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ABSTRACT

Ha, J., Shin, S., Shin, C.S. and Chung, W., 2015. Time domain full waveform inversion of seismic
data for the East Sea, Korea, using a pseudo-Hessian method with source estimation. Journal of
Seismic Exploration, 24: 419-437.

Waveform inversion is used to estimate subsurface velocity information using seismic
datasets. To overcome the computational burden, the use of back-propagation algorithm and the
pseudo-Hessian matrix are proposed. Many researchers using these algorithms have shown successful
results with synthetic and field data tests. In particular, the computational efficiency of waveform
inversion is improved by using a pseudo-Hessian with regularization using a virtual source vector.
However, these theoretical concepts have been mainly applied to waveform inversion in the
frequency or Laplace domains.

We propose full waveform inversion using an estimated source wavelet with the
pseudo-Hessian matrix and back-propagation in the time domain. We derive the virtual source vector
for the first order hyperbolic equation based on 2D staggered-grid modeling. The updated gradient
direction is obtained from both the virtual source and back-propagation wavefield vectors. To
improve the availability for field data sets, we also perform the source estimation using
deconvolution of the observed data based on the least-squares method.
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In a synthetic test with a modified Marmousi2 model, the inverted velocity model obtained
by the proposed waveform inversion algorithm using estimated wavelets shows similarity to the true
velocity. The estimated source wavelet shows good agreement with the true source wavelet. We also
test the proposed waveform inversion with field data from the East Sea, Korea. The calculated traces
with the estimated source wavelet and the inverted velocity model show direct and reflection events

similar to those in the real seismic traces. This confirms that the proposed algorithm can be applied
to field data.

KEY WORDS: waveform inversion, pseudo-Hessian matrix, back-propagation algorithm,
time domain, source estimation, seismic data.

INTRODUCTION

Extracting accurate velocity models from seismic data requires estimating
physical properties and seismic imaging. A number of different approaches have
been developed to obtain an accurate subsurface velocity model, including
travel-time tomography from first arrival information and reflections from
seismic traces, estimation of interval properties using well logs or core samples,
and seismic waveform inversion. Seismic waveform inversion techniques have
been considered an essential step towards a detailed estimation of subsurface
properties (Toxopeus et al., 2008; Fichtner, 2011). Since Lailly (1983) and
Tarantola (1984) pioneered waveform inversion, many inversion algorithms have
been presented in several domains including the time domain (Guthier et al.,
1986; Sheen et al., 2006; Choi and Alkhalifah, 2011), the frequency domain
(Geller and Hara, 1993; Pratt et al., 1998; Pratt, 1999; Pratt and Shipp, 1999;
Shin et al., 2001, Ha et al., 2006; Shin and Min, 2006; Ha et al., 2009) and the
Laplace domain (Shin and Cha, 2008; Bae et al., 2010; Koo et al., 2011; Bae
etal., 2012). To improve efficiency of full waveform inversion, various forward
and inverse problem solutions are developed and applied (Virieux and Operto,
2009). In particular, to acquire more quantitative results of inversion, many
approaches for accurate initial velocity model sampling (Koren et al., 1991; Jin
and Madariaga, 1993, 1994; Mosegaard and Tarantola, 1995; Sambridge and
Mosegaard, 2002) have been proposed (Virieux and Operto, 2009).

Recently, several impedance inversion methods based on linearized
approximation for reflectivity is widely utilized (Hampson et al., 2005; Zong
et al., 2013). These method have many advantages, however they are limited
in complex subsurface structures, especially at high property contrasts between
layers or unconformities (Zong et al., 2013). Thus, full waveform inversion
based on the complete solution of the two-way wave equation is required to
analyze the wave propagation in realistic subsurface structures (Brossier et al.,
2009; Fichtner, 2011; Métivier et al., 2014). Full waveform inversion updates
the subsurface model parameters iteratively using gradients to minimize the
objective function. As a result, waveform inversion needs substantial
computational resources. To reduce the computational burden, many waveform
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inversion techniques employ the back-propagation algorithm or the
pseudo-Hessian matrix (Pratt, 1999; Shin et al., 2001; Shin and Min, 2006; Ha
et al., 2009). Both the back-propagation algorithm and the pseudo-Hessian
matrix enable efficient calculations and regularize the update direction without
explicitly computing the partial derivative wavefield. Most research that employs
these methods has used mainly been in the frequency and Laplace domains (Shin
et al., 2001; Shin and Min, 2006; Shin and Cha, 2008; Ha et al., 2009).
Combination of both methods is not yet used in time domain full waveform
inversion.

Below, we apply the pseudo-Hessian method, and the back-propagation
technique with virtual sources, to a full waveform inversion in the time domain
to calculate and regularize the gradient direction efficiently. The gradient
direction is built from both the back-propagated wavefield vector and the virtual
source vector. The gradient direction is regularized by the diagonal elements of
the pseudo-Hessian matrix. Our modeling algorithm is 2D staggered-grid
modeling (Levander,1988; Virieux, 1986). Since the source information is
unknown in a field data test, source estimation is an important part of obtaining
an accurate velocity model by waveform inversion. Kim et al., (2011) have
proposed source estimation for reverse time migration using time-domain
least-squares deconvolution. Since source estimation in the frequency domain is
required to construct Green’s functions to use the full Newton optimization
procedure, and to convolve the estimated source wavelet, this method is more
expensive than estimation in the time domain (Kim et al., 2011). We also
employ source estimation in our waveform inversion. The estimated source is
updated at each iteration, and is directly applied in our inversion of field seismic
data from the East Sea, Korea.

We focus on the pseudo-Hessian method, the back-propagation technique,
and the source estimation in the time domain waveform inversion. First, virtual
source vectors for the 2D staggered-grid modeling are derived. We then test the
waveform inversion algorithm using numerical data before applying it to field
seismic data. The numerical synthetic data used a modified Marmousi2 model
in which the water layer was extended to 0.5 km. Then, we perform the
waveform inversion of the field data in the time domain.

THEORY

Back-propagation and the pseudo-Hessian matrix in the time domain

For waveform inversion in the time domain, the least squares objective
function is
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where E(p) is the objective function for model parameter (p), nsrc and nrec are
the number of sources and receivers, T, ,, and t are the total record time and the
time index, and u(t) and d(t) are the calculated and observed data, respectively.
From the gradient of the calculated data with respect to each model parameter,
we compute the gradient direction of the objective function as:
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where du(t)/dp, is the partial derivative wavefield, u, and r; are the calculated
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defined by the convolution between the Green’s function and the virtual source
vector as (Chung et al., 2012):

du(t)/ap, = G(t) * v, (t) , 3)

where G(t) is Green’s function, * is the convolution operator and v,(t) =
(vs,,Vs,) represents the virtual source vector at the k-th model parameter of the
i-th shot to the horizontal (vs,) and the vertical (vs,) direction in 2D. The virtual
vector is used to compute the partial derivative wavefield with respect to model
parameter. It is identical to the forward modeled wavefield (Tarantola, 1984).
We define the back-propagated wavefield vector by(t) for the i-th shot for the
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where ® means zero-lag cross-correlation.

The gradient direction is efficiently calculated using back-propagation
without the explicit calculation of the partial derivative wavefield. The gradient
direction is scaled by the diagonal elements of the pseudo-Hessian matrix
composed of the virtual source vectors (Shin et al., 2001). The diagonal element
of pseudo-Hessian matrix in the time domain is:

T,

diagH,), = | v, (0T, 0dt ©)
0

where H,;, means the k-th pseudo-Hessian matrix for the i-th shot.

The updating of the k-th model parameter at each iteration is expressed
as:

nsrc nsrc T

P! = pi — sL ), {diag(H,), + W' L [ VIb(T,, —0dd . ()
i=1 i=1

0

where py is the k-th model parameter at the [-th iteration, and s and w are the
step length for the update, and white noise.
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Virtual source vectors for 2D staggered-grid modeling

We explicitly solve the wave equation using the staggered-grid finite-
difference method (Virieux, 1986; Levander, 1988; Graves, 1996). Virtual
source vectors for both the back-propagation algorithm and the pseudo-Hessian
matrix are redefined for the staggered-grid method. In the time domain, the
relationship between particle velocity and stress in 2D acoustic media can be
written based on the relationship in 2D elastic media (Virieux, 1986):

p(dv,/0t) = (37,/0x) + f, | (8)
p(dv,130) = (37,/02) + f, | 9)
37,/0t = N(3v/3x) + (v,/92)] + L, , (10)

e 37,10t = N[(3v,/9z) + (v,/0x)] + L, , (11)

where v, and v, are particle velocities, 7, (m,n = X,z) are stresses, f, and f, are
source terms of body force, and I, (m,n = x,z) are traction source terms.
Because air-gun arrays are commonly used in general marine seismic surveys,
we assume that the source is explosive.

For one value for Lamé’s modulus, A, the equation for the partial
derivative wavefield can be written as:

Il

(0/0t)(a7, /ON*) = N[(3/0x)(dV,/ON*) + (3/32)(3v,/ON¥)] + vs, , (12)
and

(3/01)(d7,,/ON¥)

Il

N[(0/0Z)(3v,/ON*) + (3/9%)(AV,/ON¥)] + vs, , (13)

where virtual sources are vs, = (INON¥)[(v,/0x) + (dv,/dz)] and vs, =
(ONONS)[(0v,/0z) + (dv,/0x)] to (8/0t)(07,/ON*) and (3/0t)(dT,,/ON*),
respectively, AN* is a virtual source vector parameter for \ for partial derivative
wavefield propagation. The virtual source terms are required to calculate the
partial derivative wavefield for each property parameter. We solved egs.
(8)-(11) to construct the virtual source terms to eqs. (12) and (13) that show the
partial derivative wavefield and the virtual source term for Lame’s modulus, \.
Since some of the velocity (v, and v,) and stress (7,,) components don’t have a
differential factor relative to \; these become zero. In this study, because the
field data are acquired in the East Sea, Korea, we assumed that the data are
from an acoustic earth.

To demonstrate our virtual source terms, we generated the virtual source
to a perturbation point in the subsurface model shown in Fig. 1. We generated
the partial derivative wavefield using the virtual source term [equation (3)] and
calculated the partial derivative wavefield using the finite difference method.
Fig. 2 shows good agreement between these two approaches.
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Fig. 1. Schematic diagram of forward and differential wavefield propagation.
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Fig. 2. Comparison of the vertical component partial derivative seismogram for a point perturbation
of lambda.

Source estimation in the time domain

The real source signal is not known exactly, but the estimated source
should be as similar as possible to the wavelet shape and amplitude of the real
field data to perform velocity inversion (Pratt, 1999). When applying the source
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5. Construct the gradient and pseudo-Hessian matrix;
6. Update the velocity model.

To demonstrate the proposed waveform inversion algorithm, we perform
a numerical test with synthetic data before applying it to the field seismic data.

NUMERICAL EXAMPLE
Modified Marmousi2 model data set

We first apply the proposed waveform inversion algorithm to data from
a modified Marmousi2 model in which the water layer is 0.5 km thick and the
horizontal extent of the model is 11.0 km [Fig. 3(a)]. Because the field data
were acquired in a marine environment, we considered only a P-velocity model
where the S-velocity and the density are set to 0 km/s and 1 g/cm?, respectively.
We construct the initial velocity model as a smoothed true velocity model using
a module of Seismic Unix (smooth2) to test our waveform inversion algorithm
[Fig. 3(b)]. And, we use the observed and calculated stress tensor data; the
normal-stress tensors don’t have directional component in acoustic case.

The number of shots is 265 and the interval between the shots is 0.020
km. The number of recording channels is 530 and the receiver interval is 0.020
km. The total recording time is 5 s and the time step is 0.002 s. First, we test
the feasibility of the source estimation algorithm to investigate the wavelet used.
We used the first derivative of a Gaussian function with a 15 Hz cutoff
frequency for forward modeling, to produce the estimated source wavelet for
each updated velocity model.

Fig. 4 shows a comparison between the signals using the first derivative
of a Gaussian function and the estimated wavelet. Fig. 4 shows that the
agreement improve as the number of iterations increase. We also perform the
proposed waveform inversion algorithm for the modified Marmousi2 model with
source wavelet estimation. Fig. 5 shows the inverted P-velocity model at the
50th iteration; the velocity and geologic shape are in agreement with the true
velocity model. Fig. 6 shows depth-velocity profiles of the true and inverted
velocity models at horizontal position 6.0 km in Fig. 5. Although the inverted
velocity model obtained by the proposed algorithm is not an exact match at
greater depths, it has a similarity in trend to the depth profile of the true
velocity model.
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Fig. 4. Comparison of the 1st derivative Gaussian function (solid line), 1st estimated wavelet (dashed
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To determine the accuracy of both the estimated source and the final
updated velocity information, we compare observed and calculated stress
seismograms in Fig. 7(a) and (b), respectively; the calculated seismogram is
similar to the observed seismogram. To facilitate a specific comparison, we
show extracted single observed and calculated traces at 5.5 km from the source
in Fig. 8. The predicted trace is very similar to the observed trace.
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Fig. 7. Comparison of (a) observed data from the true velocity model and (b) calculated data from
the inverted velocity model.
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Fig. 8. Comparison of observed and calculated traces at a distance 5.5 km from the source position
at the 50th iteration.
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The field data set from the East Sea in Korea

The testing of the proposed waveform inversion algorithm is successfully
completed in the previous section. However, synthetic data doesn’t have the
same intrinsic characteristics that real seismic data have, such as various types
of random noise associated with the survey environments. Therefore, we apply
the proposed waveform inversion algorithm to determine its feasibility using
field seismic data.

These data are acquired in the East Sea, Korea, at water depths of
approximately 2.0 km. The number of shots is 101, and the shot interval is
0.025 km. The data are obtained using 420 receiver channels; the near offset is
0.125 km and the channel interval is 0.0125 km. The total recording time is 5
s and the time step is 0.001 s.

Fig. 9(a) contains a representative shot gather from the observed data, and
Fig. 9(b) shows the initial velocity model. The initial velocity model has linearly
increasing from 1.48 km/s at the sea floor to 2.50 km/s at the maximum depth.
Fig. 10 shows the wavelet estimated from the field seismic data.

We test the proposed waveform inversion algorithm for the field data set
with the estimated source wavelet. Fig. 11 illustrates the inverted velocity model
obtained by the proposed waveform inversion algorithm. To evaluate the
applicability of the estimated source information and the inverted velocity
model, by the proposed algorithm. Fig. 12 illustrates the comparison of two
pairs of observed and calculated traces. The direct wave of the calculated data
is similar to observed data in Fig. 12(a). In Fig. 12(b), the amplitude of the
direct wave has decreased compared to that in Fig. 12(a) because of the increase
in geometrical spreading and attenuation with increasing offset. Also, because
of the back-ground noise during the survey, there is some interference at the
time of the direct wave. In particular, because low frequency information for
performing the waveform inversion is poor, the practical source estimation is
not easy. The trace of the 1st channel shows a better match than the trace of the
210th channel in the observed data because the signal-to-noise ratio is higher.
Although, the complicated reflection events of the calculated data have
discrepancies with the observed data, they agree qualitatively in Fig. 12. Fig.
13 shows the decreasing trend of the relative error value with iteration number.
The error value reaches a minimum near iteration number 800. The value of the
error function is decreased by about 35%. It seems that the survey field is not
for an acoustic medium and there may be a loss of low frequency information
by frequency filtering for removal of noise. Also, because the velocity range of
the initial velocity model may not be accurate, there is a limit to the amount of

improvement that is possible in the accuracy of the result of the waveform
inversion.
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Fig. 9. (a) A raw shot gather and (b) the initial velocity model.
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CONCLUSIONS

We apply the pseudo-Hessian method and the back-propagation technique
to a full waveform inversion with an estimated source wavelet in the time
domain. Defining the virtual source vector is important when using these
methods. The virtual source vector is the derivative of the modeling operator
with respect to the model parameters. The virtual source depends on the type
of modeling algorithm; we derive the virtual source vector based on a 2D
staggered-grid modeling technique. The derived virtual source vectors are tested
by comparison between two partial derivative wavefields. One is obtained by the
virtual sources, and the other is obtained by the finite difference method.

Using both the virtual source vectors and the back-propagated wavefield,
the updated gradient direction can be obtained without explicit calculation of the
partial derivative wavefield. The pseudo-Hessian method with the gradient
direction can enhance the computational efficiency of the proposed waveform
inversion. Accurate information on the source wavelet can improve the accuracy
of the inversion results when applying the inversion technique to field datasets.
We estimate the source wavelet by deconvolution from the observed data based
on a least-squares method.

We test the proposed inversion algorithm on synthetic data for a modified
Marmousi 2 model. The inverted velocity model is a smoothed version of the
true velocity model. Even though the inverted velocity information at the greater
depths provides an incomplete match, the depth-velocity profile variation is
similar. In addition, the calculated synthetic seismogram with the inverted
velocity and the estimated source wavelets shows good agreement with the
synthetic observed data. The comparison between the original and the estimated
source wavelet shows that the agreement improves as the velocity model is
iterating updated.

Finally, we apply the inversion algorithm to field seismic data acquired
in the East Sea, Korea. The calculated data using the estimated source wavelet
and the inverted velocity model show similar characteristics, including the direct
wave. Although we have not obtained an inversion result as good as that for the
synthetic data, because of the survey environment, the inverted waveform in the
near offset data shows good agreement with the observed waveform. To
improve accuracy, a reasonable initial velocity model and estimated source
wavelet are needed. Also, data processing considering low frequency
components is required. In addition, if interval velocity information from
well-logs and a long-wavelength velocity model acquired by other waveform
inversion algorithm available, we expect that result of the wavefrom inversion
would be improved. These results show that the proposed inversion technique
in the time domain can be applied to field seismic data. Also, this waveform
inversion algorithm has the advantage that can be easily expanded to migration
and to elastic full waveform inversion in the time domain.
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