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ABSTRACT

Wang, B., Li, H. and Chen, X., 2015. A novel method for simultaneous seismic data interpolation
and noise removal based on the L, norm constraint. Journal of Seismic Exploration, 24: 187-204.

The Projection Onto Convex Sets (POCS) method is an efficient iterative method for seismic
data interpolation. In each iteration, observed seismic data is inserted into the updated solution. If
observed seismic data contains some random noise, the noisy data would be inserted into the final
solution and it reduces the Signal to Noise Ratio (SNR) of the interpolated seismic data. Weighted
POCS method can weaken the noise effects because it uses a weight factor to scale the observed
seismic data, then fewer noisy data is inserted into the updated solution, but it still inserts some
random noise and the final performance is unsatisfactory. In this paper; a novel method is proposed
by combining the advantages of the weighted POCS method and the Iterative Hard Threshold (IHT)
method: the weighted POCS method used for interpolation and the IHT method used for random
noise elimination. The novel method can be used for simultaneous seismic data interpolation and

random noise removal, and its superior performances are demonstrated on synthetic and real
datasets.

KEY WORDS: Projection Onto Convex Sets (POCS), Iterative Hard Threshold (IHT),
interpolation, noise removal.

INTRODUCTION

Spatial irregularity and random noise in the observed seismic data can
affect the performances of Surface-Related Multiple Elimination (SRME),
wave-equation based migration and inversion. Therefore, interpolation and

random noise elimination is a pre-requisite for multi-channel processing
techniques.
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Interpolation methods can be divided into four categories: signal analysis
and mathematical transform based methods, prediction filter based methods,
wave-equation based methods and rank-reduction based methods (Gao et al.,
2013; Wang et al., 2014). Among these interpolation methods, mathematical
transform based ones are easy to implement and have drawn much attention. In
this paper, the POCS method is employed and extended to achieve seismic data
interpolation and noise removal, simultaneously.

The POCS method is an efficient iterative algorithm for seismic data
interpolation, belonging to transform based methods, but it cannot handle noisy
data interpolation properly, thus a novel method is proposed based on the IHT
method to overcome that defect. The POCS method (Bregman, 1965) was first
used in image reconstruction (Stark and Oskoui, 1989; Wang et al., 2015) and
the applications in irregular seismic data interpolation was started by Abma
et.al. (Abma and Kabir, 2006). Many effective strategies were developed based
on its original idea. Gao et al. (Gao et al., 2010) achieved irregular seismic data
interpolation using Fourier transform based POCS method with the exponential
threshold model and the performances of different threshold models were
compared to further improve the convergence rate (Gao et al., 2012). Curvelet
transform (Candes et al., 2006), a sparse transform, better characterization for
curved seismic events compared with Fourier-based methods, was also used for
seismic data interpolation with the POCS method (Yang et al., 2012; Zhang and
Chen, 2013). Dreamlet transform in which the basic atom is a physical wavelet,
is used for seismic data interpolation with the POCS method (Wang et al.,
2014). While the POCS method cannot eliminate the random noise properly
because it inserts the noisy observed data in each iteration, then a weighted
strategy is adopted to weaken random noise effects (Gao et al., 2012), but it still
inserts some random noise into the reconstructed data, affecting its final
performance. In order to overcome this defect, a novel method is proposed
based on the IHT method, taking advantage of the threshold method to eliminate
random noise (Daubechies et al., 2004; Herrmann et al., 2007).

In this paper, defects of the POCS method and the weighted POCS
method are analyzed: the POCS method cannot handle noisy seismic data
interpolation properly; the weighted POCS method can weaken the random noise
effects but it still inserts some random noise which affects the final performance.
Thus a novel method is proposed by combining the advantages of the IHT
method and the weighted POCS method, then simultaneous seismic data
interpolation and noise removal can be achieved. During which, improved
jittered under-sampling strategy (Wang et al., 2014) is adopted to obtain the
irregular seismic data and the curvelet transform is used to decompose seismic
data. Numerical examples on synthetic and field data verified the validity of the
proposed method.
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THEORY

The POCS and weighted POCS theory and their limitations
Irregular sampled noisy seismic data d,, can be obtained through eq. (1),
d,, = Rd, + n , (1)

where d, represents the noise-free seismic data, R denotes the sampling matrix
and n indicates the random noise. Because of random noise and limited
bandwidth of observed seismic data, it is always ill-posed to solve eq. (1). Due
to the fact that seismic data can be sparsely represented in the curvelet domain,

the non-constraint objective functional can be constructed based on sparse
constraint,

®(x) = || dps — RCx |2 + N\P(x) , )

where x represents the curvelet coefficient vector, C* denotes the inverse
curvelet transform (C denotes the curvelet transform) and P(x) indicates a sparse
constraint. Eq. (2) with P(x) = | x||, can be solved by the POCS method with
a hard threshold function (Gao et al., 2010; Gao et al., 2012; Wang et al.,
2014; Yang et al., 2012; 2013) and the exact formula is shown below,

desy = dgy + A-RIC'T, (Cdy , 3)

where d, is the k-th iterative solution and T,,, subject to eq. (4), denotes the
hard threshold operator performed element-wise.

X, |x| =7

A , “
0, |X| <7

Tx(xi) =

where x' is the i-th element of vector x, 7 = +/\ is the threshold determined by
a threshold model, like the exponential threshold model shown in eq. (5),

T = TV 6 = In(70/7) k= 12,0 N 5)

where 7., 7., are the minimum and maximum thresholds, determined by the
observed seismic data. The POCS procedures can be summarized as follows
(Gao et al., 2010; Wang et al., 2014):

Step 1: Set the maximum iteration number N and choose the thresholds

7 according to eq. (5). Input the sampling matrix R, the observed data d
and set the initial solution tok = 1, d, = d

obs

obs*
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Step 2: Take the curvelet transform towards the k-th solution and update
the curvelet coefficients by applying threshold operator oy, = Ty (Cdk)

Step 3: Perform the inverse curvelet transform towards the updated
curvelet coefficients and get the solution in the data domain d, = C'ey.

Step 4: Project the solution d, onto the observation plane {&k | R&k = dgpsts
which means inserting the observed seismic data, and the updated solution
can be obtained by d,, = d,, + (I—R)d,.

Step 5: k = k + 1. If k < N return to step 2; if k = N, output the ak
as the final solution.

From the procedures, it can be noted that the POCS method assumes that
the observed seismic data should have a high SNR because it inserts the
observed data in each iteration. But the observed seismic data always contain
random noise, hence some authors take advantage of the weighted strategy in
noisy situations to weaken the random noise effects (Gao et al., 2012; Oropeza
and Sacchi, 2011; Stanton and Sacchi, 2013; Yang et al., 2013). Thus eq. (3)
can be modified into eq. (6) with the weighted strategy,

desr = adgy, + I=aR)C'Ty (Cd)) (6)

where o € (0,1] indicates a weight factor determined by random noise levels.
Though the weighted POCS method can weaken random noise effects, it still
inserts some random noise into the updated solution, affecting the final
performance. When the first few solutions are far from the true solution and the
value of « is small, the interpolation performance is unsatisfactory. For
example, when « tends to 0 («—0), eq. (6) degenerates into dk+1 =CT T)\ (Cdk)
then the final performance is unsatisfactory if the first few solutions are far from
the real solution because there is no data residual constraints in the updating
procedures. Thus, a novel method is proposed to eliminate the effects of random
noise as well as guarantee the interpolation performance.

A novel method

From the analysis in the above section, performances of the POCS and
weighted POCS methods may be unsatisfactory when random noise exists. In
order to overcome the defects, a novel method is proposed, based on the IHT

method and the weighted POCS method. Next, more detailed explanations are
given.

Eq. (2) with the L, norm constraint can be solved by the IHT method
(Blumensath and Davies, 2008; 2009; Loris et al., 2010), and the iterative
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solution is obtained as follows:
Xg+1 = T)\k[xk + (RCH'( s — RC'x] (7

where x, is the k-th iterative solution in the curvelet domain, Ty , subject to eq.
(4), is the hard threshold operator performed element-wise. The procedures can
be summarized as follows:

Step 1: Set the maximum iteration number N and choose the thresholds
7 according to eq. (5). Input the sampling matrix R, the observed data d,
and set the initial solution to k = 1, x, = Cd,.

Step 2: Apply the inverse curvelet transform to the k-th solution in the
curvelet domain and obtain the data residual 6d = d,,, — RC™x,.

Step 3: With the sampling matrix R and the curvelet transform, we can
get the curvelet coefficient increment 6x = (RC")'8d = CR"6d = CRéd.

Step 4: With the threshold operator, the updated coefficient in the curvelet
domain can be obtained x,., = T)\k(xk + 6x).

Step 5: k = k + 1. If k < N return to step 2; if k = N, output the d,
= C'x, as the as the final solution.

The aim of seismic data interpolation is to obtain the complete seismic
data in the data domain, therefore project the updated solution x,., onto the
observation plane {d,|Rd, = d,.}, which can improve convergence rate.
Because observed data always contains random noise, only parts of observed
seismic data od,, are inserted into the updated solution (7) with the weighted
strategy. Then the new weighted POCS formula is derived as follows:

dery = adgy + I—aR)CTx,,,
= odyys + (I—aR)CTT)\k[xk + (RCH'(d,ps — RC™x)]
= ady, + (I-—aR)CTT)\k[Cdk + C(R'd,,, — R™RC™x)] , (8)
= ady + (I—ozR)CTT)\k[Cdk + C(dgs — Rd]
= odyps + (I—aR)CTTxk{C[adDbS + (I—aR)dy + (1 —a)(dys — RdY]}
where d, = C'x, is the solution in data space, and d, ., is the solution after

inserting od,,,. Denoting ak = ady,, + (I—aR)d,, then a new weighted POCS
formula can be achieved,

desy = adgy, + I=aR)C'T, {Cld, + (1-0)(dg, — RAI]} . )
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The new weighted POCS method, different from the original one [eq.
(6)], is controlled by the weight factor « as well as the data residual term d,
— Rd,. Even if the « value is small, it can still speed up convergence rate
efficiently because of the constraints of data residual. From the IHT procedures,
it notes that the IHT method can eliminate random noise because it has a
threshold operator to filter out random noise before the updating procedure.
Therefore, in order to attenuate the random noise effects, the order of the IHT
operator and the projection operator is exchanged and the novel method is
obtained as follows:

d, = adgs + I—aR)d,

B
I

Ty {Cldy + (1-a)(dp — RA_DI} (10)
dk = CTXk

This novel method can handle the spatial irregularity and random noise
effects properly, thus it can achieve seismic data interpolation and noise
removal, simultaneously. When o = 0, the novel method degenerates to the
IHT method in data space domain; when « = 1, it degenerates to the POCS
method with random noise elimination by the threshold strategy. Therefore, the
novel method has more flexibility and wider applications. Equation (10) can be
integrated into one tight equation shown below,

d, = CTT)\k{C[adobS + (I-aR)d,; + (1—a)de, — R4} - (11

The interpolated data is controlled by « as well as the data residual term
dys — Rd,_;, guaranteeing the solution’s convergence. Compared with the
weighted POCS method, the novel method implements random noise elimination
procedure by the threshold operator after each interpolation procedure, thus the
interpolated seismic data with higher SNR can be obtained. Simultaneous

seismic data interpolation and noise removal can be achieved via the proposed
method.

NUMERICAL EXAMPLES

Firstly, synthetic seismic data is used to prove the validity of the proposed
method. The results show that the proposed method is superior to the POCS
method, the weighted POCS method and the popular spgll method when random
noise exists. Secondly, numerical examples of field data further demonstrate the
performance of the proposed method. In the synthetic and real data examples,

50% traces are missing based on improved jittered under-sampling strategy
(Wang et al., 2014).
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Synthetic example

The synthetic data is shown in Fig. 1(a) including 201 traces with 1001
samples per trace. The trace interval and time sampling interval are 12.5 m and
2 ms respectively. The incomplete noisy seismic data with 50% traces missing
is shown in Fig. 1(b) and the colorbar for all the synthetic tests is shown in Fig.
2(a). The maximum iteration number is set to 50, and the interpolated results
and the corresponding residuals are shown in Fig. 3. Here the residual is
defined as the difference between the interpolated seismic data and the noise free
original data, that is the difference between left column of Fig. 3 and Fig. 1(a).
The smaller residual means the better method. The recovered SNRs for the
POCS method, the weighted POCS method (o« = 0.6) and the proposed novel

method (o = 0.6) are 8.1, 11.6, 16.6 dB, respectively. The definition of SNR
‘is shown below,

SNR = 20 lOglo “ dO "2/" drec - dO "2 > (12)

where d, is the noise free original data and d,.. is the reconstructed seismic data.
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Fig. 1. (a) Complete synthetic data; (b) Noisy data with 50% traces missing.
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Fig. 2. Colorbar of synthetic data tests (a); field data tests (b).

In order to demonstrate the superiority of the proposed method, a comparison
has been made between the popular spgll method (Van Den Berg and
Friedlander, 2008) and the proposed method. The reconstructed result of the
spgll method is shown in Fig. 3(g) and Fig. 3(h) denotes the reconstruction
error. The recovered SNR is 13.48 dB lower than that of the proposed method.
We amplified the magnitude of each error section three times to observe the
details of reconstruction errors, which are shown in Fig. 4(a)-(d), indicating that
the proposed method is the best method among the four methods.

Figs. 3-4 indicate that the POCS method and the weighted POCS method
insert noisy observed data into reconstructed result which reduces the recovered
SNRs; the proposed method is superior to the spgll method for signal
preservation. Tests in this simple synthetic data demonstrate the validity of the
proposed method, then the application of real marine data is given to further
prove its validity.



SIMULTANEOUS SEISMIC DATA INTERPOLATION 195

Offset(km) Offset(km)

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

04 0.4

08§ 0.8
) v
@ @
E £
= =
1.2 1.2
16 16
20 (a) 20 (b)
Offset(km) Offset(km)
R | -0.5 0 0.5 1 0 -0.5 0 0.5 1
0.4 0.4
0.8p 0.8
= =
2 €
[ F
1.2 1.2
16/8 18
2.0 (c) 20 (d)

Fig. 3. Interpolated results (left column) and corresponding residuals (right column). (a)-(b) obtained
by the POCS method (o« = 0.6); (c)-(d) obtained by the weighted POCS method (o« = 0.6).
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Fig. 3. Interpolated results (left column) and corresponding residuals (right column). (e)-(f) obtained
by the proposed novel method(ex = 0.6); (g)-(h) obtained by the spgll method.
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Fig. 4. Reconstruction Error (amplified three times) obtained by the POCS method (a); the weighted
POCS method (o = 0.6) (b); the proposed novel method (c); the spgll method (d).
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Real data application

Real marine data is shown in Fig. 5(a), containing 150 traces and 1500
samples in each trace. The trace interval is 12.5 m and the time sampling
interval is 4 ms. In order to demonstrate the superiority of the novel method,
random noise is added into the original data, and the noisy data with 50% traces

missing is shown in Fig. 5(b). The colorbar of all the field data tests is shown
in Fig. 2(b).

For convenience of comparisons, the POCS method, the weighted POCS
method (o« = 0.6) and the novel method (o« = 0.6) are tested with the same
thresholds and the maximum iteration is set to 50. The interpolated results and
the corresponding residuals are plotted respectively in Fig. 6, and the residual
is still defined as the difference between reconstructed data (left column of Fig.
6) and the original noise free data (Fig. 5(a)). The reconstructed result by the
spgll method is shown in Fig. 6(g) and Fig. 6(h) shows the construction error.
In order to show the details of error sections, similar to synthetic data, we
amplified the magnitude of each error section three times shown in Fig. 7(a)-(d).

Offset(km) Offset{km)
0.5 1 1.5 2

1.0

“(b)

Fig. 5. Complete real marine data (a); noisy data with 50% traces missing (b).
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Fig. 6. Interpolated results (left column) and corresponding residuals (right column). (a)-(b) obtained
by the POCS method; (c)-(d) obtained by the weighted POCS method (o = 0.6).
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Fig. 6. Interpolated results (left column) and corresponding residuals (right column). (€)-(f) obtained
by the proposed novel method(ee = 0.6); (g)-(h) obtained by the spgll method.
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From the reconstructed data [Fig. 6 (left column)], it can be concluded
that the proposed method is the most effective method among the four methods.
The construction error section [Fig. 6 (right column)], especially the magnitude
amplification section shown in Fig. 7 indicates that the POCS and weighted
POCS methods insert random noise into the interpolated data decreasing the
recovered SNRs; the spgll method can eliminate random noise while damaging
the signal to some extent; our proposed method can protect the signal as well
as eliminate random noise by the threshold strategy. Fig. 6-7 demonstrate that
the novel method can obtain the best interpolated result which is consistent with
original data [Fig. 5(a)]; the weighted POCS method can attenuate random noise
compared with the POCS method, but its performance is still unsatisfactory; the
spgll method can eliminate random noise while damaging the signal inevitably,
which decreases the recovered SNR. The final recovered SNRs are 6.5, 9.5,
12.9 and 11.07 dB for the POCS method, the weighted POCS method (o =
0.6), the proposed novel method (« = 0.6) and the spgll method, respectively.
It should be noted that, the proposed method can eliminate the random noise
using the threshold strategy, but there is minor signal leak into the error section
which is the minor disadvantage of our proposed method.

Figs. 4 and 7 demonstrate that the reconstruction error of the proposed
method is the minimum among the four methods and can be used effectively in
seismic data interpolation and noise removal simultaneously, compared with the
spgll method and the weighted POCS method. The recovered SNRs in synthetic
and field data applications demonstrate the validity of the proposed method.

CONCLUSION

Simultaneous seismic data interpolation and random noise elimination have
been achieved by the proposed novel method with the L, norm constraint.
Defects of the POCS and weighted POCS methods have been analyzed for noisy
data interpolation: the POCS method assumes the observed seismic data with a
high SNR and cannot handle noisy data interpolation properly; the weighted
POCS method can weaken the random noise effects, but it still inserts some
random noise and its performance is unsatisfactory when the value of « is small.
Thus, based on the IHT method, a novel method is proposed for interpolation
and noise removal, simultaneously. Numerical examples of synthetic and real
data confirm that the performances of the novel method are better than those of
the POCS method, the weighted POCS method and the spgll method in terms
of recovered SNRs. The proposed novel method can be used to obtain
interpolated data in the situation of existing random noise, hence it is more
appropriate for real data applications.
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Fig. 7. Reconstruction Error (amplified three times) by the POCS method (a); the weighted POCS
method (« = 0.6) (b); the proposed novel method (c); the spgll method (d).
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The interpolated results in this paper are based on the improved jittered
under-sampling strategy and cannot handle regular sampling data. Anti-aliasing
strategy (Gao et al., 2012; Naghizadeh, 2012; Naghizadeh and Sacchi, 2010)
can be incorporated in the future. Weak signal preserved random noise
elimination method is another research topic because there is minor signal
leakage by the threshold strategy to eliminate random noise.
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