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ABSTRACT

Zhang, C. and Chen, L., 2015. A symplectic partitioned Runge-Kutta method using the eighth-order
NAD operator for solving the 2D elastic wave equation. Journal of Seismic Exploration, 24: 205-
230.

In this paper, on the basis of the extended Hamiltonian system, we develop a symplectic
partitioned Runge-Kutta method based on the nearly analytic discrete (NAD) operator with
eighth-order accuracy for solving the 2D elastic wave equation, which is called the eighth-order
NAD-SPRK method in brief. In the new method, we first employ the NAD operators with the
eighth-order accuracy to discretize the high-order partial derivatives of space directions in the 2D
elastic wave equation. Then the symplectic partitioned Runge-Kutta scheme with the second-order
accuracy is applied to discretize the temporal high-order partial derivatives. We provide the
theoretical study on the properties of the eighth-order NAD-SPRK method, such as theoretical error,
stability criteria, numerical dispersion, and computational efficiency. We also compare the 2D elastic
wave modeling results of this new method against those of some high-order methods. Numerical
experiments show that the eighth-order NAD-SPRK method has the least numerical dispersion
against the fourth-order NSPRK method, the eighth-order Lax-Wendroff correction (LWC) method,
and the eighth-order staggered-grid (SG) method. Meanwhile, its computational costs and memory
requirements are much less than those of the eighth-order LWC method. Against the eighth-order
LWC method, comparison results indicate that the eighth-order NAD-SPRK method can provide the
equivalent solutions with analytic solutions on much coarser grids. Last, we present the wave-field
snapshots and wave seismograms in the homogeneous transversely isotropic medium and in the
three-layer medium with a fluctuating interface for the 2D elastic wave, and the wave-field snapshots
of the 2D elastic wave in the two-layer homogenous isotropic medium and in the two-layer
heterogeneous medium. All these results of numerical simulations illustrate that the eighth-order
NAD-SPRK method can effectively suppress the numerical dispersion caused by discretizing the
wave equations when big grids are used or when models have large velocity contrasts between
adjacent layers, further resulting in both saving the storage space and increasing the computational
efficiency when too few sampling points per minimum wavelength are used.

KEY WORDS: NAD operator, symplectic partitioned Runge-Kutta method, elastic wave equation,
numerical dispersion, wave-field simulation.

0963-0651/15/$5.00 © 2015 Geophysical Press Ltd.



206 ZHANG & CHEN

INTRODUCTION

Using the inversion imaging method of seismic to know the internal
structure of the earth and explore oil resources, requires fast and accurate
simulation for the forward process of seismic wave propagating in the earth
medium. Therefore, for a long time, to develop a more effective and more
accurate forward numerical simulation method has been one of the important
research topic in geophysics.

To improve the calculational efficiency and computational accuracy of
wavefield simulation in the complex media, many numerical methods since 20
century have been proposed. Currently, the mainly used schemes include finite
element methods (Chen, 1984; Ma and Liu, 2006; Moczo et al., 2007;
Smith,1975; Yang, 2002), finite difference (FD) schemes (Dablain, 1986; Dong
et al., 2000; Kelly et al., 1976; Moczo et al., 2000, 2002; Sénger et al., 2000),
pseudo spectral methods (Huang, 1992; Komatitsch and Vilotte, 1998),
reflectivity method (Chen, 1993) and so on. Among these numerical techniques,
FD methods (Dablain, 1986; Kelly et al., 1976) have become the most used
method of wavefield simulation in geophysics because of its simplicity for
computer code, fast calculation speed and high parallelism. However, the
conventional FD schemes suffer from serious numerical dispersion when too
coarse computation grids are used or when the velocity models have strong
velocity contrasts between adjacent layers (Dablain, 1986; Yang et al., 2002,
2006, 2012). To suppress numerical dispersion, fine space grids or high-order
methods are used usually. Unfortunately, finer grid spacing leads to significant
increase in memory usage and computation time of central processing unit.
Higher order methods, which are less efficient in the parallel implementation of
algorithms and boundary treatments, will not guarantee a necessarily lower
phase velocity error of the wave (Fei and Larner, 1995). To effectively solve
these existing problems, the so-called nearly analytic discrete (NAD) (Yang et
al., 2003) operator was introduced to approximate the partial differential
operators based on the truncated Taylor expansion and the local interpolation
compensation for the truncated Taylor series. From the NAD operator, different
more effective numerical algorithms (Chen et al., 2010; Wang et al., 2009;
Yang et al., 2007, 2009) have been developed, which can enable the effective
suppression of the numerical dispersion when coarse computation grids are used.
However, These methods did not consider the symplectic property of differential
operators in the 2D elastic wave equation. At the same time, the NAD operator
has only the fourth-order space accuracy, and there is no research on the NAD
operator with higher space accuracy at present.

As we know, the Hamiltonian framework possesses elegant symmetric
structures inducing several conservation laws such as conservation of
symplecticity and energy (Ruth, 1983). It is therefore very important to conserve



SYMPLECTIC PARTITIONED RUNGE-KUTTA METHOD 207

numerically these structures for designing numerical schemes to solve
Hamiltonian systems that they preserve the physical properties of a system and
the numerical stability. For solving seismic wave propagating equations
evaluated in the Hamiltonian systems, in the past two decades, many schemes
have been proposed and have obtained favourable results (Yoshida, 1993),
among which are a number of algorithms that numerically solve the Hamiltonian
partial differential equation (PDE). The conventional construction of numerical
schemes for the Hamiltonian PDE is to first discretize the spatial derivatives by
the second- or fourth-order central-difference schemes to transform the PDEs
into a semi-discrete Hamiltonian system of ordinary differential equations, which
will then be solved using one of the symplecticity conserving methods (Qin and
Zhang, 1990). Recently, a nearly analytic symplectically partitioned
Runge-Kutta (NSPRK) method with fourth-order space accuracy has been
developed to solve the wave equations (Ma et al., 2011, 2010) and has achieved
good results. But the fourth-order NSPRK method has the only fourth-order
accuracy in space.

In this paper, on the basis of the extended Hamiltonian system, we
propose a symplectic partitioned Runge-Kutta method using NAD operators with
eighth-order accuracy for solving 2D elastic wave equations to further reduce
the numerical dispersion and further improve the accuracy of the wave-field
simulation, which is called the eighth-order NAD-SPRK method in brief. We
first transform the original elastic wave equations into a conventional
Hamiltonian system. Then, we employ the NAD operators with the eighth-order
accuracy (Tong et al., 2013; Zhang et al., 2014a, 2014b) to discretize the
high-order partial derivatives of space directions, and apply the symplectic
partitioned Runge-Kutta scheme with the second-order accuracy (Sun, 1997) to
discretize the temporal high-order partial derivatives. Due to using the
symplectic method in time and choosing the high-order NAD operators in space,
so the eighth-order NAD-SPRK method has advantages of conserving the
symplecticity in time and effectively suppressing the numerical dispersion.

To illustrate the numerical behaviors of this new method, we analyze its
theoretical error and stability criteria. We also numerically investigate numerical
dispersion, computational efficiency, and numerical solutions. Last, we simulate
the elastic wave propagating in the homogeneous transversely isotropic medium,
the two-layer homogenous isotropic medium, the two-layer heterogeneous
medium, and the three-layer medium with a fluctuating interface. The results of
numerical simulations demonstrate that the eighth-order NAD-SPRK method has
very low numerical dispersion when coarse grids are used or models have strong
velocity contrasts between adjacent layers. As a result, the eighth-order
NAD-SPRK method can save both the storage space and computational time
when too few sampling points per minimum wavelength are used.
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THEORY OF THE EIGHTH-ORDER NAD-SPRK METHOD
Second-order symplectic partitioned Runge-Kutta scheme
Consider the following Hamiltonian system for 2D case
dUu/dt = V
; (6]
dv/dt = LU

where U = (u;,u,,u,)", V = (v;,v,,v5)", and L is the second-order partial
differential operator.

We can discretize the second-order temporal derivatives included in
system (1) by using the following second-order symplectic partitioned
Runge-Kutta scheme, namely, the Lobatto IIIA-IIIB method (Sun, 1997), to
approximate the time derivatives

V, = V" + »BAILU
Ut = U" + AtV, , 2)
Vil = V) + BALLUCHD

where At is the time step, V, is the intermediate variable.

To save storage space and improve calculation speed, by combining with
eq. (2), we gain the computational formulae as follow

Urtl = VM 4 AEV® 4+ BARLU
: €)
Vil = Vo 4+ ALU™ + KALRLV" + %ALLU

where L2 = L-L.

Transforms of the elastic wave equations

In 2D inhomogeneous anisotropic medium, the elastic wave equations are
given by

where the subscript j takes the values of 1 and 3, u; and f; denote the
displacement and the force source component in the i-th direction, p = p(x,z)
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and o;; are the density and stress tensor, respectively.

By using the stress-strain relations, we can transform eq. (4) into the

following vector equation

d0?U/ot2 = DU + F

©)

where U = (u;,u,,u3)", F = [(1/p)f,,(1/p)f,,(1/p)f;]" and D is the second-order
partial differential operator. For examples, for the 2D homogenous isotropic

case D, is defined by

2 2
Atop 0 KO 0
p ' por
ul 8 &
D, = 0 a2tz
p\ox" Oz
A+u 0 0
p OxOz

A+pu &
p 0Ox0z

0

uo
p Ox’

+l+2y6_‘
p &

and for the 2D transverse isotropic case D, is defined by

w0 a0 0
p x*  p ozt
D, = 0 Cos O, Cu O
2 p o’ p oz’
cytey, O 0
p Oxoz

where N, u, c; are the elastic constants.

Let v = du/ot i = 1,2,3) and V =
rewritten as

Ci3 T Cy
P

aZ
Ox0z

2 2
Cy 00 ¢y O

p x’ p o

(V1,V5,v5)". Then eq. (5) can be

aUu/ot = V
. (6)
ovV/ot = DU + F
After we define the notations of U = (U,9U/9x,0U/dz)", V =
(V,0V/0x,0V/3z)" and F = (F,3F/0x,0F/0z)", eq. (6) can be rewritten as
U/t = V
_ _ o (7)
avV/ot = LU + IF

where the spatial differential operator matrix

L, is defined by
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D O O
Ly= |0 D O R
O O D oo
and I, is defined by
I O O
19 = O I 0] 5
O 0 I

9%x9

in which 7 are 3x3 unit matrices.

Eighth-order NAD-SPRK method for the 2D elastic wave

Apparently, eq. (7) satisfies the Hamiltonian system (1), so we consider
to solve eq. (7) by the idea of solving the Hamiltonian system. The first step
towards solving eq. (7) is to discretize the spatial operator matrix L, included
in the right-hand side of eq. (7). Here, we use the local interpolation method to
approximate the second- and third-order spatial derivatives of wave displacement
u = (u;,u,,u;) and particle-velocity v = (v,,v,,V;) included in the right-hand side
of eq. (7) by using the wave displacement, the particle-velocity and their
gradients at the grid point (i, j) and their neighboring grid points. These
computational formulae of the high-order nearly-analytic discrete operators
(Tong et al., 2013; Zhang et al., 2014a, 2014b) for approximating the second-
and third-order derivatives are listed in the Appendix in detail.

After the discretization of the spatial operator matrix Lo, eq. (7) is
converted to a system of semi-discrete Hamiltonian system with respect to time.
We then apply the following second-order symplectic partitioned Runge-Kutta
method (Sun, 1997) [formula (2) or (3)] to solve the semi-discrete Hamiltonian
system (7)

ro—

V, = V" + KAL,U"
Ul = U + ALV, , (8)

Vol = V) 4 KALLU!
or _ _ _ —
Ut = VM 4+ AtV" + KLAPLU"

) ) ) ~ o, ©)
Vot = V0 ALU" + KACLV" + %APL2U

where L3 = Ly-L,.
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Egs. (8) or (9) are called the eighth-order NAD-SPRK method. Owing to
using the Taylor series expansion, the errors of d™*u/dx™3z' 2 < m+! < 3)
are O(Ax® + AZ®) by using the interpolation formulae presented in the reference
(Tong et al., 2013). In other words, the eighth-order NAD-SPRK method is an
eighth-order accuracy scheme in space for the 2D case. When the second-order
symplectically partitioned Runge-Kutta method is used to solve the Hamiltonian
system (7), the temporal derivative error should be O(At?). Therefore, the
theoretical errors of the eighth-order NAD-SPRK method for the 2D elastic
wave case are O(At? + Ax® + Az%).

STABILITY ANALYSIS

As we all know, the temporal increment must satisfy the stability
condition of the eighth-order NAD-SPRK method. In our recent work (Zhang
et al., 2014b), we have obtained the following stability condition for a 2D
acoustic case

At < a,, (h/c,) = 0.3828(h/c,) , (10)

where h = Ax = Az in eq. (10) denotes the space increment. «,, is the
maximum value of the Courant number defined by o = c,At/Ax with the
acoustic velocity c,.

As for the elastic case, it is usually complex to derive the exact or
analytical stability condition of a numerical scheme for elastic wave equations
(Dong et al, 2000). When the eighth-order NAD-SPRK method is applied to
solve the 2D elastic wave equation, the stability condition, which is estimated
by the frozen coefficients technique (Vichnevetsky, 1979), can not be directly
determined and is approximately correct for the elastic case if the maximal value
of the wave velocity is used. Therefore, we estimate that the temporal grid size
should satisfy the following stability condition

At < At =~ 0.3828(h/c,,,) , (11)

where t, is the maximum temporal increment that keeps the eighth-order
NAD-SPRK method stable for 2D case, and c,, is the maximum P-wave
velocity.

NUMERICAL DISPERSION

As we all know, the numerical dispersion is the major artifact when we
use FD schemes to model elastic wave-fields. In the section, we investigate the
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numerical dispersion of the eighth-order NAD-SPRK method by modeling
wavefields. For this purpose, we consider the following 2D elastic wave
equations in a homogenous isotropic medium

p(920,/312) = (N+2)(920,/9%2) + p(d%u,/022) + (\+p)(8%u,/0x9z) + T,
, (12)
p(320,/02) = (N+w)(920,/9%37) + p(02u5/0x2) + (\+2u)(0%u4/022) +

where u,, u; denote the displacement components in the x- and z-directions,
respectively. N, pu are Lamé parameters, p is the medium density, f, and f; are
the force sources of components in the x- and z-directions.

In this numerical experiment, we choose N\ = 6.0 GPa, u = 24.0 GPa
and p = 1.5 g/cm’. The number of grid points is 301 X 301, the spatial grid
increments are AXx = Az = 40 m, and the time increment is At = 1 X 1073 s.
The source, f; = f(t) and f; = 0, which is located at the center of the
computation domain, is a Ricker wavelet with the frequency of f;,. The receiver
is located at R(5.25 km, 4.8 km). Here, the Ricker wavelet has the following
expression

f(t) = —5.76f[1 — 16(0.6f;t — 1)*] X exp[—8(0.6f,t — 1))] .  (13)

Fig. 1 shows the waveforms at the receiver R from T = 0 to T = 0.68s
on the frequency of f, = 25 Hz computed by the eighth-order NAD-SPRK
method, the fourth-order NSPRK method, the eighth-order LWC method and
the eighth-order SG method, respectively. We can observe that the waveforms
in Figs. 1(a), 1(b) and 1(d) are almost identical, whereas the eighth-order LWC
method suffers from some numerical dispersion [see Fig. 1(c)].

Fig. 2 also shows the waveforms at receiver R from T = 0to T = 0.68s
generated using these four methods. But the frequency of f, = 40 Hz is chosen
here. From Figs. 2(c) and 2(d), we can see that even the eighth-order LWC and
the eighth-order SG methods suffer serious numerical dispersions. However,
Figs. 2(a) and 2(b), computed by the eighth-order NAD-SPRK and the
fourth-order NSPRK methods, show clear waveforms and they do not show
much numerical dispersion for the higher frequency. Especially Fig. 2(a)
computed by the eighth-order NAD-SPRK method shows almost no visible
numerical dispersion in such a high frequency case. It demonstrates that the
eighth-order NAD-SPRK method is more efficient than the high-order methods
such as the eighth-order LWC and the eighth-order SG methods in suppressing
the numerical dispersion.
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Fig. 1. The waveforms generated by (a) the eighth-order NAD-SPRK method, (b) the fourth-order
NSPRK method, (c) the eighth-order LWC method, and (d) the eighth-order SG method, for the
homogenous isotropic medium and the Ricker wavelet with the frequency of f, = 25 Hz.

COMPUTATIONAL EFFICIENCY

In this section, we present the computational results and investigate the
computational efficiency of the eighth-order NAD-SPRK method. For this case,
we select the same elastic wave equations in a 2D homogenous isotropic
medium as eq. (12).

In this experiment, we choose A = 4.704 GPa, u = 8.4 GPaand p = 2.1
g/cm’. The number of grid points is 301 x 301, the spatial grid increments are
Ax = Az = 40 m, and the time increment is At = 0.004 s. The source, which
is located at the center of the computation domain, is a Ricker wavelet with a
frequency of f, = 12 Hz. The source functions are f; = f(t) and f; = 0.
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Fig. 2. The waveforms generated by (a) the eighth-order NAD-SPRK method, (b) the fourth-order
NSPRK method, (c) the eighth-order LWC method, and (d) the eighth-order SG method, for the
homogenous isotropic medium and the Ricker wavelet with the frequency of f, = 40 Hz.

Fig. 3 shows the x-component snapshots (a, b) and z-component snapshots
(c, d) at T = 1.6 s on the coarse grid of Ax = Az = 40 m, generated
respectively by the eighth-order NAD-SPRK method (a, c¢) and the eighth-order
LWC method (b, d). From Fig. 3, we can observe that the wave-fronts of
elastic waves simulated by these two methods are basically identical, though the
computational cost of the eighth-order NAD-SPRK method is more expensive
than the eighth-order LWC method for the same number of grid points because
more variables including displacement, particle-velocity, and their gradients are
simultaneously calculated in the eighth-order NAD-SPRK method. However, the
snapshots [see Figs. 3 (a, c)] generated by the eighth-order NAD-SPRK method
have much less numerical dispersion even though the spatial size is 40 m,
whereas the eighth-order LWC method suffers from serious numerical
dispersions [see Figs. 3 (b, d)]. It indicates that the eighth-order NAD-SPRK
method can be used to simulate large-scale models with coarse grids.
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Fig. 3. Snapshots of elastic wave fields at time 1.6 s on the coarse grid of Ax = Az = 40 m,
generated by the eighth-order NAD-SPRK method (a,c) and the eighth-order LWC method (b,d),
(a) and (b) delegate the horizontal component, (c) and (d) delegate the vertical component.

For exactly eliminating the numerical dispersion, Fig. 4 generated by the
eighth-order LWC method shows the x-component snapshot (a) and z-component
snapshot (b) at T = 1.6 s under the same Courant number with the Fig. 3 and
on a fine grid of Ax = Az = 20 m, corresponding to the numbers of grid points
of 601 X 601. While for the same computational domain, the number of mesh
points for the eighth-order NAD-SPRK method is only 301 X 301 on the coarse
grid of Ax = Az = 40 m. As a result, the memory requirement of the
eighth-order NAD-SPRK method is approximately 25.08% of that of the
eighth-order LWC method.
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Fig. 4. Snapshots of elastic wave fields at time 1.6 s on the fine grid of Ax = Az = 20 m,
generated by the eighth-order LWC method, (a) delegate horizontal component, (b) delegate vertical
component.

Comparing Figs. 3(a, c) with Figs. 4(a, b), it demonstrates that our
proposed method can provide the same accuracy as the eighth-order LWC
method on a fine grid under the same Courant number. But their computational
costs are different. It took the eighth-order NAD-SPRK method about 185 s to
generate Figs. 3 (a, c), whereas it took the eighth-order LWC method about
293s to generate Figs. 4 (a, b). It suggests that the computational efficiency of
the eighth-order NAD-SPRK method is about 1.6 times of that of the
eighth-order LWC method on a fine grid to achieve the same accuracy with no
visible wave-field dispersion. Note that our all numerical experiments are
performed on a 2-core Pentium-4 computer with 2.33 GB memory.

To investigate the validity of the eighth-order NAD-SPRK method, we
compare the numerical solutions computed by the eighth-order NAD-SPRK
method with the eighth-order LWC method for the 2D elastic wave equations.
Because Dablain in his study (1986) has demonstrated that the eighth-order
LWC method on fine grids can provide accurate results, which are similar to the
analytic solution and equivalent with the pseudo spectral method.

The spatial and temporal increments are chosen as Ax = Az = 40 m and
At = 0.004 s for the eighth-order NAD-SPRK method, whereas much finer
space and time grids of Ax = Az = 20 m and At = 0.002 s are needed for the
eighth-order LWC method to produce an approximately equivalent result. Fig.5
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shows the waveforms generated by the eighth-order NAD-SPRK method on the
coarse grids (Ax = Az = 40 m) and the eighth-order LWC method on the fine
grids (Ax = Az = 20 m) in modeling the elastic wave, where Figs. 5(a) and
5(b) are those of the horizontal and vertical displacement component at receiver
R(6.6 km, 7.6 km), respectively. Comparison of these figures indicates that the
eighth-order NAD-SPRK method can provide the equivalent solutions on much
coarser grids for a homogeneous isotropic model, which requires much less
computation and computer memory.
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Fig. 5. Comparisons of waveforms for (a) horizontal displacement component, (b) vertical
displacement component at receiver R(6.6 km, 7.6 km), generated by the eighth-order LWC method
(dashed line) on the fine grids (Ax = Az = 20 m and At = 0.002 s) and the eighth-order
NAD-SPRK method (solid line) on the coarse grids (Ax = Az = 40 m and At = 0.004 s),
respectively.

NUMERICAL SIMULATIONS

In order to further investigate the computational efficiency and the
numerical dispersion of the eighth-order NAD-SPRK method, we apply this
method to simulate 2D elastic waves propagating in homogeneous transversely
isotropic medium, two-layer homogeneous isotropic medium, two-layer
heterogeneous medium and three-layer medium with a fluctuating interface.

Homogeneous transversely isotropic model

Firstly, we simply simulate the elastic waves propagating in the
homogeneous transversely isotropic medium for the 2D case. We choose the
wave equations as follows
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p(0%u,/0t%) = ¢,1(0%u,/0%?) + C44(0%1,/022) + (Cy3+C4y)(0%u,/0%x0zZ) + f

, (14)
p(0%u,/0t2) = (Ci3tCyy)(0%0,/0X0Z) + C414(0%U,/0X2) + C45(0%u,/022) + 1,

where u,,u; denote the displacement components in the x- and z-directions,
respectively. ¢, ¢35, ¢33 and c,, are elastic constants, p is the medium density,
f, and f; are the force source components in the x- and z-directions.

In this numerical example, we take the parameters of ¢,; = 26.4 GPa, ¢,
= 6.11 GPa, c33 = 15.6 GPa, ¢,y = 4.8 GPa and p = 2.1 g/cm’. The source,
which is located at the center of the computational domain, is a Ricker wavelet
f, = f; = f(t) with the frequency of f, = 12 Hz. The computational domain is
0 < x<6km, 0 <z < 6 km. The spatial and temporal increments are Ax

= Az = 30 m, At = 0.0008 s, respectively. The receivers are located at
R,(2.5km, 3.0km) and R,(2.5km, 2.5km), respectively.

Fig. 6, generated by the eighth-order NAD-SPRK method, shows the
snapshots of the x- and z-directions displacement component at time T = 0.9s.
Fig.7, generated by the eighth-order NAD-SPRK method, shows the wave
seismograms of the horizontal displacement component at receiver R, and R,
fromT = 0to T = 0.9 s. From Figs. 6 and 7, we can see that the eighth-order
NAD-SPRK method shows very clear results and has no visible numerical
dispersion. It suggests that the eighth-order NAD-SPRK method can be efficient
to suppress the numerical dispersions and can provide the accurate results for

the elastic wave modeling in homogeneous transversely isotropic medium of the
2D case.

Distance (km) Distance(km)

6

Fig. 6. Snapshots of elastic wave fields for the homogeneous transversely isotropic model at time
0.9 s, generated by the eighth-order NAD-SPRK method, (a) delegates the horizontal displacement
component, (b) delegates the vertical displacement component.
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Fig. 7. Elastic wave seismograms for horizontal displacement component at receiver R,(a) and Ry(b),
generated by the eighth-order NAD-SPRK method.

Two-layer homogeneous isotropic model

Secondly, we simulate the elastic wave [see eq. (12)] propagating through
a two-layer homogenous isotropic medium for the 2D-case. The size of the
computational domain is 0 < x,z < 9.6 km and the horizontal interface is at
the depth of z = 3.84 km. We take the Lamé parameters and densities of \; =
1.12 GPa, p, = 2.592 GPa and p, = 1.8 g/cm’® in the upper part, and \, =
7.35 GPa, p, = 13.125 GPa and p, = 2.1 g/cm® in the lower layer,
respectively. The explosive source, f; = f(t) and f; = 0, of the Ricker wavelet
with a frequency f, = 14 Hz is located at O(4.8km, 3.12 km). Spatial and
temporal increments are chosen as Ax = Az = 30 m and At = 0.0032 s.

Fig. 8 shows the snapshots of the x-direction displacement component at
time T = 1.5 s generated by the eighth-order NAD-SPRK method, the
fourth-order NSPRK method, the eighth-order LWC method and the
eighth-order SG method, respectively. From Figs. 8(b), (c), and (d), we can see
that the results of the fourth-order NSPRK, the eighth-order LWC, and the
eighth-order SG methods show serious numerical dispersion in the low-velocity
layer and at the strong interface, whereas Fig. 8(a) generated by the
eighth-order NAD-SPRK method shows very clear result and has no visible
numerical dispersion even for the large vertical velocity contrast.
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Distance(kim) Distance (ki)

9.6

9.6 9.6

Fig. 8. Snapshots of elastic wave fields for the two-layer model at time 1.5 s, (a), (d), (b) and (c)
delegate horizontal displacement component, generated by the eighth-order NAD-SPRK method, the
fourth-order NSPRK method, the eighth-order LWC method, the eighth-order SG method,
respectively.

Two-layer heterogeneous model

In order to further investigate the availability of the eighth-order
NAD-SPRK method in simulating the seismic propagating through the
heterogeneous medium, we select the two-layer medium model of the 2D case
with the top layer of the isotropic medium and the bottom layer of the VTI
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medium. We take the elasticity coefficients and densities of N\ = 4.8 GPa, p =
6.5 GPa, and p, = 3.2 g/cm’® in the top layer, and c,, = 40.8 GPa, c; =
13.2GPa, ¢y, = 50.6 GPa, c,, = 25 GPa, and p, = 4.2 g/cm’ in the bottom
layer, respectively. The computational domainis 0 < x < 6kmand 0 < x <6
km and the horizontal interface at the depth of z = 3.0 km. The explosive
source, with a frequency of f, = 25 Hz, is located at O(3km, 2.76km). The
spatial and temporal increments are chosen as Ax = Az = 20 m and At =
0.002 s, respectively. The source function is f; = f; = f(t).

Distance (ki)

Distance(km)

Depth(km)

6

Fig. 9. Snapshots of elastic wave fields for horizontal displacement component for the two-layer
heterogeneous model at time 0.96 s, generated by (a) the eighth-order NAD-SPRK method, (b) the

fourth-order NSPRK method, (c) the eighth-order LWC method, and (d) the eighth-order SG
method, respectively.
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Fig. 9 shows the wave-field snapshots for the horizontal displacements in
the x-direction and Fig. 10 shows the vertical displacements in the z-direction
at time T = 0.96 s for the two-layer heterogeneous elastic medium model on
the grids of Ax = Az = 20 m, generated by the eighth-order NAD-SPRK
method, the fourth-order NSPRK, the eighth-order LWC method, and the
eighth-order SG method, respectively. From Fig. 9(a) and Fig. 10(a) computed
by the eighth-order NAD-SPRK method, we can observe that numerous phases
such as direct P-wave, direct S-wave, and their reflected, transmitted, and
converted phases from the inner interface are very clear, and show no visible

Distance (k) Distance (ki)

)
<
g
oy
=]

6

Fig. 10. Snapshots of elastic wave fields for vertical displacement component for the two-layer
heterogeneous model at time 0.96 s, generated by (a) the eighth-order NAD-SPRK method, (b) the
fourth-order NSPRK method, (c) the eighth-order LWC method, and (d) the eighth-order SG
method, respectively.
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numerical dispersion. However, the snapshots generated by the fourth-order
NSPRK [Fig. 9(b) and Fig. 10(b)] and the eighth-order SG method [Fig. 9(d)
and Fig. 10(d)] show small numerical dispersion, and the eighth-order LWC
method suffers from serious numerical dispersion [Fig. 9(c) and Fig. 10(c)]. It
demonstrates that the eighth-order NAD-SPRK method is very effective in

suppressing numerical dispersion for the two-layer elastic model of
heterogeneous medium.

Three-layer model with a fluctuating interface

In our last numerical experiment, we choose a three-layer model shown
in Fig. 11, which includes a low-velocity thin layer in the middle and an
irregular interface between the middle and bottom layers. The P-wave velocity,
S-wave velocity, and density in the top and bottom layers are V, = 4.0 km/s,
Vs = 2.309 km/s, and p = 2.3 g/cm’, respectively, whereas in the middle thin
layer V, = 2.0 km/s, Vg = 1.155 km/s, and p = 2.0 g/cm®, which shows a
velocity contrast between the adjacent layers to reach more than twice. The
explosive source with a frequency of f; = 15 Hz is located at the centre of the
computational domain. The temporal and spatial increments are chosen at At =
1 ms and Ax = Az = 20 m, respectively. In this experiment, we use the
classical split perfectly matched layer (PML) (Dimitri and Jeroen, 2003) as the

absorbing boundary condition to eliminate the reflections at the artificial
boundaries.

Distance (kin)
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'
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* Source

Depth (Km)
g
> N

Vp=4.0km/s Vs=2.309km/s © = 2.3g /cm’

i ;

Fig. 11. Three-layer model with a fluctuating interface.
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Fig. 12 shows the snapshots of the horizontal component at T = 0.6 s
[Fig. 12(a)], T = 0.8 s [Fig. 12(b)], T = 1.0 s [Fig. 12(c)], T = 1.2 s
[Fig.12(d)], respectively. Figs. 12(a-d) are clear and have no visible numerical
dispersion, which shows that the eighth-order NAD-SPRK method can keep the
physical properties of elastic wave propagating in a multilayer medium and can
effectively suppress the numerical dispersion.

Distance (k) Distance (km)

Fig. 12. Snapshoté of elastic wave fields for the horizontal component at different times of (a) T =
0.6s,(d) T =0.8s,(c) T =1.0s, and (d) T = 1.2 s. The PML absorbing boundary condition
is used in this experiment.

Figs. 13(a) and (b), respectively, show the horizontal seismograms of the
horizontal and vertical displacement components from O to 1.4 s at receivers
spaced 20 m apart on the horizontal plane of z = 6 km spreading from 0 to 8
km at the location of (8km, 6km). Figs. 14(a) and (b), respectively, show the
vertical seismic profiles of the horizontal and vertical displacement components
from O to 1.4 s at receivers spaced 20 m apart on the vertical plane of x = 8
km spreading from O to 6 km at the location of (8km, 6km).
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In those figures of Fig. 12(c,d), Fig. 13 and Fig. 14, the waveforms of
the reflected waves are clear and there is no visible numerical dispersion, which
demonstrates that the PML condition can effectively absorb the reflected waves
from the artificial boundaries. This experiment illustrates that it is successful and
effective for the eighth-order NAD-SPRK method to be combined with the PML
absorbing boundary condition.

Distance (km)

Distance (km)

Fig. 13. Horizontal seismograms of elastic wave fields from O to 1.4 s for (a) the horizontal
component and (b) the vertical component of the elastic wave displacement.

Depth (k) 3 Depth (ki)

Fig. 14. Vertical seismic records of elastic wave fields from 0 to 1.4 s for (a) the horizontal
component and (b) the vertical component of the elastic wave displacement.
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DISCUSSION AND CONCLUSIONS

The computational cost and the memory storage are two important
problems of common concern in 2D wave-propagation modeling using the FD
methods. The FD methods need oversampling in order to eliminate the serious
numerical dispersion caused by the discretization to the wave equations. In the
paper, we propose the eighth-order NAD-SPRK method for solving the 2D
elastic wave equations, which can effectively suppress the numerical dispersion
through using the fewer sampling points per minimum wavelength. The 2D
elastic wave equations are first transformed into the Hamiltonian system, and
then the time derivatives are approximated using the second-order symplectic
partitioned Runge-Kutta method, while the space derivatives are calculated using
the nearly analytic discrete operator with the eighth-order accuracy. So the
eighth-order NAD-SPRK method is second-order accurate in time and
eighth-order accurate in space. The approximating formulae listed in the
Appendix are dependent on the values of the displacement and the particle
velocity, together with their gradients. As a result, the eighth-order NAD-SPRK
method can effectively suppress the numerical dispersion using few sampling
points per minimum wavelength.

We give the stability criteria (11) of the eighth-order NAD-SPRK method
for solving the 2D elastic equations. Numerical examples demonstrate that the
eighth-order NAD-SPRK method is more efficient than the high-order methods
such as the fourth-order NAD-SPRK method, the eighth-order LWC method,

and the eighth-order SG method in suppressing the numerical dispersion [see
Figs. 1-2].

Our numerical experiments show computational costs and memory
requirements for the eighth-order NAD-SPRK method are much less than those
of the eighth-order LWC method. To achieve the same results with no visible
numerical dispersion [see Figs. 3-4], the computational speed of the eighth-order
NAD-SPRK method is approximately 1.6 times that of the eighth-order LWC
method, and the memory required for the eighth-order NAD-RK method is
about 25.08 % of the eighth-order LWC method. Against the eighth-order LWC
method, comparison results indicate that the eighth-order NAD-SPRK method
can provide the equivalent solutions on much coarser grids with analytic
solutions [see Fig. 5].

Wave-field modeling, shown in Figs. 6, 7, 8, 9, 10, 12, 13 and 14,
further confirms our conclusion that the eighth-order NAD-SPRK method has
much less numerical dispersion even for the fewer space-sampling points per
minimum wavelength or larger velocity contrasts between adjacent layers.
Meanwhile, it shows that the new method can greatly save the computer
memory and improve the calculation speed. Specially, we incorporate the PML
condition into the eighth-order NAD-SPRK method, and numerical experiments



SYMPLECTIC PARTITIONED RUNGE-KUTTA METHOD 227

show the calculation is successful and effectively in absorbing the artificial
boundary reflections. These numerical results imply that simultaneously using
both the wave displacement and its gradients to approximate the high-order
spatial derivatives is important for both reducing the numerical dispersion and
compensating the important wave-field information included in the displacement
and particle velocity gradients.

In summary, the eighth-order NAD-SPRK method has a very good effect
in suppressing the numerical dispersion, and can preserve the symplectic
structure of the Hamiltonian system because of the wusing of the
symplecticity-conserving method for time derivatives. Therefore, as a numerical
computational method, the eighth-order NAD-SPRK method has a tremendous
application potentiality in the seismic exploration area and seismology research.
At the same time, because of its symplecticity-conserving property, it is
potentially useful to perform applications in large-scale seismic modelling as
well as in seismic migration based on wave equations.
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APPENDIX
APPROXIMATION OF EIGHTH-ORDER DERIVATIVES

In order to obtain the approximation formulae of eighth-order derivatives
in eq. (7) for the 2D elastic case, Tong et al. (2013) derived these approximate
formulae. For convenience, here we give the approximation formulae of the
displacement u as follows

9%u;,/0x2 = (1/AX?)[(7T/58)(Uj_2 a0 + (64/2T)(Uj_;  F U110 —5U;]

+ (1/AX{(1/36)[(3u;_y,/8%) — (8u;,2,/8%)] + (8/9)[(BU;_ /%) — (U1, /30)]} (A-1)

02u;,/072 = (1/AZ)[(7/54) (W) -2 U 540) + (64/2T)(W5 -, +Uj501) —5u;,]

+ (1/A2){(1/36)[(3u;4_/92) — (3U;,,/02)] + (8/9)[(Bu_1/02) — (U, /92)]} (A-2)

azuj,k/axaz = (7/216AXAZ)(uj—2,k—2 T Uiaper — Yoo — Uisax2)

+ (16/27AXAZ)(Ui_ -1 F Uippper — Wopger = Wspe—1)

+ (1/144A%)[(0u_2x-2/0Z) — (0Uj12x42/0Z) + (OUj_5412/0Z) — (OUj454,/0Z)]
+ (1/144A2)[(00;_5 x—2/0X) — (OUj1p542/0X) + (BUjs2,—2/0X) — (OU)_5x42/0%)]
+ (2/9AX)[(00;_1 x-1/02) — (OUj41441/02) + (0U;_; 441/0Z) — (U4, —1/02)]

+ (219A7)[(uy_; 1/0X) — (B4, 1+1/0X) + (B4 -1 /0X) — (OUy_141/OX)] (A-3)

0*u;,/0%> = (1/AXY)[— (B1/144) (U5 —Uj423) — (88/9)(U;- =11 )]

+ (VAR = (1/24)[(31;_,,/8%) + (U5, /3X)] — (8/3)[(3U;_, ,/8%) — (W1, /8%)] — 15(3u;,/3X)}, (A-4)

0’u;,/07° = (1/AZ)[—(31/144) (U, = Ujps2) — (88/9)(U; - —Ujys1)]

+ (/AZ){ — (1124)[(3U;4_/32) +(8U; . ,/02)] — (B13)[(8u_1/02) — (U, /92)] — 15(3uy,/02)},  (A-5)

P, /0x07> = (B1/B64AXAZ)(WU 5107 — Uiz + Upnkos — Yimgaz + 2Uj oy = 2U40)

+ (4412TAXAZY (W4 js1 = Yimrgor F Upprgeor = Uimpger + 200 = 2U )
—(1/144Azz)[(auj,zvk_2/6x)+(6uj+21k+2/6x)+(6uj_2‘k+2/6x)+(6uj+2vk_2/6x)—2(6uj+21k/ax)—2(6uj_2,k/6x)]
—(4/9Azz)[(auj_,*_1/ax)+(auj+lvk+,/3x)+(6uj_1,k+l/3x)+(6uj+,,k_1/6x)—2(3uj+1,k/6x)—2(8uj_,yk/6x)]
—(1/144AXAZ)[(BU;_yy5/0Z) + (Uj124,2/37) — (BU5_3312/07) — (BUy1ny »/02)]

—(4/9AXAZ)[(0u;_ -,/02) + (OU;;x11/0Z) — (auj—l,k+l/az) - (auj+1,k-1/az)] , (A-6)
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Py, /0x*0z = (31/864AX°AZ)(Ujg ks — Wonga + Woagsa = Wnaxea T 22U — 2U.))

+ (42TACAZ) Wy e = Yimper + Uiopprr = Wapger + 2050, — 2U550)

—(1/144A%%) [(0U;_2-2/02) + (8013 42/ 0Z) + (U 12/ 0Z) + (U 45 -5/ 0Z) — 2(0U; 4 1o/02) — 2(U; _,/3Z)]
= (4/9AX)[(3u;_, —1/02) + (U1 11/D2) + (U 4 11/0Z) + (DU 41 /0Z) — 2(DU .1,/ 9Z) —2(y,1/0Z)]
—(1/144AXAZ)[(3U_2o/X) + (OUjs2442/0X) — (OUj_342/0X) — (QUj15_2/0X)]
—(4/9AXAZ)[(u;_; 1/X) + (04 41/0X) — (OUj_ 411 /OX) — (OUjyy4-/3X)] (A-7)

where Ax, Az denote the space increment in the x- and z-directions, respectively.

Similarly, the corresponding computational formulae related to the particle-velocity v can be
obtained simply by substituting u by v into (A-1)-(A-7).





