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ABSTRACT

Cao, J. and Zhao, J., 2015. 3D seismic interpolation with a low redundancy, fast curvelet transform.
Journal of Seismic Exploration, 24: 121-134.

Seismic data interpolation is one of the main challenges encountered during pre-processing.
It can provide reliable data for processes that require regular and dense sampling, like migration and
multiple elimination. At present, a transform method which is based on the sparseness of signals in
a transformed domain, is a commonly used strategy to get promising results. Among different
transforms, the curvelet transform has optimal sparse expression for wave-fronts, thus it can be seen
as a good candidate for seismic interpolation. However, the high redundancy of the 3D curvelet
transform makes it computationally expensive, especially for massive data processing. Woiselle et
al. (2011) proposed a new implementation of the curvelet transform, which reduces the redundancy
to 10 for a 3D transform. In this paper, this new implementation is introduced to improve the
computational efficiency of curvelet-based interpolation. The merits of the new implementation are
discussed and the low redundancy is proven through numerical tests. Numerical results on 3D
interpolation based on the new transform show that the CPU time it costs is about 1/4 of the original
curvelet transform. Thus, the Woiselle’s curvelet transform is a good balance between redundancy,
rapidity and performance.

KEY WORDS: curvelet transform, seismic interpolation, sparse optimization, one-norm.

INTRODUCTION

In seismic exploration, the sampled data often violates the Shannon
sampling theorem due to acquisition costs, bad traces, topography and noise.
The incomplete data may affect results of migration (Liu and Sacchi, 2004),
denoising (Soubaras, 2004), multiple elimination (Naghizadeh, 2009) and AVO
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analysis (Sacchi and Liu, 2005). Seismic interpolation is a crucial method to
provide reliable data from the incomplete data. Among various interpolation
methods, signal processing-based methods play an important role to provide
reliable wavefield information (Liu and Sacchi, 2004; Zwartjes and Gisolf,
2006; Herrmann and Hennenfent, 2008). Especially sparse transform methods
constitute an important class, when data is assumed to be sparsely represented
in a suitable transform domain. Besides the well-known Fourier transform (Liu
and Sacchi, 2004; Zwartjes and Gisolf, 2006), Radon transform (Trad et al.,
2002) and local Radon transform (Sacchi et al., 2004) are also commonly used.
However, they all operate on a single scale and the decomposition into
multi-resolution elements is not used. In the last decade, multi-scale methods
have been gaining much interest, especially the curvelet transform. The curvelet
transform was first proposed by Candés and Donoho (2000) as a new
multi-scale, multi-directional and sparse representation of curve-like signals. The
curvelets are localized not only in the spatial domain and the frequency domain,
but also in angular orientation. A new important directional parameter provides
an additional angular geometric property with a high degree of orientation which
identifies the directional singularities (Candés and Donoho, 2004). As a
multi-scale, multi-directional, anisotropic tight frame, it is strictly localized in
Fourier domain. Furthermore, it provides an optimal representation of objects
that have discontinuities along edges (Candés and Donoho, 2000; Starck et al.,
2002; Candés and Donoho, 2004).

In seismic processing, the curvelet transform has been applied to
interpolation (Herrmann et al., 2008a; Yang et al., 2013), denoising
(Hennenfent and Herrmann, 2006), multiple attenuation (Herrmann et al.,
2008b; Lin and Herrmann, 2013), deconvolution (Kumar and Herrmann, 2008)
and migration (Chauris and Nguyen, 2008). Neelamani €t al. (2008) introduced
curvelet-based noise attenuation for 3D seismic data corrupted with random and
linear noise. More seismic issues like ground roll attenuation (Yarham and
Herrmann, 2008) or enhancing crystal reflection data with sparsity promotion
(Kumar et al., 2011) were solved with curvelet-based methods proving their
value for seismic processing.

Though the curvelet transform has plenty of merits for seismic processing,
it is a highly redundant transform with redundancy up to a factor 24-32 for 3D
signals. This is a crucial defect for large-scale data processing, which can
increase computation time greatly. A low redundancy curvelet transform is
proposed in Woiselle et al. (2011), which can reduce the redundancy to a factor
10 for 3D signals. This paper proposes to use this low redundancy curvelet
transform as a replacement of the Candés curvelet transform for 3D data
interpolation. The low redundancy of the new transform is proven by our
analysis and utilized to accelerate computation. The structure of this paper is as
follows, the basis theory and solving methods of seismic interpolation are
introduced at first, and then the features of this transform are illustrated.
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Numerical examples on interpolation using this new transform demonstrate the
improvement of computation efficiency compared with the Candés curvelet
transform. At last, we conclude that the new transform is a good candidate for
massive data processing.

THEORY
The forward problem of interpolation can be expressed as:
Rx +e=4d, (1)

where R is the sampling matrix, x is the unknown seismic data, ¢ is the additive
noise, and d is the sampled data. Since the sampled data is often incomplete and
violates Shannon theorem, there are infinitely many solutions theoretically.
However, according to regularization theory, if some a priori information is
known at first, the ideal solution can be found correctly. Sparseness of solutions
in some transform domain is commonly used since the unknown data can be
expressed sparsely by some transforms. If s = ¥x is sparse, where ¥ is an
operator that represents a sparse transform, then eq. (1) can be changed into

R¥'s + e =d , ()

where ¥ is the conjugate transpose of ¥. Based on the sparsity assumption of
s, it can be obtained by solving the following optimization problem (Chen et al.,
1998)

min|s|s.t. [R¥'s —d|2 <o , 3)

where ¢ is an estimation of the noise energy. Here, the interpolation problem
was transformed to an optimization problem that can be called a basis pursuit
method (Chen et al., 1998). If s is solved, then x can be obtained by x = ¥’s.
Besides the L,-norm regularization, total variation regularization is another
commonly used strategy for interpolation (Tang et al., 2012). For other
regularization operators such as Cauchy norm, refer to Zwartjes and Gisolf
(2007).

As for the solving methods of problem (3), it can be efficiently solved by
the well-known iterative soft thresholding (IST) method (Daubechies et al.,
2004) or iterative hard thresholding (IHT) method (Blumensath and Davies,
2008). Projection onto convex sets (POCS) method is an important method for
seismic interpolation (Abma and Kabir, 2006). The above mentioned methods
are all high efficient and robust when chosen proper parameters. For more
methods of solving problem (3), refer to Cao et al. (2011).
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An important aspect to improve solutions of problem (3) is choosing
proper transforms, such as Fourier (Sacchi and Ulrych, 1996; Sacchi et al.,
1998), Radon (Trad et al., 2002), seislet (Fomel and Liu, 2010) and curvelet
transform (Herrmann et al., 2008a). The curvelet transform is an effective
transform that allows sparse representations of complex data. This spectral
technique is based on directional basis functions that represent objects having
discontinuous along smooth curves. As a multi-scale, multi-directional and high
dimension tight frame (Candés et al., 2006), the curvelet transform has excellent
compression for wave-fronts (Herrmann et al., 2008a). However, its high
redundancy, with a factor 24-32 redundancy for 3D data, costs much time in
numerical computation. How to improve the efficiency of curvelet interpolation
and keep its excellent compression ability is the start point of this paper.
Woiselle et al. (2011) proposed a new implementation of the curvelet transform
which can reduce the redundancy to a factor 10 for 3D data. In this paper, the
low redundancy of Woiselle’s curvelet transform is utilized to accelerate the
speed of curvelet-based interpolation. The Woiselle curvelet transform is
introduced in the next section.

A LOW REDUNDANCY CURVELET TRANSFORM IMPLEMENTATION

In order to clarify the merits of the Woiselle’s curvelet transform, the
implementation of a wrapping-based curvelet transform is introduced. Then, it
is explained why the Woiselle’s transform can reduce extra redundancy.

The 3D curvelet transform (Candes et al., 2006) consists of a low-pass
approximation sub-band partition, and a family of curvelet sub-bands carrying
the curvelet coefficients indexed by their scale, position and orientation
(Woiselle et al., 2011). There are mainly two steps in the transform: multi-scale
separation and angular separation. At first, the input 3D data with size N =
(N,,N,,N,) is separated into dyadic corona based on the 3D Meyer wavelet
transform in the Fourier domain using the compactly supported Fourier
transform and get cubes of sizes N, N/2, ..., N/2’, where J is the number of
scales. Secondly, each corona is separated into anisotropic wedges of trapezoidal
shape obeying the so-called parabolic scaling law. The curvelet coefficients are
obtained by a 3D inverse Fourier transform applied to each wedge appropriately
wrapped to fit 3D rectangular parallelepipeds.

In the original implementation, high redundancy comes mainly from the
angular separation. Additionally, the way to apply the Meyer wavelet transform
added extra redundancy. However, the new curvelet transform implementation
can reduce the extra redundancy (Woiselle et al., 2011). There are many
differences between the Woiselle’s transform and the original one, but the main
reason to reduce extra redundancy lies in the way the Meyer wavelet transform
is applied to the data. More details of the Meyer wavelet transform
implementation are discussed in the following.
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The extra redundancy of the curvelet transform as implemented in
Curvelab (Candés and Donoho, 2004) originates mainly from the way the radial
window is implemented, especially the finest scale. Taking the 1D Meyer
wavelet transform as an example, we call y; the Meyer wavelet at scale j €
{0,--,J—1} and ¢,_, the scaling function at the coarsest scale, denoting M; = {;
= 2792002 ) and M, = ¢,_, = 273~V242720-D) a5 their Fourier transforms.
The Meyer wavelets {(¢) are defined in the Fourier domain as follows:

e sin[(r/2)v(6]£| D] , 16 < [£] < 1/3
P(E) =1 e sin[(r/2v@E[E| D], 13 < [E] <2/3 @)
0 , elsewhere

where v is a smooth function that goes from O to 1 on [0,1] and which satisfies
v(x) + v(1—x) = 1. The Meyer scaling functions are defined by

) 1 .|| = 16
b(&) = { cos[(m/2v(6|¢|-1)] , 1/6 < |&| < 1/3 , (5)
0 . g > 13

Fig. 1 displays in solid lines the graphs of the Fourier transform of the
Meyer scaling and wavelet functions at three scales. The wavelet at the finest
scale in the Fourier domain is supported on [—2/3,—1/6]U[1/6,2/3], hence
exceeding the Shannon band. The original curvelet transform implicitly assumes
periodic boundary conditions. Moreover, it is known that computing the wavelet
transform of a periodized signal is equivalent to decomposing the signal in a
periodic wavelet basis. Thus, the exceeding end of the finest scale is replaced
with its mirrored version around the vertical axis at |£| = 1/2, as shown in the
dashed line in the top of Fig. 1. Consequently, the support of the data is 4/3
larger than the original one, hence boosting the redundancy by a factor (4/3)°
in 3D. In the Woiselle’s implementation, the supports of the scaling and wavelet
functions were firstly shrunk by a factor of 4/3. Furthermore, in order to
maintain the uniform of partition of unity, the finest scale wavelet is modified
by suppressing its decreasing tail so that the wavelet becomes a constant over
[—1/2,—1/4]U[1/4,1/2]. This added no extra redundancy for the 3D Meyer
wavelet transform in the Fourier domain.

The redundancy is 24-32 for the original 3D curvelet transform, but the
redundancy of Woiselle’s implementation is only 10 for 3D (Woiselle et al.,
2011). Besides the low redundancy while maintaining the directional selectivity
property at the finest scale, this Woiselle’s curvelet transform is isometric and
with fast exact reconstruction, the proposed curvelet transform corresponds to
a Parseval tight frame, i.e., C'C = I, where C is the curvelet analysis operator
and C” its adjoint. Thus, C" turns out to be also the inverse operator associated
to a fast reconstruction algorithm.
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Fig. 1. Meyer scaling and wavelet functions in the 1D Fourier domain. Top: Meyer wavelet
transform in the Candés curvelet transform. Bottom: Meyer transform in the Woiselle’s
implementation.

In order to test the redundancy of the Woiselle’s curvelet transform
numerically, a 64 X64 X 64 seismic cube is transformed by these two transforms
with different scales and angles. For different scales and angles, the curvelets
coefficient numbers and maximum absolute values are listed in Table 1. In the
first row of the table, "3" means the scale number and "8" means the angle
number at the second coarsest scale. In the second row of the table, "Candés"
denotes the Candes curvelet transform, and "Woiselle" denotes the Woiselle’s
transform. In this table, the coefficient numbers of Woiselle’s curvelet transform
are about 2/5 of that of Candes curvelet transform for all scales and angles
cases, and their max absolute values are bigger than the original one. This
proved the low redundancy of the Woiselle’s curvelet transform, which will
greatly benefit the computational efficiency for massive data processing. Thus,
this low redundancy will reduce CPU time during numerical computation of
interpolation.
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Table 1. Comparison of Candés curvelet transform and Woiselle’s curvelet transform.

Scales and angles 3.8) 4,8) (5,8)
Candes Woiselle Candes Woiselle Candes  Woiselle

Number of curvelet
coefficients 6,932,397 2,958,281 7,199,027 3,008,529 8,380,925 3,015,701

Maximum absolute
value 6.4089 17.3266 9.2697 36.7048 9.0650 32.3275

3D INTERPOLATION BASED ON THE WOISSELE’S CURVELET
TRANSFORM

In this section, the efficiency of the Woiselle’s curvelet transform to
accelerate computation is evaluated on two examples. The well-known
projection onto convex set (POCS) method is used to solve problem (3), and the
iteration numbers are the same for these two transforms (Woiselle et al., 2011).
For the first example, a synthetic seismic line is used to study the potential
uplift for computational efficiency with the Woiselle’s transform over the
original one. The synthetic seismic line is simulated with a finite-difference code
for a subsurface velocity model with two velocity layers. Using an acoustic
finite-difference modeling algorithm, 64 shots and 64 receivers are simulated on
a fixed receiver spread with receiver steps of 12 m. The time sample interval
is 4 ms. Data generated by these simulations can be organized in a 3D data
volume. Some papers show that interpolation of midpoint-offset shot gathers can
get better results than midpoint-offset data, however, we’d like to interpolate
source-receiver data because of its physical meaning. The full data is depicted
in Fig. 2(a), and the incomplete acquisition with 50 percent receiver positions
randomly sampled for each shot is shown in Fig. 2(b). The full data serves as
the ground truth. The interpolation result using the Woiselle’s transform is
plotted in Fig. 2(c) with Fig. 2(d) showing the difference between the original
data and interpolated data. In order to test the interpolation performance for
further reduced sampling, an incomplete data with a sampling ratio of 20%,
meaning with 80 percent receivers randomly removed for each shot, is depicted
in Fig. 3(b), and the interpolation result based on the Woiselle’s transform is
shown in Fig. 3(c), the difference between the original data and the interpolated
data is shown in Fig. 3(d). More results of these two transforms based
interpolation are listed in Table 2, where SNR is defined as SNR = 10log,;, X
[0 %orig I3 /| Xorig = Xresc 3], Xorg is the complete data and X, is the interpolated
data. From Table 2, it can be observed that the CPU time using the Woiselle’s
transform is about 1/4 of the original one. Furthermore, the SNR of them are
comparable.
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Fig. 2. (a) Complete data cube consisting of 64 x 64 x 64 samples along the source, receiver and
time coordinates. (b) Simulated acquired data with 50 percent randomly missing traces. (c)

Interpolation of 50% sampled data using the new transform. (d) Difference between the interpolated
data and the original data.
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Fig. 3. (a) Same data cube as in Fig. 2(a). (b) Simulated acquired data with 80% traces randomly

missing. (c) Interpolation of 20% sampled data using the new transform. (d) Difference between the
interpolated data and the original data.
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Fig. 4. (a) Complete data cube consisting of 64 x 64 x 64 samples along the source, receiver and
time coordinates from finite difference simulation. (b) Simulated acquired data with 50% randomly

missing traces. (c) Interpolation of 50% sampled data using the new transform. (d) Difference
between the interpolated data and the original data.
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Table 2. Interpolation of these two transforms for Datal with different sampling ratio.

Sampling ratio 50% 20% 10% 5%

Candés Woiselle Candés Woiselle  Candés Woiselle  Candés Woiselle
CPU time (s) 1066 176 756 190 759 176 1082 271
SNR (dB) 20.3365 30.2013 13.5222 17.1638 8.7660 10.3631 4.1165 7.6232

Table 3. Comparison of these two curvelet transforms for Data2.

Transform Candeés Woiselle
CPU time (s) 789 178
SNR (dB) 15.4602 14.4105

Another interpolation example is given to test the efficiency of the
Woiselle’s transform further. Data2 with size 64 X64 X 64 is generated using a
finite-difference method. The time and space interval are the same as Datal.
Fig. 4(a) is the original Data2, Fig. 4(b) depicts the data with 50 percent
randomly missing traces, Fig. 4(c) is the interpolated data using the Woiselle’s
transform and Fig. 4(d) is the difference between the original data and the
interpolated data. The SNR and CPU time for interpolation using these two
transforms are listed in Table 3. The time consumption of the Woiselle’s
transform is also about 1/4 of the original one, however, the SNR of
interpolation is smaller than the original one, which may caused by the scale
separation of the Woiselle’s implementation. This example again proved the
efficiency promotion of the Woiselle’s transform, which means that it is a good
comprise between redundancy, rapidity and performance.

In the following, field data is used to test the interpolation quality of the
new curvelet transform, the size of the field data is 1024 X128 X128, which
means the time sampling number is 1024, the in-line and cross-line numbers are
128. A small time window is chosen, and the random sampling number is 1/4
of the total traces. Fig. 5(a) is an in-line slice of the field data, Fig. 5(b) is the
sampled version of this slice, and Fig. 5(c) is the new curvelet-based
interpolation. Fig. 6(a) is a cross-line slice of the field data, Fig. 6(b) is the
sampled version of this slice, and Fig. 6(c) is the new curvelet-based
interpolation. Fig. 7(a) is a time slice of the field data, Fig. 7(b) is the sampled
version of Fig. 7(a), and Fig. 7(c) is the new curvelet-based interpolation. The
SNR of the restoration is 26.8581, so the new curvelet transform can also be
suitable for filed data.
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Fig. 5. (a) A in-line slice of the field 3D data, (b) its sampling version, (c) the new curvelet-based

interpolation.
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Fig. 6. (a) A cross-line slice of the field 3D data, (b) its sampling version, (c) the new
curvelet-based interpolation.
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Fig. 7. (a) A time slice of the field 3D data, (b) its sampling version, (c) the new curvelet-based
interpolation.
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CONCLUSIONS AND DISCUSSION

In this paper, Woiselle’s curvelet transform, which reduces the
redundancy to a factor 10 for 3D data, is introduced to improve the efficiency
of curvelet transform-based interpolation. The main reason why the Woiselle’s
transform can reduce redundancy lies in the way the Meyer wavelet transform
is applied to the data. This merit renders it very suitable for massive data
processing. Numerical examples proved that the Woiselle’s transform costs 1/4
CPU time of the original one for interpolation when getting comparable results,
which means that it is a good balance between redundancy, rapidity and
performance. In all, it can be seen as a good candidate for massive seismic data
processing.

Since the curvelet transform is based on the Fourier transform, using it
solely can not treat regular sampled data interpolation. Because of the memory
restriction of the used computer, small sizes of data are considered, but this is
no hamper to prove the computation efficiency of the new transform. Since the
truncation in the implementation, the interpolation efficiency is improved;
however, the quality of the interpolation may a little worse than the original
Candés transform in some cases. A transform which can get a good trade-off
between redundancy, optimality of transform, level of sparsity, and recover
condition is no doubt benefits a lot for interpolation. However, this problem is
still open, and more transforms should be compared to get further conclusions.
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