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ABSTRACT

Lee, J. and Shin, C.S., 2015. Time-domain formulation of a perfectly matched layer for the
second-order elastic wave equation with VTI media. Journal of Seismic Exploration, 24: 231-257.

In this study, we introduce the unsplit Perfectly Matched Layer (PML) for the 2D and 3D
second-order elastic wave equations with isotropic and transversely isotropic vertical axis of
symmetry (VTI) media in the time domain. The introduced PML formulations are successfully
applied to practical applications in terms of efficiency and stability. The PML formulations require
less than or an equal number of auxiliary variables than other formulations, thereby decreasing the
computational power necessary to calculate the solution in the PML zone. Derived directly from the
second-order wave form, the PML formulation demonstrates an improved stability compared to
first-order PMLs or second-order PMLs that are derived from first-order systems. Numerical
examples demonstrate that the bulk waves and strong surface waves are perfectly damped out
without introducing instability for an isotropic material in both 2D and 3D. The derived formulation
also provides effective absorption with strong VTI materials, including zinc and apatite, that cause
instability problems in other PML formulations.

KEY WORDS: perfectly matched layer, time-domain seismic wave modeling,
second-order elastic wave equation, VTI media.

INTRODUCTION

Absorbing boundary conditions (ABCs) terminate undesired waves
reflected from edges of a computational domain. As a result of the absorbing
boundary, we can confine the domain within the zone of interest to perform
numerical modeling of unbounded media. A perfectly matched layer is an
absorbing boundary, introduced by Berenger (1994), and is known as the most
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effective of such boundary condition. The PML can damp out waves within a
layer with a thickness of tens of nodes regardless of the frequency and incidence
angle. Because of the successful results obtained for the electromagnetic wave
problems, this technique was extended to other topics, including acoustic wave
equations (Liu and Tao, 1997; Qi and Geers, 1997) and elastic wave equations
(Hastings et al., 1995; Chew and Liu, 1996; Collino and Tsogka, 2001).
However, instabilities have been reported whereby the wave solution can
diverge exponentially in the PML layer (Abarbanel and Gottlib, 1997; Teixeira
and Chew, 1999; Abarbanel et al., 2002), and an unconditionally stable PML
formulation has yet to be presented.

Komatitsch and Tromp (2003) applied the original (split)y PML to the
second-order elastic wave equation that is represented with displacement
wavefields. Most PML formulations have been applied to the first-order system
of equations because it is easy to implement. However, from a practical point
of view, the PML with the system of second-order wave equations has various
advantages, including requiring fewer variables and its direct applicability to
both standard finite-element-based methods and finite difference methods. In
addition, the second-order wave equation has been commonly utilized in seismic
data processing techniques such as full waveform inversion (Tarantola, 1986;
Mora, 1987; Crase et al., 1990; Pratt et al., 1998; Shin and Cha, 2008; Shin
and Cha, 2009) and reverse time migration (Chang and McMechan, 1987; Sun
and McMechan, 2001; Yan and Sava, 2008; Kim et al., 2011).

Li and Matar (2010) applied the convolutional PML (CPML) to the
second-order elastic wave equation that is derived from the first-order CPML
proposed by Komatitsch and Martin (2007). It is noted that second-order
CPMLs introduce large numbers of auxiliary variables and lead to instability
problem with VTI media violating the geometric stability condition (Bécache et
al., 2003). Recently, Assi and Cobbold (2013) derived unsplit PML from the
first-order PML system, which requires only four auxiliary variables. However,
the instability problem still occurred because this PML is basically the same as
the first-order PML, and the stability problems proposed by Bécache et al.
(2003) are inherent to both algorithms.

Duru and Kreiss (2012) suggested a PML formulation that is directly
derived from the second-order wave equation. The authors verified that their
formulation produces an extremely stable solution compared to the conventional
first-order PML system even for VTI materials violating the geometric stability
condition. However, this PML formulation requires twelve auxiliary variables
even for the 2D elastic problem.

In this paper, we introduce the unsplit PML for the 2D and 3D
second-order elastic wave equations with isotropic and VTI media in the time
domain. This PML exhibits the stability of the PML of Duru and Kreiss (2012)
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and also requires fewer auxiliary variables compared to the PML of Assi and
Cobbold (2013). We begin by providing a detailed derivation of the
second-order elastic PML system for 2D VTI media. Then, we extend the
formulation to 3D media. Through numerical examples, the damping efficiency
and stability of our PML formulation are demonstrated for isotropic materials
and strong VTI media in the 2D domain. We also demonstrate the efficacy of
MPML (Meza-Fajardo and Papageorgiou, 2008) in the case of instability for
VTI materials significantly violating the geometric condition. Finally, we
present numerical examples of the PML extended to the 3D domain with the
same materials as in the 2D cases, which also demonstrate the efficiency and
stability of the formulation. The finite difference method, which is second-order
accurate in time and fourth-order accurate in space, is used for both the 2D and
3D simulations.

ELASTIC WAVE EQUATION

Linear particle motion in elastic media can be represented using the
momentum conservation law as follows:

p(@%u/ot?) = Vo + f | (1
where p is the density and u is the displacement vector. This equation states that
the net force on an infinitesimal volume is the summation of variations in the
stress field o and external force f. A generalized Hooke’s law relates the stress

o and strain ¢ to the stiffness tensor C, which determines the characteristics of
the elastic media.

o= Ce . (03]

The stiffness tensor for transversely isotropic media with a vertical
symmetry axis is expressed as (Thomsen, 1986)

i Cpcy 0 0 0 |
Cp ¢y ¢35 0 0 0
€3 C3¢3 0 0 O

C = , (3)
0 0 Ocy 0 O

0 00 Oc, O
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where ¢ = (¢;; — ¢;)/2. For the 2D problem in the x-z plane, the stiffness
tensor can be reduced as follows:

Ciu €3 O
C = C13 C33 O . (4)
0 0 cy |

For isotropic media, the stiffness tensor is composed of the Lamé
parameters A\ and . The stiffness tensor parameters are replaced as follows: ¢,
= Cy3 = N+ 2u, ¢;3 = Nand ¢y = p. The strain tensor ¢ is then represented
in terms of the displacement field as follows:

e = %Vu+ Vu") . )

The above equations can be rewritten as the second-order elastic wave equation
with respect to the displacement vector. The second-order elastic wave equation
for VTI media in the 2D domain is

p(Pu/d) = (3/0x)[c,,(du/dx) + c,5(dW/d2)]

+ (3/82)[cey(8u/dzZ) + Cyy(OW/IX)] + f, | (62)
p(PWIAB) = (8/0%)[c,,(0/0Z) + cu(dW/OX)]

+ (3/02)[c 5(0u/dx) + cyy(dW/0Z)] + £, . (6b)

Many numerical techniques, such as the finite difference method (Marfurt,
1984; Appeld and Peterson, 2009), finite-element-based methods (Marfurt,
1984; Komatitsch and Vilotte, 1998; De Basabe et al., 2008; Min et al., 2003),
and spectral- or pseudo-spectral-based methods (Carcione et al., 1988; Kosloff
et al., 1989), have been used to solve this system. This study employs a finite
difference method that is second-order accurate in time and fourth-order
accurate in space.

PML FOR THE 2D ELASTIC WAVE EQUATION

A complex coordinate transformation is the basis of the PML suggested
by Chew and Weedon (1994). The complex coordinate transformation is applied
to the Helmholtz-like equations, which can be obtained by casting the wave
equation in the frequency domain or the Laplace domain. In this study, the
formulation in the Laplace domain is used in the PML zone. The complex
stretched transformations in the 2D Cartesian coordinates are presented as



PML FOR SECOND-ORDER ELASTIC EQUATION 235

follows:
X = S s,(xNdx’ =1 + 5 d(x"dx’ , (7a)
0 0
2= [ s@z =1+ [ d@z | (7b)
0 0

The damping profiles d, and d, should be positive in the PML zone and
undefined or zero in a normal domain. The Helmholtz system of egs. (6) is
transformed with respect to the complex coordinate as follows:

ps*d = (3/3%)[c,,(80/0%) + c,5(0W/0%)]

+ (0/0Z)[c44(00/0Z) + c,4u(0W/0X)] (8a)

pS*W = (8/0%)[C44(30/0Z) + Cuy(OW/3%)]

+ (0/0Z)[c,3(00/0%) + c43(0W/0Z)] (8b)
where 0 and W are the horizontal and vertical displacement in the Laplace
domain, respectively. The partial derivatives with respect to the stretched
coordinates in the PML zone can be replaced by those of physical coordinates
in the normal domain as follows:

a/0% = (1/s)(d/9x") , 09/0z = (1/s,)(3/0z) , )
where

s,=1+4d/s, s,=1+4d,/s. (10)

Then, we can derive eq. (11) by substituting eq. (9) into (8), the PML
formulation for the 2D elastic wave equation in the Laplace domain.

ps?s,s, 0 = (8/9x)[cy4(s,/s,)(0/3X) + c13(0W/z)]
+ (0/07)[Cyy(8,/5)(00/3Z) + C4u(0W/IX)] (11a)

PS8, W = (0/0X)[C44(80/0Z) + Cyu(S,/5,)(OW/X)]
+ (8/02)[c13(00/0X) + ca3(8,/8,)(AW/0z)] . (11b)

The wave solution in the Laplace or Fourier domain can be numerically
obtained by an implicit method using an inverse matrix solver. The solutions
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have been used for many seismic processing applications such as full waveform
inversion in the frequency domain or Laplace domain (Pratt et al., 1998; Shin
and Cha, 2008; Shin and Cha, 2009) and reverse time migration in the
frequency domain (Kim, 2011).

Hereafter, we will take an inverse Laplace transform of eq. (11) to derive
the PML in the time domain. The following time-domain PML formulation was
applied to the acoustic wave equation by Grote and Sim (2010). Using the
complex stretching parameter in eq. (10), eq. (11a) is written as

pls*a + (d, + d,)st + d,d,0]

= (8/9x)[c;;(00/9x) + {c,,(d,—d)/(s+d,)}(30/3X) + c,5(dW/dz)]

+ (0/02)[c44(30G/0z) + {c4y(d,—d,)/(s+d,)}(00/3z) + c,,(AW/Ix)] . (12)

We can introduce the auxiliary variables &)u,x and &u'z as follows:

Sux = [en(d, — /(s + dI@W/IX) | (13a)

b, = [ca(d, — d)/(s + d))](30/0z) , (13b)
or

$hux = —ddyx + cu(d, — d)(d0/Ix) | (14a)

sh, = —d,by, + caud, — d))(00/32) . (14b)

Eq. (11b) can be reformulated in the same manner by introducing the
auxiliary variables qbw . and qbw .- The final form of the 2D PML formulation of
the elastic wave equation with respect to the time domain is

p(3*u/at?) = (3/3x)[c,;(du/dx) + ¢, + c3(0W/0z)]

+ (0/02)[c44(3u/0z) + ¢, + Cyu(OW/3X)]

— p(d, + d,)(du/dt) — pddu , (15a)

p(*W/3t) = (8/0%)[c4y(Bu/dZ) + C,y(OW/IX) + B, ,]
+ (9/02)[c15(0u/0z) + c33(dW/3X) + @, ,]

— o(d, + d)(@w/dt) — pd,d)w , (15b)
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do,,/dt = —d,¢,, + c;;(d, — d)(0u/dx) , (15¢)
do,,/dt = —d,p,, + cu(d, — d,)(0u/dz) , (15d)
do, /dt = —d ¢, , + cu(d, — d)(OwW/dx) , (15e)
do,  /dt = —d, b, , + cy(d, — d)(0w/dz) . (151)

The differential equations with respect to the auxiliary variables, which
are also called the auxiliary difference equations (ADEs), must be solved in the
PML zone, thereby increasing the computation costs. There are four auxiliary
variables in the derived PML, which is equivalent to the formulation suggested
by Assi and Cobbold (2013), who used fewer variables than other existing
formulations for the 2D problem. For the ADEs, we impose Dirichlet boundary
conditions with values of zero because the auxiliary variables outside of the
PML zone remain equal to zero during the time marching step.

PML FOR THE 3D ELASTIC WAVE EQUATION
In this section, we extend the PML formulation to the 3D case. Except
when considering the y-component, the majority of this procedure is identical

to that of the 2D problem. Starting from the Helmholtz system of 3D elastic

wave equations, we can derive the PML formulation in the Laplace domain as
follows:

pszsxsyszﬁ = (3/9x)[cy,(s,5,/8,)(30/0X) + €155,(09/3y) + c,38,(0W/02)]

+ (9/3y)[Ces(s,8,/5,)(00/3y) + cg8,(3V/0%)]

+ (3/02)[Cas(s,8,/5,)(30/0Z) + c4y8,(0W/0X)] (16a)
ps’s,8,8,V = (8/0x)[cgs,(30/dy) + Ce6(SyS,/8,)(V/0x)]

+ (8/3y)[c18,(00/0%) + c¢4(s,8,/5,)(8V/dy) + c,35,(0W/3z)]

+ (0/0z)[Cyy(s,8,/,)(3V/0z) + C48,(0W/0X)] (16b)
pSZSxSySZW = (0/0%)[c448,(30/02) + Cyy(s,8,/5,)(dW/9x)]

+ (0/0y)[c448,(39/02) + c44(s,5,/5,)(OW/y)] (16¢)

+ (9/02)[c38,(00/0%) + ¢,38,(0V/8y) + C33(5,3,/5,)(0W/2)] .

Eq. (16a) is rewritten by substituting the complex stretch parameters s,, s, and

x> Sy
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s, as follows:
plsd + (d,+d,+dy)st + (d,d,+d,d,+d,d)a + d.d,d,(i/s)]
= (8/0%)[c,,(00/3x) + ¢, {[(d,+d,—d)/(s+d)] + [d,d,/s(s+d,)]}(00/dx)
+ €5(8V/0y) + ¢45(d,/s)(0V/dy) + c13(0W/3z) + cy5(d,/s)(dW/dz)
+ (0/3y)[ces(00/3y) + coil(d, +d,—d,)/(s +d))] + [d,d,/s(s+d,)]}(30/dy)
+ Ce(0V/0x) + cge(d,/5)(0V/0X)
+ (0/02)[c44(00/3z) + cyu{[(d,+d,—d,)/(s+d,)] + [d,d,/s(s+d,)]}(30/9z)

+ C4(OW/0X) + cyy(d,/s)(OW/3X) . a7

We can introduce new auxiliary variables ¢,, ¢, and ¢,
o, = A/, ¢, = (Us)V, ¢, = (I/s)W . 18)
On the right-hand side, the other auxiliary variables are defined as

ux = Culldy+d,+d)/(s+d)] + [(dyd)/s(s+d,)]}(00/dx) | (19a)

iy = Cesll(@,+d,+d)/(s+d)] + [(d,d)/s(s+d,)]}(80/dy) | (19b)

oz = Caa{l(d+d,+d)/(s+d)] + [(dd,)/s(s+d,)]}(30/0z) |, (19¢)

or
$huy = —didy s + cyl(dy+d,+d)@0/ax)] + [d,d,(3¢,/0%) , (20a)

sbuy = —dy,, + cel(d, +d,+d,)@0/3y)] + [d,d,(3,/dy) ,  (20b)
sbo, = —d,b,, + cul(d,+d,+d,)00/02)] + [d,d,(9,/0z) . (20c)

The remainder of eq. (16) can be reformulated in the same manner by
1ntr0duc1ng b, o b, v qbv 2 Puxo b, v and d)w .- The final formulation of the PML
is presented in the Appendix. As in the 2D case, the number of auxiliary
variables introduced is less than or equal to those of other formulations. Table
1 illustrates the number of auxiliary variables required for the PML formulation
of the second-order elastic wave equation for both the 2D and 3D cases. There
are fewer auxiliary variables in the derived PML formulation than in the CPML
and the original PML (half and two thirds as many variables for the 2D and 3D
cases, respectively).
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Table 1. Number of auxiliary variables needed for the derived PML, CPML and original PML for
both the 2D and 3D formulations.

Derived PML CPML Original PML
2D Elastic 4 8 8
3D Elastic 2 18 18

NUMERICAL EXAMPLES

In this section, we demonstrate the absorbing behavior of the PML
proposed in the previous section. We perform numerical tests with isotropic and
VTI media. Fig. 1 illustrates the computational domain of the numerical test.

a 2,0, x (km 38,00 b
(a) 490209 (km) (38,00) 4 (b) . 2 ,
7YY S —— ; N4
: R2(3.725,0.275)v | & L 02,0275.00)
i 0‘\ 4 s2(10,027500) (38.0275.00)
i R1(3.725,1.135)¥ ! 0 A —————
! : | R2(3.725,0275,0.275)
:E: ! . : | R1(3.725,0.275, 1.135)7
N[ S1E0,24 : 21! $1(20,2.0 2.0)
: ; ||
i i N X
4 L L L L L 4

Fig. 1. Computational domain of the (a) 2D plane and (b) the 3D cube.

For the 2D problem, we utilized a 4x4-km square domain with a 120-m
thick PML layer surrounding the domain. We impose a source at S1(2.0, 2.0)
to simulate bulk waves. Bulk wave signals are received at R1(3.725, 1.135) and
R2(3.725, 0.275) in the 2D domain. To simulate the surface wave in the
half-infinite domain, we impose a source at $2(1.0, 0.0) and receivers (inverted
triangles) at the surface form (0.2, 0.0) to (3.8, 0.0), as shown in Fig. la. In

this case, we set a free stress boundary condition at the top surface instead of
the PML layer.
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For the 3D problem, a cube with dimensions of 4x4x4 km is utilized as
the computational domain with a 120-m thick PML layer for all of the outer
surfaces. We place the source at S1(2.0, 2.0, 2.0) to simulate the bulk waves,
which are recorded at R1(3.725, 0.275, 1.135) and R2(3.725, 0.275, 0.275).
We also simulate the surface waves for the 3D domain with source (S2) and
receivers from (0.2, 0.275, 0.0) to (3.8, 0.275, 0.0) at the surface, as shown
in Fig. 1b. Similarly to the 2D case, we utilize a free stress boundary condition
at the top surface.

The damping profile d, in the PML layer for the x-direction, which starts
from x, and has a thickness L,, is set as a quadratic function as follows:

dx = dmax[(X - XO)/LX]2 5 (21)
where

dpax = —VmadOgR2L, . (22)
R is the reflection coefficient, which is set to 1073 in the numerical tests. The

damping profiles in the y- and z-directions are applied to the PML layer in the
same manner.

2D ISOTROPIC MEDIA

We applied the PML to 2D isotropic media with a density p = 2000
kg/m’ and Lamé constants A\ = 1.496 X 10° N/m* and p = 1.507 X 10° N/m?.
A source is imposed, in the z-direction, as a time derivative of the Gaussian
function as follows:

q) = —~(W)rht — e THEW 23)

where f is the peak frequency and t, is the delay time. In this case, we use f,
= 20 Hz and t, = 0.45 s.

Fig. 2 shows 2D snapshots of the vertical displacement (w) in the bulk
wave simulation at four different times of up to 20 s in the modeling. The
snapshots illustrate the wave propagating in the 2D plane and the P-wave
entering into the PML layer followed by the S-wave. Both of the waves are
clearly damped out without generating reflections. To distinguish reflections
from the wavefield, we generated an analytical solution using a much larger
computational domain. A comparison of the time evolution of the horizontal and
vertical displacements (w) at the receiver locations in the model in Fig. 1a to the
analytic solution demonstrates that significant reflections are not visible from the
PML zone, as shown in Fig. 3.
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Fig. 2. Snapshots of the vertical displacement of bulk waves in the 2D isotropic media. The
snapshots are att = 0.7s,t = 1.05s,t = 0.75s, and t = 20 s.
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Fig. 3. (a) Time evolution of horizontal displacement (left) and vertical displacement (right) at R1
compared to analytic trace. (b) Time evolution of horizontal displacement (left) and vertical
displacement (right) at R2 compared to analytic trace.
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Late time instability, a blow-up phenomenon that can occur after
quiescence, has been reported with the use of the unsplit PML (Abarbanel et al.,
2002). The total mechanical energy of the computational domain, excluding the
PML layer, is calculated to detect the instability during the modeling as follows:

E = sn(l/zp Iv]? + to,e,)d (24)

Fig. 4 illustrates the mechanical energy in the normal domain and shows
that the energy of the P-waves decays at approximately t = 2.5 s and that the
energy of the S-waves decays at approximately t = 6.6 s. The total energy
gradually decreases, and no instability is visible up to 100 s.

(a) t T T t t t
=
2
w
Il
B
=
(b) :
"||:|“1 3 T T T T T T T T T E
-12
. 107 E E
=
@
=
w
“‘(—E -12
2 107k 4
Y
107} .
1 1 L 1 1 1 | 1

50 85 B0 B5 70 75 80 85 90 95 100
Time (s)

Fig. 4. (a) Mechanical energy history in the normal domain from 0 to 10 s and (b) from 50 to 100s
using a log scale for the 2D elastic wave propagation.
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We also performed the wave propagation modeling in the half-infinite
elastic media to simulate surface waves at the top boundary. Fig. 5 illustrates
a seismogram of the vertical displacement (w) up to 20 s and shows that P-wave
and Rayleigh waves are clearly damped out without significant reflections from
the PML layer.

E Time (s)

= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
mo

e 5
&1

(1]

a2 0
w

e s
£ x10°8
=]

T

Fig. 5. Seismogram of vertical displacement for the 2D isotropic media up to 20 s.

2D VTI MEDIA

For the numerical test with the 2D VTI media, we use VTI materials
having strong Thomsen parameters such as shale, muscovite, biotite, calcite,
apatite and zinc (Ledbetter, 1977, Thomsen, 1986). The properties of the
materials are presented in Table 2. The stability of the PML with VTI materials
depends on the material properties, and Bécache et al. (2003) proposed the
necessary stability condition, which is called the geometric stability condition
because it means that the projection of the slowness vector to the group velocity

Table 2. Stiffness parameters of strong VTI materials for the numerical examples presented in
Thomsen (1986) and Ledbetter (1977). Calcite, apatite and zinc violate the geometric stability
condition (Bécache et al., 2003).

o(g/em®) c,(GPa) ¢,,(GPa) c3(GPa) c13(GPa) c4(GPa) ces(GPa)

Shale 2.42 38.64 16.93 14.68 27.6 5.37 10.85
Muscovite 2.28 144.32 33.47 11.75 44.54 9.97 55.43
Biotite 3.05 172.64 27.4 10.53 50.13 5.48 72.62
Calcite 2.71 134.01 52.48 49.15 77.1 30.47 40.77
Apatite 3.2 153.58 10.82 59.12 128.63 61.64 71.38

Zinc 7.1 163 30.6 48.1 60.3 394 65.9




244 LEE & SHIN

vector must be in the same direction. The relation between the group velocity
direction ¢ and slowness direction 6§ was presented in Thomsen (1986) as
follows:

tang, = tangp[l + 26 + 4(¢ — 6)sin®6,]

tandg, = tanfgy[1 + 2(aj/Bi)(e — 8)(1 — sin’fgy)] , (25)

tanggy = tanggy(l + 2v)

where o, and 3, are P- and S-wave speeds, respectively, in the vertical direction
and ¢, 6 and y are Thomsen parameters. For weakly anisotropic VTI materials,
which have Thomsen parameters ¢ < 1, 6§ < 1 and y < 1, the direction of the
slowness vector and the group velocity are almost equal, and the solution is
stable in the PML layer, thus satisfying the geometric stability condition.
However, strong VTI materials, such as calcite, apatite, and zinc crystal, which
are listed in Table 2, can easily violate the stability condition. For this reason,
the exponential blow-up problem is typically considered using a PML
formulation such as the CPML (Komatitsch and Martin, 2007; Li and Matar,
2010) or the unsplit PML (Assi and Cobbold, 2013).

xlkrm x {km) x[kmr % (k)

0 1 2 3 4 1 2 3 4
o
1 o 0
2 2 21 2
3 1 1
4

x10°7 x10°7 x10°7 x10°7
x (km} ® (km) u (km}
2 3 4 2 3 4 1 2 3

z [km}
z (km)
z [km}
z [km}

4

e ] 0
E
£2
N
5 5
x10°8 x10°8 x10-8
z[km} z[kml
05
- - o
5 2 5 2
= =
1.0 10
x0T x0T

Fig. 6. Snapshots of the vertical displacement of a bulk wave in the 2D VTI media. (a) Snapshots
att =0.6s,t=1s,t=14s,andt = 20 s for shale. (b) Snapshots at t = 0.4s, t = 0.75 s, t
=1.05s,andt = 20s,, and for muscovite. (c) Snapshots att = 0.5s,t = 1s,t = 1.5, and
t = 20 s for biotite.
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For the wavelet, we use the time derivative of the Gaussian function, eq.
(21), and apply it in the negative z-direction with f, = 17 Hz and t;, = 0.14 s
for shale, muscovite, and biotite and with f, = 30 Hz and t, = 0.08 s for
calcite, apatite, quartz and zinc crystal. Figs. 6 and 7 illustrate snapshots of the
propagation of the vertical displacement (w) in the bulk wave modeling at four
different times for the VTI materials in Table 2. The snapshots illustrate the
propagation of the quasi-p- and quasi-s-waves, which are clearly damped out in
the PML layer without instabilities for up to 20 s for most of the materials. The
PML does not lead to instabilities for calcite, apatite, and zinc, which are
materials that violate the geometric condition. We also generated a synthetic
seismogram with the half-infinite media using the stress-free boundary condition
at the top surface. The seismograms of the vertical displacement (w) for the
materials in Table 2 are presented in Figs. 8 and 9. Likewise, for the bulk
waves illustrated in Figs. 5 and 6, the PML layer does not yield significant
reflections and instability up to 20 s of simulation for the surface waves.

However, instability does occur for the materials significantly violating

the geometric stability condition, such as the material used in Bécache et al.
(2003) with ¢;; = 4 X 10° N/m?, ¢;; = 20 X 10° N/m?, ¢y, = 2 X 10° N/m?,

(b)

Fig. 7. Snapshots of the vertical displacement of a bulk wave in 2D VTI media violating the
geometric stability condition. (a) Snapshots att = 0.3s,t = 0.6s,t = 0.85s, and t = 20 s for
calcite. (b) Snapshots att = 0.3s,t = 0.525s,t =0.75s, and t = 20 s for apatite. (c) Snapshots
att =0.5s,t=1s,t=1.5s,andt = 20 s for zinc.
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Fig. 8. Seismogram of vertical displacement for the 2D VTI media up to 20 s. (a) Shale. (b)
Muscovite. (c) Biotite.

¢i3 = 7.5 X 10° N/m* and p = 1000 kg/m>, which exhibits the instability
problem under most types of PML formulations. In the early stage, the
instability starts at the entrance of the PML zone and spreads along the layer,
as presented at the top of Fig. 10a. The instability can be mitigated using the
MPML suggested by Meza-Fajardo and Papageorgiou (2008), which is a simple
technique that uses the sponge boundary effect in%he PML zone. Fig. 10b
shows snapshots of the wave propagation using the MPML. No instabilities are
visible in this case; however, long-wavelength reflections are observed because
of the sponge layer effect.
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Fig. 9. Seismogram of vertical displacement for the 2D VTI media violating the geometric stability
condition up to 20 s. (a) Calcite. (b) Apatite. (c) Zinc.

3D ISOTROPIC MEDIA

We applied the PML to 3D isotropic media with a density p = 2000
kg/m’, and Lamé constants of A = 1.496 X 10° N/m? and p = 1.507 x 10°
N/m’. The source wavelet is imposed in the z-direction with the time derivative
of the Gaussian function with f, = 10 Hz and t, = 0.45 s.
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Fig. 10. (a) Snapshots of the vertical displacement of bulk wavesatt = 1s,t =2s,t =3 s, and
t = 20 s for the material introduced by Bécache et al. (2003) violating the geometric stability
condition, which yields instability. (b) Snapshots when the MPML is imposed on the PML layer.

Fig. 11 presents snapshots of the vertical displacement (w) in the bulk
wave simulation at four different times for up to 20 s in the simulation. The
results show that the PML is effective for 3D isotropic media in that no
reflections from the boundaries are observed. Fig. 12 presents the time traces
of the horizontal and vertical displacement (w) recorded at the receiver
locations. Similar to the 2D isotropic media case, the analytic solution is
obtained using the numerical solution with a larger media model; the solution
is in good agreement with the numerical solution with the PML zone. The total
mechanical energy is calculated in the computational domain, excluding the
PML layer, and is presented in Fig. 13. The total mechanical energy gradually
decreases, and no late-time instability is visible in the first 100 s of modeling.

We also performed numerical modeling of the half-infinite media to
simulate surface waves in the 3D domain. Fig. 14 shows the synthetic
seismogram of the vertical displacement (w) for the isotropic media, wherein the
p-waves and Rayleigh waves are damped out in the PML layer.

3D VTI MEDIA

For the numerical test with the 3D VTI media, we use the materials
presented in Table 2, which are utilized for the 2D numerical examples. Figs.
15 and 16 present snapshots of the vertical displacement (w) in the bulk wave
modeling at four different times up to 20 s. The wavelets are the same as those
in the 2D modeling case and are applied in the negative z-direction. The
stability condition of the VTI media, and likewise for the geometric condition
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in the 2D problem, is not explicitly presented for the PML with the 3D elastic
wave equation. It is yet to be defined if the stability criterion is relaxed; the
snapshots show that the bulk waves are effectively damped out in the PML layer
without any instabilities for up to 20 s for all materials, including calcite, apatite
and zinc, which violate the geometric condition in the 2D problem. Figs. 17 and
18 demonstrate that the surface waves are also effectively absorbed by the PML
layer for the strong VTI media.

Despite the numerical results, we expect that instability may occur with
VTI media as in the numerical example of the 2D case. For the 3D problem,
we do not search for hypothetical materials that can cause the exponential
blow-up phenomenon, and a mathematical analysis must be performed to
understand the stability characteristics of the 3D elastic wave PML for VTI
materials.
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Fig. 11. Snapshots of the vertical displacement of a bulk wave in the 3D isotropic media. The
snapshots are att = 0.7s,t = 1.05s,t = 1.4s, and t = 20 s.
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Fig. 15. Snapshots of the vertical displacement of bulk waves in the 3D VTI media. (a) Snapshots
att =0.6s,t=1s,t=1.4s,andt = 20 s for shale. (b) Snapshots att = 0.4s,t = 0.75 s, t
= 1.05 s, and t = 20 s for muscovite. (c) Snapshots att = 0.5s,t =.15s,t = 1.5s, and t = 20s
for biotite.

CONCLUSION

In this study, we introduced the time-domain PML formulation of the
second-order elastic wave equation for isotropic and VTI media. The derived
formulation requires a number of auxiliary variables. However, the formulation
requires half and two thirds as many variables compared to the original PML
or CPML for the 2D and 3D cases, respectively, thereby reducing the
computational costs of solving the system in the PML zone. For isotropic
media, the incoming waves are almost completely damped out in the PML zone
without exhibiting instability or linear growth phenomena for up to 100 s of
simulation. The PML layer also eliminated wavefields in the strong VTI media,
which caused instability in other PML formulations. Our PML formulations are
both efficient and stable, and the numerical examples demonstrated that the
PML formulations are suitable for materials commonly found in practical
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seismic problems. The PML formulations of other types of anisotropic
materials, such as tilted transversely isotropic (TTI) or orthotropic media, need
to be studied in the near future.

DATA AND RESOURCES

No data were used in this paper. The codes simulating 2D and 3D elastic
wave propagation were developed by the authors and performed on a computer
with an Intel 3.2 GHz processor to generate the results for the numerical
examples.
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Fig. 16. Snapshots of the vertical displacement of bulk waves in the 3D VTI media violating the
geometric stability condition. (a) Snapshots att = 0.3's,t = 0.6s,t = 0.85s, and t = 20 s for
calcite. (b) Snapshots att = 0.3 s,t = 0.5255s,t = 0.75 s, and t = 20 s for apatite. (c) Snapshots
att =05s,t=1s,t=15s,andt = 20 s for zinc.
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APPENDIX

The final formulation of the PML for the 3D elastic wave equation with
VTI media is

p(0%u/3t%) = (3/3%)[c,,(du/dx) + ¢, , + c,(8v/dy) + d,(d¢,/dz)
+ ¢3(0w/0z) + d,(3¢,/dy)]
+ (9/9y)lces(0u/dy) + ¢, + Ce(dV/0x) + d,(d¢,/0X)
+ (8/02)[c44(0u/0z) + ¢, + C4u(0W/0X) + d (3¢, /dX)
— p(d, + d, + d,)(du/dD)

- pdd, + dd, + d,d)u — pdd,d,e, ,

p(3°V/3t%) = (8/9x)[ces(Au/dy) + d, (g, /dy) + ces(dV/DX) + oy
+ (9/0y)[c,(0u/9x) + d,(3¢,/0X) + c;;(dV/dy)
+ ¢,, + ¢3(0w/0z) + d,(0¢,/02)]
(A-1)
+ (0/02)[c44(0V/02) + b, , + C4y(dW/3X) + d, (3¢, /dX)
— p(d, + d; + d)(v/ot)

- pdd, + dd, + d,d)v — pd,dd,e, ,



PML FOR SECOND-ORDER ELASTIC EQUATION 257

p(°W/3t?) = (3/0X)[C4y(0u/dz) + dy(0¢,/0Z) + CuW(AW/IX) + @]
+ (0/0y)[c4s(0v/0z) + d(3¢,/0Z) + C4y(dW/y) + &yl
+ (8/0z)[c15(u/dx) + dy(3¢,/dX) + c13(dv/dy)
+ d,(0¢,/0y) + c33(0W/0z) + ¢, ,]
— p(d, + d, + d)(@w/at)
- p(dd, + dd, + dd)w — pd,d,d,e, ,
and the ADEs are written as
dp, /0t = u, d¢,/0t = v, 0¢,/0t = W,
0¢,,/0t = —dip,x + cl(dy + d, — d)(0u/ox) + d,d,(d¢,/x)] ,
0,,/0t = —dy¢,, + cel(d, + d, — d))(u/dy) + d,d(0p,/3y)] ,
09, ,/0t = —d,¢,, + cul(d, + d, — d)(0u/dz) + d,d,(3¢,/02)] ,
09, ,/0t = —dd, . + cl(dy + d, — dY(@v/dx) + d,d,(3¢,/0x)] ,
99, ,/0t = —dyp,, + c;[(d, + d, — d)(@v/dy) + d,d,(d¢,/dy)] ’(A-2)
09, /ot = —d,¢,, + cul(d, + d, — d)(3v/3z) + d,d,(8¢,/02)] ,
09, /0t = —dyd, x + Ccul(d, + d, — d)(@W/3x) + d,d,(3¢,/3x)] ,
09,0t = —dyd,, + cul(d, + d, — d)@W/dy) + d,d,(3¢,/dy)] ,

39,.,/0t = —d@,, + cul(d, + d, — d)(@W/dz) + dd,(Be,/32)] .





