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ABSTRACT

Chen, Y., Zhang, L. and Mo, L.-W., 2015. Seismic data interpolation using nonlinear shaping
regularization. Journal of Seismic Exploration, 24: 327-342.

Seismic data interpolation plays an indispensable role in common seismic data processing
workflows. Iterative shrinkage thresholding (IST) and projection onto convex sets (POCS) can both
be considered as a specific form of nonlinear shaping regularization. Compared with linear form of
shaping regularization, the nonlinear version can be more adaptive because the shaping operator is
not limited to be linear. With a linear combination operator, we introduce a faster version of
nonlinear shaping regularization. The new shaping operator utilizes the information of previous
model to better constrain the current model. Both synthetic and field data examples demonstrate that
the nonlinear shaping regularization can be effectively used to interpolate irregular seismic data and
the proposed faster version of shaping regularization can indeed get obvious faster convergence.

KEY WORDS: seismic data interpolation, nonlinear shaping regularization, faster shaping
regularization, iterative shrinkage thresholding, projection onto convex sets.

INTRODUCTION

Seismic data interpolation plays a fundamental role in seismic data
processing, which provides the regularly sampled seismic data for the following
jobs like high-resolution processing, wave-equation migration, multiple
suppression, amplitude-versus-offset (AVO) or amplitude-versus-azimuth
(AVAZ) analysis, and time-lapse studies. There have been a number of effective
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methods to recover missing seismic traces, these methods can be generally
divided into three types. The first type of approach is based on prediction,
which utilizes a convolutional prediction filter computed from the low-frequency
parts to predict the high-frequency components (Spitz, 1991; Porsani, 1999;
Wang, 2002). However, the predictive filtering method can only be applied to
regularly sampled seismic data. The second type is a transformed domain
method (Candes et al., 2006; Abma and Kabir, 2006; Chen et al., 2014b),
which is based on compressive sensing theory (Candes et al., 2006; Donoho,
2006) to achieve a successful recovery using highly incomplete available data
(Sacchi et al., 1998; Wang, 2003; Chen et al., 2014a). Naghizadeh and Sacchi
(2007) proposed a multistep autoregressive strategy which combines the first two
types of methods to reconstruct irregular seismic data. The third type is based
on the wave equation. This type of method utilize the inherent constraint of the
seismic data from wave equation to interpolate seismic data, thus it depends on
the known velocity model, which also becomes its limitation (Canning and
Gardner, 1996; Fomel, 2003). Recently, more and more researchers have
developed algorithms connecting the interpolation and deblending (Chen, 2015;
Chen et al., 2014c) problems for the irregular sampled simultaneous-source data
(Li et al., 2013), which provide new recipes for conventional seismic
interpolation problem.

Linear shaping regularization was proposed by Fomel (2007b) for
regularizing underdetermined geophysical inverse problems. Compared with the
commonly used Tikhonov regularization (Tikhonov, 1963), shaping
regularization enjoys a number of advantages, including easier control on
properties of the estimated model or in some cases significantly faster
convergence. In the past five years, the linear form of shaping regularization has
been utilized broadly. Fomel (2007a) used it to define the local correlation,
which was then utilized by Liu et al. (2009, 2011) for optimal stacking and by
Liu et al. (2011b); Liu and Fomel (2012) for local time-frequency analysis. Du
et al. (2010) proposed to use shaping regularized inversion to estimate the Q
factor of seismic attenuation by treating a spectral division as a non-stationary
inversion problem. Liu et al. (2012) applied shaping regularization to random
noise attenuation, and achieved a better result than f-x predictive filter in the
case of non-stationary seismic signal. Chen et al. (2012) found an application
of smooth shaping in Gabor deconvolution. All these methods use a linear
operator to constrain the model when iteratively solving the inverse problem.

Fomel (2007b) extended linear shaping regularization to its nonlinear
form. In the nonlinear form, the shaping operator is not limited to be linear, and
thus produce more convenience in implementing the iterative framework.
However, the properties and applications of nonlinear form of shaping
regularization have been barely mentioned since that. In this abstract, we build
a bridge among the well known iterative shrinkage thresholding (IST),
projection onto convex sets (POCS) algorithms and shaping regularization. We
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derive the two well-known inversion formulations (IST and POCS) in the basis
of shaping regularization. We also propose a faster version of shaping
regularization, where a linear combination operator is used. The faster version
utilizes the information of both the cur- rent and previous shaping regularized
model to form a new model, which demonstrates an obviously faster
convergence.

THEORY
Review of nonlinear shaping regularization

Supposing m is a model vector and d is the data after applying a forward
operator F. Nonlinear shaping regularization is used for solving the following
equation:

Fm] =d , )
using an iterative framework:
m,,, = S[m, + B[d — Flm,(]]] , 2)

here [-] means the forward operator F is not limited to the linear case. S is the
shaping operator which shapes the model to an admissible model iteratively and
B is the backward operator which provides an approximate mapping from data
space to model space (Fomel, 2008). Specially, when B is taken as the adjoint
of F (in the linear case) or the adjoint of the Fréchet derivative of F (in the
nonlinear case), and take S as an identity operator, iteration 2 becomes a famous
Landweber iteration (Landweber, 1951). Iteration 2 can get converged if the
spectral radius of the operator on the right hand side is less than one (Collatz,
1966).

Interpolation using shaping regularization

The basic target of seismic interpolation is to solve the following
equation:

dubs = Md ’ (3)

where d,, is the observed data which is regularly or irregularly sampled, d is
the unknown data we want to reconstruct and M is the sampling matrix (Liu and
Sacchi, 2004) or so-called mask operator (Liu and Fomel, 2012; Naghizadeh
and Sacchi, 2010). The mask operator has a diagonal structure, which is
composed by zero and identity matrix:
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M = ' “)

I

L A

Each I in eq. (4) corresponds to sampling a trace, and each O corresponds to
missing a trace. As eq. (3) is under-determined, addition constraint is required
in order to solve the equation. By applying a regularization term, we get a
least-squares minimization solution for solving eq. (3):

d = argmin|d,, — Md|? + R@) , (5)

where R is a regularization operator and |- |2 denotes the square of the L,
norm. Alternatively, we can use the shaping regularization framework 2, and
substitute m with d, then, d is obtained through the following iteration equation:

dn+—1 = s[dn + B[dohs - Mdn]] . (6)

In eq. (6), S can be selected as any linear or nonlinear operator for
reasonable constraint, as long as the equation converges. Thus it offers us much
freedom to control the model behavior. The shaping regularization framework
is a very general iterative framework, which can be generalized into different
commonly known interpolation techniques. Because the shaping operator can be
chosen as a constraining operators such as soft thresholding in a sparsity
promoting transformed domain, or as rank reduction in the Fourier transform
domain (Oropeza and Sacchi, 2011).

Connection with iterative shrinkage thresholding

The well-known iterative shrinkage-thresholding (IST) algorithm is used
for solving eq. (3) with a sparsity-promoting constraint:

xn+1 = T[xn + KH(dubs - Kxn)] » (7)

where x is the transformed domain data such that d = Ax, A is a tight frame
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such that x = A"d and A™' = A" (e.g., Fourier transform), T is a nonlinear
thresholding operator, K = MA and [-] denotes adjoint. Considering that d, .,
= Ax,,;, M" = M and MM = M, combined with eq. (7), we get:
d,., = Ax,,,
= AT[x, + K"(d,,, — Kx,)]
= AT[AYd, + (MA)Y(d,,, — MAAH)]
= AT[A"d, + A"™'"d,,, — A"™M"Md,]
= AT[A"(d, + Md,,, — Md,)]
= ATA"d, + d,, — Md,) , (8)
which is equal to eq. (6) with S chosen as ATA" and B taken as an identity
operator. Thus, we prove that the IST and shaping regularization are actually
mathematically equivalent.
Connection with projection onto convex sets
If we define:
d, =d, + B[d,, — Md,] , 9)
S =d,, + I-M)ATA"[d]] , (10)
and take B = I—M, then eq. (6) turns to:
d,,, =d, + I-M)ATA"[d)]
= d,, + I-M)ATA"[d, + A-M)(d,, — Md,)]
= d,, + I-M)ATA"[d, + I-M)d,,, — I-M)Md,]
= d,, + I-M)ATA"[d, — IMd, + MMd, |
=d,, + I-M)ATA"[d,] . (11)
The last line of eq. (11) is the formulation of what we call POCS. We

derive POCS from the framework of nonlinear shaping regularization and thus

prove that POCS is no more than a special nonlinear shaping regularization
iteration.
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Faster nonlinear shaping regularization
Using the definition of eq. (9), we define a new shaping operator as:
§" = L(S[d;].S[d,_.}) . (12)

where S’ is a new version of the commonly defined S shown in eq. (6) and
L(-,-) denotes a linear combination operator. This new shaping operation apply
a biased combination between the current model and the previous model, thus
is thought to be faster.

Substituting S in eq. (6) with S” in eq. (12), and combined with eq. (10),
we get a faster version of shaping regularization:

d,,, = L(S[d;}.S[d,-,]) . (13)
The linear combination operator L(a,b) can be defined as
L(a,b) = «a + b , (14)

where o« + 8 = 1.

Comparison with the traditional methods and limitation discussion

The shaping regularization can be viewed as a general framework for any
inversion problem, including the seismic data recovery problem. The normal
shaping regularization can be viewed as POCS or IST, which are two most
commonly used approaches for interpolating irregularly sampled seismic data in
the literature. The faster version shaping regularization can be viewed a
breakthrough in accelerating the convergence for the conventional approach.
Thus, the comparison between faster and normal shaping regularization
corresponds to the a comparison between the proposed approach with other
approaches cited in the introduction, such as the POCS approach (Abma and
Kabir, 2006).

The traces should be randomly sampled spatially and binned to regular
spatial grids. The limitation of the interpolation approaches is that the largest
gap between two neighbor traces should not be very large. There also exist a lot
of researches in the literature trying to solve this limitation by raising different
kinds of sampling approaches, such as Hennenfent and Herrmann (2008) and
Herrmann (2010).
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EXAMPLE
Synthetic example

We first use a simple synthetic example (see Fig. 1a) to demonstrate the
interpolation effect of the faster version of shaping regularization. The synthetic
data is composed of four different dipping events. We randomly removed 30%
traces to form the irregularly sampled section (see Fig. 1b). After applying the
iterative interpolation formulation (6), and substituting S with S’ defined in egs.
(12) and (10), we get the interpolated section (see Fig. 1d). The reconstructed
result using the faster shaping regularization after only 20 iterations, as shown
in Fig. 1d, is nearly the same as the reconstructed result using the normal
shaping regularization after 40 iterations, as shown in Fig. lc. This confirms
that the normal and faster shaping regularizations can obtain the same converged
results, but the faster shaping regularization can save the iteration cost greatly.
The FK domain spectrum corresponding to each figure in Fig. 1 are shown in
Fig. 2. Note that in this synthetic case « = 1.5 and 8§ = —0.5. From Figs. Ic
and 1d , we find pleasant interpolation results because those missing traces are
all filled up with coherent reflection components. Fig. 2 further demonstrate the
successful reconstruction, because the FK spectrum after interpolation is nearly
the same as that of the original profile. Fig. 3a shows the error section using
shaping regularization after 40 iterations and Fig. 3b shows the error section
using faster shaping regularization after 20 iterations. The error sections shown
in Figs. 3a and 3b are nearly the same, which also confirms the faster
convergence rate of the faster shaping regularization.

In order to test the convergence rate, we first define the measure to
estimate the interpolation effect as SNR (Chen et al., 2015):

SNR = 101log,(| d

3

d-d|) . (15)

where d denotes the estimated model, and the unit of SNR is dB. Fig. 4 shows
the convergence diagrams of normal shaping regularization and faster shaping
regularization. It’s obvious that the proposed faster version can get a faster
convergence.

Field example

The field data is from a marine 2D common shot gather from a deep
water Gulf of Mexico survey. The data is same as that used by Fomel (2002).
In the example, we randomly remove 30% of the total traces and apply the same
iterative framework as that of the previous synthetic example. The interpolation
effect and FK domain spectrum are shown in Figs. 5 and 6, respectively.
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Fig. 1. Synthetic example demonstration for seismic interpolation using shaping regularization. (a)
Original synthetic data. (b) Irregularly sampled section by randomly removing 30% traces. (c)
Reconstructed section using shaping regularization after 40 iterations. (d) Reconstructed section using
faster shaping regularization with 20 iterations.
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Fig. 2. FK domain demonstration corresponding to Fig. 1. (a) FK domain for original synthetic data.
(b) FK domain for irregularly sampled section. (c) FK domain for reconstructed section using
shaping regularization after 40 iterations. (d) FK domain for reconstructed section using faster
shaping regularization after 20 iterations.
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Fig. 3. Error sections demonstration for synthetic example. (a) Error section using shaping
regularization after 40 iterations. (b) Error section using faster shaping regularization after 20
iterations. (¢) FK domain of (a). (d) FK domain of (b).
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Fig. 4. The SNR curves with normal and faster shaping regularization in the case of synthetic data.
The solid line is for normal shaping regularization and the dashed line is for faster shaping
regularization.

Figs. 5c and 5d, 6¢c and 6d both demonstrate pleasant reconstructions of the
normal and faster shaping regularization, but in time-space and the frequency-
wavenumber domain, respectively. Fig. 7 shows the error sections of two
approaches and their corresponding FK spectrum. The convergence diagrams
are shown in Fig. 8, which demonstrate a faster convergence of the proposed
faster version of shaping regularization. In this field data case, o and (3 are
chosen the same values as those of the previous synthetic example.

CONCLUSION

We have proposed a new algorithm for interpolating irregularly sampled
seismic data using shaping regularization. The shaping regularization framework
is a very general iterative framework, which can be generalized into different
commonly known interpolation techniques, such as the iterative thresholding
algorithm, iterative rank reduction, and so on. We derive the IST and POCS in
the framework of shaping regularization, which indicates that IST and POCS
both can be considered as a special type of shaping regularization with
corresponding shaping operation. We also propose a faster version of shaping
regularization which uses a linear combination of the current and previous
shaping regularized model as the new shaping operator. Both synthetic and field
data show pleasant interpolation results using nonlinear shaping regularization
and also suggest that the faster version of shaping regularization can improve
the convergence rate greatly.
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Fig. 5. Field data demonstration for seismic interpolation using shaping regularization. (a) Original
synthetic data. (b) Irregularly sampled section by randomly removing 30% traces. (c) Reconstructed
section using shaping regularization after 20 iterations. (d) Reconstructed section using faster shaping
regularization with 10 iterations.
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Fig. 6. FK domain demonstration corresponding to Fig. 5. (a) FK domain for original synthetic data.
(b) FK domain for irregularly sampled section. (c) FK domain for reconstructed section using
shaping regularization after 20 iterations. (d) FK domain for reconstructed section using faster
shaping regularization after 20 iterations.
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Fig. 7. Error sections demonstration for field data example. (a) Error section using shaping
regularization after 20 iterations. (b) Error section using faster shaping regularization after 10
iterations. (c) FK domain of (a). (d) FK domain of (b).
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Fig. 8. The SNR curves with normal and faster shaping regularization in the case of real data. The
solid line is for normal shaping regularization and the dashed line is for faster shaping regularization.
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