhu and Tsvankin (2006) obtained the
simplified attenuation anisotropic coefficients using Thomsen-style parameters
by assuming the media is weakly attenuative and described the attenuation-
related amplitude distortion of the plane-wave in the TI media. Guo (2007)
developed the pseudo spectrum method of qP and qS wave modeling in the
viscoelastic anisotropic media. Li (2011) analyzed the crosswell seismic qP
wavefield in the viscoelastic VTI media using finite difference in the
frequency-space domain.

The one-way wave equation method has many advantages compared with
the full-way wave equation method. A variety of the one-way wave simulation
methods have been developed such as the phase shift (PS) method (Gazdag,
1978), the phase shift plus interpolation (PSPI) method (Gazdag, 1984), the
split-step Fourier (SSF) method (Stoffa, 1990), the Fourier finite-difference
(FFD) method (Ristow, 1994) and the generalized screen propagator (GSP)
method (Wu, 1994, 1997). The SSF method is suitable for the complex media
and has higher calculating efficiency and more stable results compared with
other methods. Based on the location principle (He et al., 1998; Xiong et al.,
1998) and the geophone record theory (Xiong et al., 1999), we could use the
one-way wave method to simulate the nonzero-offset seismic record. In this
study, we use the SSF method to simulate the qP wavefield and analyze the
effects of the anisotropy and quality factor in the viscoelastic VTI media.

THEORY
One-way wave operator for the isotropic elastic media

According to Lu (2009), the 2D homogeneous wave equation for the
isotropic elastic media could be written as

(02P/0x2) + (0%P/0z?) = (1/v?)(3%P/at?) )

where P is the seismic wavefield, x is the offset, z is the depth, v is the velocity
and t is the time.

By applying 2D Fourier transformation to eq. (1) and decomposing the
operators, we could obtain

(02P/0z?) + [(w?V?)—K3|P = (d2P/dz?) + k2P

= [(d/dz) + ik,][(d/dz) — ik,]JP = O , )
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where P is the 2D Fourier transformation of P, w is the angular frequency, k,
is the horizontal wavenumber, and k, is the vertical wavenumber.

According to the dispersion relation k2 + kX = w?/v2, we could obtain
dP/dz = +ik,P = +iPV[(w?/v2)—K}] , (3)

where a positive sign denotes the up-going wave equation and a negative sign
denotes the down-going wave equation. Then the wavefield extrapolation
equation is

l—)(kx’ziiAzaw) = l—5(kx’zi’("))ei.ikZAZ . (4)

The SSF method can handle the lateral velocity variation by defining a
reference slowness and a perturbation in the slowness (Stoffa, 1990). The
corresponding slowness at location (x,z) is s(x,z) = 1/v(x,z), which can be
divided into two parts:

8(x,z) = sy(z) + As(x,z) |, (5)

where sy(z) is the reference slowness and As(x,z) is the perturbation in the
slowness.

Accordingly, the extrapolation of the wavefield can be also divided into
two parts. A phase shift based on the vertical wavenumber calculated by the
reference slowness and a phase shift due to the perturbation in the slowness. In
this case, the forward extrapolation of the wavefield could be written as follows:

P(k,,z,+Az,w) = P(k,,z,w)e " KebZ (6a)
ko = V{lo?vo@)] — Kk}, (6b)
P(x,,+Az,0) = IFFT[P(k,,z,+ Az,w)]e ~KnhZ (7a)
ky, = [w/v(x,2)] — [w/Vy2)] , (7b)

where P is the Fourier transformation of P and v, 1s the reference velocity. Here
we expressed the equations using velocity instead of slowness.
Dispersion relation of viscoelastic VTI media

The stress-strain relation in elastic media is

T, = GE.,ij = 12,6 , (®)

y=ye
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where T; and E; are the stress and strain components, respectively, and C; are
the elastic moduli.

Based on the Kelvin-Voigt model, the stress-strain relation of the
viscoelastic VTI media is

where Cij,i,j = 1,2,--,6 is the complex modulus which contain the viscosity H

ij?

G, G, G, 0 0 0 an H, H; 0 0 0
Co G Gy 0 0 0 n H, Hy; 0 0.0
C = Gy Gy Gy 0 0 0 ., H = H, H, Hy; 0 0 0 , (10)
0 0 0 C, 0 0 0 0 0 H, 0 0
0 0 0 0 C, O 0 0 0 0 H, 0
0 0 0 0 0 Cg 0 0 0 0 0 H]

where Cos = '2(C,; — Cpp), Hgg = 2(H,; — Hy).

The wave equation of the viscoelastic VTI media can be obtained bv using eas.
(9) and (10). By substituting the plane wave equation u = Ue (@t —kx—ky-kz2)
into this wave equation and omitting the force item we could get the
Kelvin-Christoffel equation,

Gy —pw? Gy, Gy, U,
G, Gp—pw? Gy U =0, (11a)

y

G Gy Gy—pw? U,

Gy = (Cyy + iwH ki + (Cg + i‘*’H66)k§ + (Cy + iwHk;

G12 = [(C), — Cae) + iw(H“ - H66)]kxky >

G = [(C3 + Cy) + iwHy; + Hylkk, ,
< (11b)
Gy = (Ce + iwHek; + (Cp; + inn)kz + (Cy + iwH K]

Gy = [(Cy3 + Cy) + iw(H;3 + Hylkk, ,

Gy; = (Cy + iwH K + (Cyy + iwH K2 + (Cy3 + iwHsp)k?

where k, is the horizontal wavenumber.
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To obtain the nonzero solution of eq. (11), the Christoffel determinant
must be zero:

det(G) = 0 . (12)

The qP wave dispersion relation of the viscoelastic VTI media can be
obtained by solving eq. (12).

In order to obtain the wavefield of the qP-wave, we set the S-wave
velocity Vg = 0 according to Alkhalifah’s method (Alkhalifah, 1998, 2000) and
represent the elastic modulus with the Thomsen anisotropic parameters:

Ch=0Cyh=0p1+ 28)V12> >
Cy = pVi/( + 26) ,

J (13)
Cy = PV% >

L Cu=GCs =0,

where p is the density, V, is the P-wave velocity, & and  are the Thomsen
anisotropic parameters.

In a 2D situation, when k, = 0, we could substitute eq. (13) into eq. (11),

(G, = [p(1 + 26)V2 + iwH, Ik |
G13 = [PV%\/(I + 25) + inlB]kxkz ’

) (14)
Gy = (oVi + iwHyp)k]

z

G, =Gy =Gy =0 .

.

The relations between the quality factor Q and H;; are
Hy = C/wQ, Hj3 = Ciy/wQ, Hy = Cyu/wQ. (15)

By substituting eqgs. (13), (14) and (15) into eq. (12), we could obtain the
dispersion equation of the viscoelastic VTI media

o' = PVIAH/QI(1+26)K2 + K] — 2(e—8)VE(1+i1/QKK: . (16)

By rewriting the above equation when 1/Q < 1, we could get the
dispersion relation:
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k, = +/[{(V)*[1-i(172Q)]* — (1+2&)(w/v)*[1—i(1/2Q)1’k2}

K@V —i(12Q)1F — 2(e—)K3}] . (17)

One-way wave operator for viscoelastic VTI media

The real subsurface media exhibits both anelastic and anisotropic
properties, and could not be described by the conventional wavefield
extrapolation equation that we previously mentioned. To solve this problem, we
introduce the qP wave dispersion relation of the viscoelastic VTI media to
calculate the qP reflection wavefield.

By applying the Taylor expansion to eq. (17), and only considering the
positive sign, we obtain

K49 = (w/W)[1—-i(12Q)1[1+ %@ — KM 1 -i(12Q)) — k2] , 18

where £ = 1 + 2¢, n = 2(e—0); the superscript A and Q mean anisotropy and
viscoelasticity, respectively.

Define reference velocity v, reference quality factor Q, and reference
anisotropic parameters £, and 7,, respectively. Then we can obtain the vertical
wavenumber computed using the reference parameters:

K39 = V(o) TI=i(12Q)1* — Ey(w/vol[1—i(1/2Q)1°K}}
Ko [1—-i(112Q)F — noki}] (19)

Taking the Taylor expansion to eq. (19), the phase shift due to the perturbation
in the velocity and quality factor for SSF method can be obtained

kR = k3% — K39 = (@/M[1-i(12Q)] — (w/vpll—-i(1/2Q,)] .  (20)

Substituting eqs. (19) and (20) into egs. (6a) and (7a) we can obtain the
forward extrapolation equation of the wavefield in the viscoelastic VTI media

P(k,zi+Az,0) = P(k,z,w)e Kz (21)
P(x,z+Az,w) = IFFT[P(k,,z,+Az,w)]e ~K:iAz (22)

The interpolation method was used to handle the lateral anisotropy
variation. During each depth interval Az we chose the minimum and the
maximum anisotropic parameters £, 7, and £, n,. We used the two groups of
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parameters to extrapolate the wavefield during the depth interval
P(x,z+Az,0,8,m) = e KA IFET{FFT[B(x,z;,w,£,,m,)]e ~KiiEmmAz 1
P(x,2, £ AZ,w,E,,m,) = € AL IRRT{FFT[P(x,2,0,£,,m,)]e ~ i Em)Az }(

The final extrapolated wavefield was calculated by

(P2, £A7,0) = {[5—ExDV(E~E)}PX,2£A2,0,6,1)

+ {[ExD—E1(E—EDIPRzAZ,0,.6,m) |

1 P,z A7,0) = {[n,—n(x,2))/(n,—n)}P(x,z,+ Az,0,£,,m,) 24

+ {[n(x,2) =1/, —n)}P(x,z, £ AZ,0,E,,m,)

p(xsziiAZ9w) = [pl(xsziiAZ,w) + pZ(X’ZiiAZ’w)]/z

NUMERICAL SIMULATION

In this study we use the nonzero-offset seismic forward modeling method
which developed by He (2010, 2011) to simulate the qP wavefield in the
viscoelastic VTI media. The procedures could be described as following,

1. Transform the source wavefield into the frequency-space domain using the
Fourier transformation;

2. Extrapolate the source wavefield downward with the interval Az in
viscoelastic VTI media via egs. (21), (22), (23) and (24);

3. Calculate the reflected wavefield of the current depth P(x,z,w) by
multiplying the extrapolated source wavefield and the reflection coefficient
r(x,z) at the same frequency in the frequency domain P.(x,z,w) =
ls(x,zi,w)-r(x,zi);

4. Repeat steps (2) and (3) until z = z,,,. Save the extrapolated source
wavefield P(x,z,,,,w) and reflected wavefield P,(x,z,w) for each depth;

5. Extrapolate the wavefield P(x,z,,,,w) obtained from step (4) upward with
i~nterval Az, and stack with the reflected wavefield of current depth
P.(x,z;,w) until z = 0;

6. Transform the extrapolated wavefield obtained from step (5) into the
time-space domain by the inverse Fourier transformation to acquire the
nonzero-offset seismic record.
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EXAMPLES
qP wave propagation in homogeneous media

First we studied the qP wave propagation in the homogeneous media.
Snapshots of the qP wavefield calculated by one-way wave equation are shown
in Fig. 1. Fig. 2 shows the snapshots calculated by full-way wave equation. The
S wave velocity is zero, Q = 30, ¢ = 0.1 and 6 = 0.1 in the model. The
amplitudes of the viscoelastic case are weaker than those of the elastic case. The
wavefronts are different in the isotropic media and the anisotropic media. It is
round in the isotropic case, while in the anisotropic case it tends to be an
ellipse.

(a) (b) (c) (d)

Fig. 1. Snapshots calculated by one-way wave equation for (a) the homogeneous elastic isotropic
media, (b) the homogeneous viscoelastic isotropic media, (c) the homogeneous elastic VTI media,
(d) the homogeneous viscoelastic VTI media.

(a) (b) (c) (d)

Fig. 2. Snapshots calculated by full-way wave equation for (a) the homogeneous elastic isotropic
media, (b) the homogeneous viscoelastic isotropic media, (c) the homogeneous elastic VTI media,
(d) the homogeneous viscoelastic VTI media.
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qP wavefield simulation of a horizontal layer model

We generated some synthetic qP wavefield data sets from a horizontal
layer model. Fig. 3 is the schematic of the model. The parameters are listed in
Table 1. Here we define three different models with different parameters. The
first layer and the third layer are isotropic media with the same parameters in
all the three models. The second layer of the first model is the elastic isotropic
media, whereas the second and third one are the anisotropic media. The

parameter Q = 10,000 means the elastic media and Q = 60 means viscoelastic
media.

Trace Number

DO 20 40 60 80 100 120 140 160 180

Layer one

Layer three

1000

Fig. 3. The schematic of the horizontal layer model.

Table 1. The parameters of the horizontal layer model.

vp (m/s) 0 € 6
Layer one 3000 10000 0.0 0.0
Model 1 0.0 0.0
Layer two Model 2 2700 60 0.4 02
Model 3 -0.1 -0.2
Layer three 3000 10000 0.0 0.0
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Fig. 4. The qP wavefield synthetic shot records of (a) Model 1 without attenuation; (b) Model 1 with
attenuation; (c) Model 2 without attenuation; (d) Model 2 with attenuation; (e) Model 3 without
attenuation; (f) Model 3 with attenuation.
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The synthetic seismic records of the three models with and without
attenuation are shown in Fig. 4. The source is located in Trace No. 96.
Comparing Figs. 4(a) and 4(b), we could find that the energy of the second
reflection is weak and the amplitude is reduced due to the attenuation of the
viscoelastic isotropic media. A similar pattern is shown in Figs. 4(c), (d), (e)
and (f). We have also found that the traveltime in the anisotropic media is
different from that in the isotropic media. The magnitude of the change is
controlled by the anisotropic parameters. When & and 6 are both positive, the
qP wave with the nonzero incident angle propagates faster in the anisotropic
media than in the isotropic media. As a result, the nonzero offset travel time is
shorter in the anisotropic situation. In contrast, when ¢ and 6 are both negative,
the nonzero offset travel time is longer in the anisotropic situation than in the
isotropic situation. We should also note that in the actual subsurface media ¢ is
usually positive.

The normalized spectra of the central trace reflections of the second
interface are shown in Fig. 5. We could find that the attenuation laws in
isotropic and anisotropic situations are consistent, i.e., the high frequency
energy is absorbed, the amplitude is reduced, the dominant frequency becomes
lower, and the frequency bandwidth becomes narrower.

Model | Model 2 Model 3

L 0 =t — .
}U 20 40 60 80 100 120 O 20 40 60 80 100 120 0O 20 40 60 80 100 120
Frequency(Hz) Frequency(Hz) Frequency(Hz)

(a) (b) (c)

Fig. 5. Corresponding second reflection normalized spectrums of Fig. 4: (a) Model 1; (b) Model
2; (c) Model 3.

Fig. 6 shows the extracted central trace and two different offset traces in
each of the six synthetic shot records in Fig. 4. Black lines represent the results
without attenuation, and gray lines represent the results with attenuation. The
solid lines represent the results of Model 1, the dashed lines represent the results
of Model 2, and the dash-dot lines represent the results of Model 3. The
amplitude reduction due to the absorption of the viscoelastic media and the
travel time variation caused by the anisotropy can be clearly observed. It is
shown that the effect of the anisotropy becomes more obvious with the
increasing offset.
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Fig. 6. The central traces (Trace No. 96) and two different offset traces (Trace No. 120, Trace No.
150) of the synthetic shot records shown in Fig. 4.

qP wavefield simulation of Hess VTI model

We applied our method to the Hess VTI model (HESS) with the
parameters shown in Fig. 7. We used a smaller version of this model and set
a quality factor for it. Note that the quality factor may not be realistic here and
we used it to test our method.

Fig. 8 shows the qP wavefield synthetic shot records of the Hess VTI
model under different situations. The source is located in the trace No. 175. We
could find that the four shallow reflections in Figs. 8(a) and 8(c) are exactly the
same. However, the deep reflections energy is weaker in Fig. 8(c) than that in
8(a) as the result of attenuation. The same conclusions can be obtained from
Figs. 8(b) and 8(d). As shown in Figs. 8(a), (b), (c) and (d), we could find that
the travel times are different at nonzero offset due to the anisotropy. Because
the anisotropic parameters ¢ and § are both positive, the nonzero offset travel
times of the reflections in the anisotropic media is shorter than that in the
isotropic media. This makes the anisotropic reflections a little more flat and the
changes are more obvious at the large offset.
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Fig. 7. Different parameters of the Hess VTI model. (a) P wave velocity, (b) density, (c) anisotropic
parameter ¢, (d) anisotropic parameter 8, (e) quality factor.

CCONCLUSION

Viscoelasticity and anisotropy can better characterize the subsurface
media. In this study, we proposed a new qP wave numerical simulation method
in the viscoelastic VTI media based on the one-way wave equation. The method
is suitable for the complex media and can calculate the gP reflection wavefield
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fast and accurately. We also analyzed the propagation of qP wave in the
viscoelastic VTT media by generating some synthetic data sets based on our
modeling method. The results show that the seismic wave propagation in the
viscoelastic anisotropic media is much different from that in the elastic isotropic
media. First, due to the high frequency energy absorption of the subsurface
media, the amplitude and dominant frequency of the seismic wave is reduced
and the frequency bandwidth becomes narrower. Second, the nonzero offset
travel time of the seismic wave changed because of the effect of the anisotropy,
when ¢ and 6 are both positive, it is reduced, when ¢ and 6 are both negative,
it is increased, and the effects become more obvious for far offsets data.
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Fig. 8. The gP wavefield synthetic shot records of the Hess VTI model under different situations.
() Isotropic media without attenuation, (b) anisotropic media without attenuation, (c) isotropic media
with attenuation, (d) anisotropic media with attenuation.
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