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ABSTRACT

Li, Z. and Chesnokov, E.M., 2015. Elastodynamic Green’s tensor in vertically transversely isotropic
media. Journal of Seismic Exploration, 24: 259-280.

The elastodynamic Green’s tensor in a vertically transversely isotropic (VTI) medium is
presented explicitly as an inverse Hankel transform. The asymptotic solution is found by the
stationary phase approximation. An approximate formula in weak VTI media is derived based on
a novel way of expanding the vertical slowness linearly to anisotropic parameters in which case the
stationary-phase points can be found analytically. The approximate solution will become exact when
the medium degenerates into an elliptical VTI rather than an isotropic medium.

KEY WORDS: anisotropy, Green’s tensor, asymptotic, VTI, analytic solution.

INTRODUCTION

Transient elastic wave propagation in general anisotropic media has been
studied extensively during the past century due to its theoretical significance as
well as its application in seismology and related fields. The current work is
dedicated to finding the elastodynamic Green’s tensor in a vertically transversely
isotropic medium.

Transversely isotropic (TI), or hexagonal, symmetry can be described by
five independent elastic constants. One special type of TI symmetry is the VTI
(vertically transversely isotropy) symmetry where the symmetric axis is located
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along the vertical axis. Due to the complexity of the calculation, most of the
computational work is done numerically (for example: Dellinger, 1991; Hung
and Forsyth, 1998). Analytic works on Green’s tensor thus far have been
focused on the asymptotic solution. One way to evaluate the asymptotic Green’s
tensor is by ray approximation (Gajewski, 1993). Vavrycuk (1997) found the
analytic Green’s tensor in weak-TI media by perturbing elastic constants from
the isotropic medium. However, for the general TI media, the ray theory
Green’s tensor needs special treatment in the region close to shear-wave
singularities (Gridin, 2000; Tsvankin, 2001; Vavrycuk, 2002).

A more conventional way of calculating Green’s tensor is finding its
image in other domains then transforming the solution back to the time-space
domain. The method described in Tsvankin and Chesnokov (1990) is applied in
the current work to find the analytic Green’s tensor in VTI media. Green’s
tensor in frequency-slowness or plane-wave domain is derived explicitly and
separated into a P-SV coupled term and a SH-wave term, in which case the
solution would not be affected by shear-wave singularities. Then the inverse
Fourier transform is evaluated in the cylindrical coordinate system and reduced
to an inverse Hankel transform over horizontal slowness. The full waveform
response in the frequency-space domain can be found by computing the inverse
Hankel transform numerically. Such a solution can be extended to modeling the
wave propagation in layered anisotropic media by the reflectivity method (Fuchs
and Miiller, 1972; Kennett, 1982; Miiller, 1985).

Stationary phase approximation is being employed to evaluate Green’s
tensor in the asymptotic limit (high-frequency end in the current problem). The
asymptotic SH-wave Green’s tensor in a general VTI media can always be
solved analytically (VavryCuk, 1996) while the P-SV-part is much more
complicated due to its physical nature. To the authors’ knowledge, most of the
existing analytical solutions yield a numerical calculation of the stationary-phase
points (Tsvankin 1995) and these solutions are mostly sensitive to the degree of
anisotropy, which can often be characterize by the value of anisotropic
parameters (Thomsen, 1986). In the present paper, we propose a novel way of
finding the approximate solution of P-SV Green’s tensor in weak-TI media
based on expanding the vertical slowness to the first-order of Thomsen
parameters (Thomsen, 1986). Then the stationary-phase points can be found
analytically by solving a set of cubic equations. This approximate solution is
most accurate when the medium is close to elliptical anisotropy (Thomsen
parameters 6 = ¢) rather than isotropy.

The present paper is organized as follow: in section two, we review the
procedure for solving Green’s tensor described in Tsvankin and Chesnokov
(1990). The asymptotic SH-wave Green’s tensor is solved in the general VTI
media and presented in section three. The approximate solution for weak-TI
media is shown in section four. The approximate and numerically computed
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results are compared (Appendix D) and the error introduced by the
approximation is discussed. Throughout the current paper, the lower indices of
a variable will vary from one to three. Einstein summation of repetitive lower
indices is implied.

THE PROCEDURE FOR SOLVING THE GREEN’S TENSOR

In this section, we briefly review the method of calculating the Green’s
tensor, which is originally described in Tsvankin and Chesnokov (1990). The
elastodynamic wave equation in homogeneous anisotropic media with a body
force is shown in (1):

p(a2ui/3t2) = Cijkl(azuk/anaxl) + fi , (1)

where u; is the i-th component of the displacement vector and f; is the i-th
component of the applied body force, p is the density and Cy,, is the stiffness
tensor of anisotropic media. In the present paper, Cj, is limited to VTI
symmetry, which has five independent elements. Considering the symmetric
property, C;;, can be shown as a second-rank tensor in (2):

c, C, C; 0 0 0]
C, Cs 0 0 0

Cs; 0 00
o Cu0 0 | @

Cyu O

C66
L. -

Ces = (Cyy — Cwi2 ,

by Voigt notation. The displacement can be written in terms of the Green’s
tensor as (3)

um) = § Gt ety ©)
and the body force can be projected by the delta function as (4)

B0 = § 60 — 16t — to)firo,to)drydt, | @)
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where 6(x) is the Dirac-delta. For the purpose of being concise, we set the body
force to be located at the origin (r, and t, equal zero) and the Green’s tensor can
be simply written as G, (r,t). Applying (3) and (4) into (1), the equation for
Green’s tensor can be found in (5)

[08,(8°/0t) — Cyy(8°/9%,0x)1Gyn(T,1) = 8, 6()8(E) )

where §;; is the Kronecker-delta. In order to solve (5) analytically, we expand
the Green’s tensor and the Dirac-delta into Fourier series in (6)

G, = (12m | G, (p.we P wdpde |
(6)
5r)8(t) = (127 | e“rrrdpde |

where p is the slowness vector and w is the angular frequency. After applying
(6), (5) will become (7)

Likam (k’w) = _6im >
(7
Ly = o*(pdy — Cijklpjpl) >

and the Green’s tensor can be found by calculating the inverse of L;.. For VTI
media, the solution in frequency-slowness domain is shown in (8)

Gy = [~ — Cyup? — Cyupd)/p*w’(1 — p*Vp)(1 — p*Viy)cos’e
— [Wpo(1 — pViylsinte

Gy = —(p — Cyup? — Cypd/p2e®(1 — p2VA( — p*V)sin’e
— [/pw?(1 — p*Viylcos’e

Gy = —(p — Cypt — Cupd)/p’w’(1 — p*VH(1 — p*Vi)
®)

2
[

(I~ = Cup? — Cypdlp®(1 — PVA(I — p2Va)]
+ [pw(1 — p*Viyl}singcose

Gy = —pips(Cos + Colp’(l — pPVA(L — pV2y)

Gy = —pops(Ci3 + Co)lp*w®(1 — p?VE(1 — p*Viy)

G; = Gy, Gy = G, , Gy = Gy .
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where p;, p, and p; are components of the slowness vector in Cartesian
coordinates. In cylindrical coordinates, the horizontal slowness p,, azimuth angle
image ¢, polar angle image 0, and phase velocities of different modes (V;, Vgy,
and Vgy) are defined in (9)

¢ = tan”'(p/py) ,
0 = tan"'(ps/py)
P = Vi +pd) .
2oV} = (Cy; + Cuy)sin®d + (Cyy + Cy)cos’0 + K
20V, = (Cyy + Csind + (Cy + Chcos® — K
pViy = Cesin®d + C, )cos?0
K = V{[(C,; — C)sin’d — (Cy; — C,)cos%0]?
+ 4(Cj; + Cyy)’sin*fcos?0} . )

From (8), it can be seen that the Green’s tensor is separated into two
parts. One corresponds to the coupled P- and SV-wave motion, while the other
to the SH-wave. The SH-wave Green’s tensor is only related to the projection
of the source’s horizontal component, which reflects the property of the TI
media. The P- SV- and SH-wave motions are separated in (8), which means that
the simple shear-wave singularities will not affect future results.

In order to find the space-domain solution, the inverse Fourier transform

in (6) needs to be computed. Considering the cylindrical coordinate system, we
rewrite (6) into (10):

oo 27 o o0
Gzt = [eo1 | | | |G 0o
0

—o 0 —-o

x e lwlt—prcos(p—a)—p;z] w3p,dprdp3dsodw , (10)

where « is the spatial azimuth angle. The first integral over vertical slowness
can be solved analytically by evaluating a contour integral and only the causal
solution is considered in the present paper. Then (10) will become (11):

oo 2r o
Grzan =2l ¥ | | | 6upnzew
0

M=aB,y — 0

% glelt—preos(p—a)—py|z|] w’p.dp,dpdedw | (11)
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where py, is the vertical slowness of different modes. They correspond to the
propagation of three body-waves: p,, pg, and p,, for P-, SV-, and SH-wave,
respectively. They are written explicitly in (12):

f=1—(Cu/Cy) ,

e = (C, — Cyp)2Cy,

6 = [(Cp3 + Cp)* — (Cyy — C)M/2C4(Cy; — Cy)

p2 = [0.5/(f — D][2(e¢ + 1 — £ — £8)p* + (1/VE)(E — 2)

+ J{AP[E+1)? — 26 —1] + 8(e—6—ed)f + 4&2)p?

+ (86 —4fe —4f28)(p2/Vi)(E/Vi))]

p2 = [0.5/(f — DI[2(e + 1 — £ — f8)p? + (I/VE)(E — 2)
— J{4P[(6+1)? — 26 —1] + 8(e—6—ed)f + 4e?)p’
+ (86 —4fs —420)(pX/VI)(E/IVL))]
p; = (1/V§) — (Ce/Co)p?
Vi = Culp , Vi = Cylp , | (12)

with the anisotropic parameters ¢ and 6 introduced by Thomsen (1986). The
integral over the azimuth angle image ¢ in (11) can be carried out and replaced
by Bessel functions. As can be seen from (8), the dependency of ¢ is only up
to the second-order in the Green’s tensor due to the rotational symmetry of VTI
media. Then the Bessel integral can be calculated analytically. The result is
shown in (13):

Gyrzay = [[“@er Y Y | | ovp.zee

[=0,1,2 M=a,8,y —o 0
x e @t=Pulz) J (wp r)w’p,dp.dw | (13)
where J(x) is the I-th order Bessel function of the first kind. The explicit
formulas of GY; are shown in Appendix A. By solving the integral in (13), one
will get the time-domain response in a VTI medium.

Up to this step, we have not used an approximation. However, the
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integral over horizontal slowness in (13) cannot be solved analytically in general
VTI media. The asymptotic solution of (13) can be found with the stationary
phase approximation, which yields the numerical calculation of the
stationary-phase points (Appendix D). However, due to the complicated nature
of VTI media, there is still no general analytical way of finding the
stationary-phase points (which are the horizontal slowness in the present
problem) for P-SV coupled Green’s tensor.

SH-WAVE GREEN’S TENSOR

The SH-wave Green’s tensor is in presence of G;;, G;,, and G,,. Since the
vertical slowness of the SH-wave is always elliptical [eq. (12)], the asymptotic
solution can be found by standard stationary phase approximation. The
calculated stationary-phase point is shown in (14)

pl = (1/Vso){rz/[(cms/cm)r2 + (CgG/CZ4)|z[2]}VZ , (14)

while the SH-wave Green’s tensor is shown in Appendix B. Eq. (14) reflects the
velocity anisotropy that the stationary-phase point generally does not
corresponding to the phase slowness in the direction that connects the source
and the observation point. Such property will force the radiation patterns to be
deviated from the isotropic case, where the amplitude is only related to the
projection of the source.

GREEN’S TENSOR IN WEAK-TI MEDIA
In this section, the Green’s tensor in weak VTI media is being discussed.
First of all, the method of approximation is introduced. Secondly, the error

brought by the approximation is discussed. Finally, the radiation patterns
calculated by the approximate solution are compared with the numerically

computed asymptotic solution.

The vertical slowness of P- and SV-wave in (12) can be expanded into
Taylor series to the first-order of Thomsen parameters 6 and ¢. The results are
shown in (15)

Pl = (1/V3) — (1 + 20)p? + 2p*V(6 — &)

Phw = (1/Vi) — (I + 20)p7 — 2p}Vi(6 — o) , (15)

0=(5—8)/(f_1) »

where ¢ is the combined parameter which controls the behavior of SV-wave



266 LI & CHESNOKOV

(Tsvankin and Thomsen, 1994). Although the linearization is based on
individual anisotropic parameters, the high-order terms in (15) are depending on
the difference between ¢ and 6. When ¢ = §, eq. (15) will become the exact
formula for elliptical anisotropy (Ben-Menahem and Sena, 1990).

To this point, it seems that the term weak-T1 is not appropriate since the
approximation in (15) is not limited to the magnitude of each individual
Thomsen parameter but the difference 6 — ¢. However, when the degree of
anisotropy is increasing, the behavior of the SV-wave becomes more
complicated (Tsvankin, 1995; Tsvankin, 2001). In this case, the Thomsen
parameters are too big for approximating the anisotropic behavior of the
SV-wave (Thomsen and Dellinger, 2003). As the cusps of the SV-wave
wavefront are emerging (shear-wave triplication) in strong VTI media, the
stationary-phase approximation is not appropriate for computing the asymptotic
solution (Tsvankin, 1995). In the case of shear-wave triplication, the asymptotic
solutions will still correspond to the correct ray direction but the amplitude will
not be computed properly. So we will limit the approximate solution to weak-TI
media in the present paper.

By incorporating (15), the cubic equations of the stationary-phase points
py* (P-wave) and p'* (SV-wave) can be found in (16)

16(z" /) V(8 — &7(pr)° — [8(Z2/)(1 + 20) + 2](8 — &)Vi(p*)*

+ [/ + 260 + (1 + 28)(p¥)? — (1/Vy) = 0

16(z"/r")Vie(6 — &’(pY")° + [8(Z°/r)(1 + 20) + 216 — &)VA (™)

+ [@/HA + 200 + (1 + 20)(p™) — (1/V) =0 (16)
where the similarity between these two equations can be noticed immediately.
The stationary-phase points can be found analytically by solving (16). Among
the three solutions of the cubic equation, only the one with real value has
physical meaning. When r = 0 (corresponding to vertical propagation), the
stationary-phase points of the horizontal slowness have to be set to zero to
obtain a physically sounding solution. When z = 0, (16) reduce to quadratic
egs. (17)

206 = Vi)' + (1 + 28)(p¥*)* — (1/V}) =0

6 = OVRHPY) + (1 + 20)(PY? — (1/VE) =0 , 17)
which is equivalent to (15) for the cases when waves only propagate

horizontally. After finding the stationary-phase points, the asymptotic Green’s
tensor in weak-TI media can be found and they are listed in Appendix C.
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As can be seen from (C-1) to (C-6), the asymptotic Green’s tensor is also
closely related to the second-derivative of the phase function ¢, and ¢y, for P-
and SV-wave respectively. Similar to the dispersion relationship (15), ¢, and
¢} have an elliptical part, which is proportional to (1+28)/V, or (1+20)/V,
as well as several non-elliptical parts that are related with either (6—¢) or
(6—e&)*. When the difference between 6 and ¢ is small, the elliptical part will
dominate the solution. As the difference (6—¢) is increasing, the non-elliptical
terms will make the Green’s tensor becoming more complicated since these
terms are weighted by the horizontal slowness.

In the present paper, the asymptotic radiation patterns are defined as the
displacement at the unit distance (one kilometer) generated by the unit body
force. The asymptotic radiation patterns of Gs; at several polar angles are
calculated by the weak-TI and ray solution then compared to the numerically
computed Green’s tensor for five models. The benchmarking numerical solution
(Appendix D) is computed by the stationary-phase approximation but (12) is
being used to compute the stationary-phase points, without involving any
approximation of medium property. The ray Green’s tensor is computed by the
approximate solution in weak-TI media from Vavrycuk (1997).

The detailed parameters of elastic constants, density, and Thomsen
parameters are listed in Table 1. The elastic constant C,, is chosen to make each
model has a distinct value of o. The radiation patterns are shown in Figs. 1 to
5 for the five models, respectively.

Table 1. Elastic constants (in GPa), density (in g/cm®), and Thomsen parameters of five models
being used in radiation patterns calculation.

Model Cl1 C33 CI3 C44 C66 »p 8 £ o

1 30 18 10 6 9 2.5 0.2593 0.3333 0.2222
2 30 18 10.5 6 9 2.5 0.3756 0.3333 0.1094
3 30 18 11 6 9 2.5 0.3356 0.3333 —0.0069
4 30 18 11.5 6 9 2.5 0.3756 0.3333 —0.1267

5 30 18 12 6 9 2.5 0.4167 0.3333 —0.2500
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Fig. 1. (a) P-wave radiation patterns of Gs; of model 1 calculated by weak-TI approximation (dashed
line), ray approximation (circled line), and numerical method (solid line). (b) SV-wave radiation
patterns of Gj; of model 1 calculated by weak-TI approximation (dashed line), ray approximation
(circled line), and numerical method (solid line).
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Fig. 2. (a) P-wave radiation patterns of G, of model 2 calculated by weak-TI approximation (dashed
line), ray approximation (circled line), and numerical method (solid line). (b) SV-wave radiation
patterns of Gy; of model 2 calculated by weak-TI approximation (dashed line), ray approximation
(circled line), and numerical method (solid line).
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Fig. 3. (a) P-wave radiation patterns of Gs; of model 3 calculated by weak-TI approximation (dashed
line), ray approximation (circled line), and numerical method (solid line). (b): SV-wave radiation
patterns of Gs; of model 3 calculated by weak-TI approximation (dashed line), ray approximation
(circled line), and numerical method (solid line).
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Fig. 4. (a) P-wave radiation patterns of Gy; of model 4 calculated by weak-TI approximation (dashed
line), ray approximation (circled line), and numerical method (solid line). (b): SV-wave radiation
patterns of G,; of model 4 calculated by calculated by weak-TI approximation (dashed line), ray
approximation (circled line), and numerical method (solid line).
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Fig. 5. (a) P-wave radiation patterns of Gy; of model 5 calculated by weak-TI approximation (dashed
line), ray approximation (circled line), and numerical method (solid line). (b): SV-wave radiation
patterns of Gj; of model 5 calculated by weak-TI approximation (dashed line), ray approximation
(circled line), and numerical method (solid line).
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As can be seen from Fig. 3 (a) and (b), the weak-TI solutions are almost
identical to the benchmarks due to the small value of o. For other models,
weak-TI results are deviated from numerical solutions. The reason is (15),
which is only to the fourth power of horizontal slowness p,, is being used to
approximate (12), which has a much more complicated relationship toward p,.
Thus whether or not (15) is close to (12) will strongly influence the weak-TI
result. The approximate P-wave radiation patterns are closer to numerical
solutions than SV-waves. One reason is that the vertical slowness of a P-wave
is smaller than a SV-wave in nature. Thus the deviation of (15) from (12) will
have a less significant effect on the P-wave. As mentioned above, another
reason is that the physical nature of the SV-wave is much more complicated than
that of the P-wave. The weak-TI solutions are generally closer to benchmarks
than ray solutions. This is partly due to the methodology. While the current
approximation is based on expanding the vertical slowness, the ray solution is
computed by perturbation theorem, which leads to the radiation patterns is
linearized in terms of the anisotropic parameters.

We will now focus on SV-wave radiation patterns from weak-TI solution.
Comparing Figs. 1 and 2 to 4 and 5, it can be seen that the different sign of ¢
will lead the weak-TI solution to behave differently. When ¢ > 0, from Fig.
1 (b) and 2 (b), the approximate radiation patterns are not far away from the
numerical solutions within a relatively small polar angle. After that, they deviate
from the benchmarks much faster [Fig. 1 (b)]. When ¢ > 0 , the situation is
reversed. As can be seen from Fig. 4 (b) and 5 (b), the slope of the approximate
solution changes much quicker than the numerical solution. This is due to the
structure of (18), when the sign of o reversed, the term related with the fourth
power of the stationary-phase points will change sign thus leading to different
behavior of stationary-phase points and radiation patterns. Previous studies
(Thomsen, 1986; Tsvankin and Thomsen, 1994) indicate the positive value of
o to be predominant among different materials. Thus, we can often limit the

approximate solution to small polar angles (less than 40 degrees) to get reliable
approximations.

CONCLUSION

The impulse response in a VTI medium is evaluated in the asymptotic
region analytically, while the full solution can be written as an inverse Hankel
transform. The asymptotic SH-wave Green’s tensor is found in general VTI
medium. An approximate Green’s tensor in weak-TI media is derived by
expanding the vertical slowness into linear terms of Thomsen parameters where
the stationary-phase points can be found analytically as well. Such solution is
consistent with the analytic result obtained when ¢ = §. The weak-TI solution
reflected the physical nature of VTI media and confirmed the previous
understanding of anisotropic parameters (Tsvankin and Thomsen, 1994). The
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approximate P-wave radiation patterns are generally more accurate than the
SV-wave. Such observation has resulted from the simpler physical nature of the
P-wave as well as the smaller absolute value of P-wave slowness. The accuracy
of the approximate SV-wave solution is depending upon the anisotropic
parameter o. The sign of ¢ will influence the shape of the approximated
solution. For the larger positive value of o, the SV-wave radiation pattern will
deviate from the true solution at large polar angles (over 40 degrees). While for
the negative o, the behavior of the approximate solution will have smaller
deviation but the trend of deviation is more complicated.
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APPENDIX A
THE INTEGRAL REPRESENTATION OF GREEN’S TENSOR

The Green’s tensor in the space-frequency domain can be represented by
the integral over horizontal slowness. They are listed in (A-1) to (A-6):

T, = [(0 — Cup? — Cy3pd)/pa(pZ — Pé)]ﬁ_iwp“IZl

— [0 — Cup? — Cs;p)/ps(@2 — pRle” wrslzl

G0 = [i/2(27r)2](1/C33C44)

X S el s (Ty/2)Jp(wpr) — (00520(—Sin2Ol)J2(wPrr)]wprdprdw
— o 0

(A-1)
— [i/ 2(2'”)2C44]

X §_ gt SO (e~ 9P 12l /2p Y[J(wp,r) + (cos?a—sinta)],(wp,r)]wp,dpde |

Gpu(r,t) = —[i/2(27)?](cosasine/Cy:Cyy)

=]

x | e SleJz(wprr)wprd do

— oo 0 (A_2>
— [icosasina/22m2Cyl | et | P17l fp )1, (wp)wpdpides
— o0 O
Gs(r,t) = [i(Cla+C14)/2(27")2][Sgn(Z)COSOl/C33C44)]
X s el 5 [{p.p./(p2—p) e~ ivrl2l (A-3)
— 0

— {pps/(P2—pP}e “PsIZ 13 (wpr)wpdp dw
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Gy (r,t) = [i/22m)*(1/C5,C,y)

==}

X § et S (T1/2)[Jo(wp,r) + (cos’a—sin’a),(wp,r)]wp,dp,dw
e % (A-4)
— [i1227)°Cyil

x | e | emenlzl p y1y(wpr) - (costa—sinta),(wpr)]wpdpde
0

— oo

Gys(r,t) = [i(C,3+C,,)/2(27)*][sgn(z)sinc/ C33Cu)l

x | e | [pp./p2—pyreiepal?! (A-5)
— o 0

— {pps/(P2—pD}ePsI2l 17, (wp,r)wpdp,de |

Gis(r,t) = [i/2(2m)*)(1/C35Cls)

X S el S [{(P_Cnpz*C44p§)/Pa(p§_P123)}e—iwpa|ZI (A-6)
Y 0

— {(o—Cyyp2—Coup?)/ps@2—p2}e Pl 11 (wp)wpdpde .

APPENDIX B

SH-WAVE GREEN’S TENSOR

The asymptotic SH-wave Green’s tensor in VTI media can always be
solved by stationary phase approximation. They are listed in (B-1) to (B-3):

GH(r,p)

[sin’0/2(2m)*][(1/0Cee) (P, Y1 | 2] )]*

% 5 e lWl=Pir—p..lz[] g,

— o

(B-1)

GY3(r,t) = —[sinacosa/2Q27)1[(1/0Ces)(p, P11 |2 |)]*

% 5 e lt=pr—plzl] g,

— 0o

(B-2)



GREEN’S TENSOR IN VII MEDIA 277

G, = [cos’a/2(2m)’1[(1/pCé6)(p,, P/t |2])]*

% 5 e iw[t—pir—p,|z|] do (B-3)

— 0o

where p7 is the stationary horizontal slowness and p, ( is the vertical stationary
slowness, which is shown in (B-4):

Pys = \/{(l/véo) - (Csa/c44)(P¥)2}

= (/Ve){l — r/[r* + (Cs/Cy) || 1}" . (B-4)

APPENDIX C
ASYMPTOTIC GREEN’S TENSOR IN WEAK VTI MEDIA
The approximated asymptotic Green’s tensor are listed in (C-1) to (C-6):

T2 = _[p - C44(p?a)2 - C33p2,wa]/(p§z,wa - plzi,woz) ’

T, [0 — Cuy®)? — C33pz2x,wcx]/ (pi,wﬁ - Pzzi,w@) ,

Gu(r,t) = [1/2(2m)*)(cos’/CyCap)[(Top}* /PN (1/pyr | 2| S |)

% 5 e 19(t=Pasalz[ =P 4

— 00

(C-1)

+ (T30 /ps W WUt 2] 9 ]) | €1t Possl2l =PPDde] + GSH(r0) |

Gp(r,t) = [1/22m)*)(sinccoset/C 53 Co)[(Top¥/p, weV(1/pYr |2 || 67])

% 5 19t —Paal 2| =P¥0) g

-

(C-2)

+ (TP WP 2] ¢ ]) | e Pasl 2l =PY) o) 1 Gty

—
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Go(r,t) = [1/2Q2m)*) i’/ CyyCop) (TP} Pa e (/D1 | 2] 7 )
X S e 1""’(t —pu,wu | Zl _p\;lcxr) dw
o (C-3)

+ (T3 /s W (Upr | 2] 95 ]) | eitPanslzl =PP0d] + G (r 1)

Gu(r,0) = [(Cps +Ca 221 [580(2)c050/C 3o Cag {[— (DY (P2 o~ D))

X (Uprer|z] or]) | eitPualzl=ping,,
- (C-4)

+ [(PY)(D2 s~ D) WD 2| @) | et Paslzl =PI gy |
p Pa,ws ~Pp.we P 8

Gy(r,t) = [(Ci3+C)/22)*1[sgn(z)sine/Cs;C oyl {[ — (PI*) /(P2 wa— Pp )]

[

x Uprer|z] gr)) | el Paalzl P g
- (C-5)

+ 1QY VPR s =P WADYr 2] 95]) | €Mt Poalzl Py

Gisy(r,0) = [1/2Q2m)*1(1/Cy5Co)[ = {[o— C1(p}*)*— CaaPwal /(D2 e~ Piwe) }

X (PP APt |z 97]) | e Panalzl —PI g,
- (C-6)
+ {lo—C () - C44p[23,wﬂ] / (Pi,wﬁ - p%,wﬁ)}(pvrw/ Ps.ws)

X (Up¥r|z] og|) | eltpamslzl=pPngy]

—

where ¢ and ¢ are shown in (C-7):
bu = (1P w){[A1+28)/VE] — 12(p¥*)*(5—e)

+ 6VE(PY) (1+28)(6—¢) — 8Vip(Pi)°(6—e)} |
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= (Upgup{[(1+20)/ V5] + 12(Cy/Cop)(PY*)*(6—e)
— 6V (1+20)(6—&) — 8Vi(PY")°(6—¢)} . (C-7)

The stationary-phase points p** and p*® can be found by solving (18)
while other variables are listed in (C-8):

Pave = (1/Vio) — (1+28)(pY*) + 2(p¥*)*VR(6—e) ,
Paws = (1/Vi) — (1+28)(PY")* + 2(pY")*Vi(6—e) ,

(C-8)
Powe = (1/V&) — (1+20)(P¥)* — 2(0¥)* Vi —e) ,

Pove = (1/VG) — (14+20)(P¥*) — 2(p¥*)*Vie(6—e) .

APPENDIX D
ASYMPTOTIC GREEN’S TENSOR

The asymptotic solution in general VTI media requires computing the
stationary-phase points numerically. Such problem can be formulated as to

minimize the absolute value of the first-derivative of the phase function. The
first- and second-derivative of the vertical slowness is provided below:

op,/dp, = (A/p,p, + (1/2p,)(3S/dp,) ,
Ip,/opt = —(A/p)p.(dp,/dp,) + (Alp,) + (n/2p,)(3*S/dp?)
— (n/2p3)(3S/3p,)(dp,/dp,) ,
= V{Ap; + B + 28} , S =[1/2(f - DIW{Ap! + Bp? + C,} ,
dS/dp, = (2Ap} + Bp)2(f — DJ{Ap! + Bp? + C}
3°S/ap? = [(6Ap? + B)/2(f — I)V(Ap* + B,p2 + C)]
— [QAp} + Bip)?/2(f — 1)(Ap} + Bp? + C)*? ,
=€+1—-f—1f)/(f—1) , B=(f—2)/2(Ff - 1)V ,
A =46 + 1 — 2e — 1] + 8(c — & — &d0)f + 48

B, = (8f6 — 4fe — 426)(1/VL) , C, = £/V, | (D-1)
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where n = 1 for the P-wave and —1 for the SV-wave. The stationary-phase
point can be found by inserting the above formula into the derivative of the
phase function. Once the stationary-phase points are found, the corresponding
vertical slowness can be calculated by (12) and the second derivative of the
phase function is just |z|d%p,/dp?. Then the asymptotic Green’s tensor is found
by inserting these values into (C-1) to (C-6).





