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ABSTRACT

Zarean, A., Mirzaei, N. and Mirzaei, M., 2015. Applying MPSO for building shear wave velocity
models from microtremor Rayleigh-wave dispersion curves. Journal of Seismic Exploration, 24: 51-
82.

Surface waves have been increasingly used as an attractive tool for obtaining near-surface
shear-wave velocity profiles. Inversion of surface wave dispersion curves is a challenging problem
for most of local-search methods due to their high nonlinearity and multimodality (large numbers
of local minima and maxima of the misfit function). Rayleigh- and Love-wave dispersion curves
derived from microtremor arrays have the advantage of not requiring artificial sources; however,
they have disadvantages of high uncertainty, low sampling number and limited frequency band.
Among many approaches which have been proposed for surface wave inversion thus far,
metaheuristic algorithms have been effectively applied to solve it, and avoid trapping in local
minima. In this study, a hybrid approach was proposed for inversion of surface wave dispersion
curves. The method is a genetic algorithm mutation based particle swarm optimization, namely
MPSO. The mention for using the additional mutation operator in this study was to prevent early
convergence on local optima of the solution. In each iteration, a hybrid mutation scheme was applied
to search the neighborhood area of the solution which corresponds to the two best particles: the best
current particle and the best particle found so far. The population was divided into two parts; the
first one was regenerated according to the particle swarm optimization and the latter was generated
by applying the proposed here. In this work, in order to invert the dispersion curves, a new
MATLAB code was developed for the MPSO algorithm. Also, to evaluate calculation efficiency and
MPSO stability for inversion of surface wave data, various synthetic dispersion curves were
inverted. Following this stage, a comparative analysis with the original particle swarm optimization
and the genetic algorithm was made. Consequently, using the MPSO algorithm, the Rayleigh-wave
dispersion curve was inverted and one-dimensional Vg profiles were obtained. In conclusion, the
proposed approach represents an improvement of a purely particle swarm optimization scheme and
the MPSO typically offers a more significant and precise solution in the case of synthetic models.
Results of inversion performed on a field data set were validated by borehole stratigraphy.

KEY WORDS: particle swarm optimization, mutation, Rayleigh-wave, dispersion curves,
microtremor.
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INTRODUCTION

Shear-wave velocity (Vg) is an important parameter for site
characterization in geotechnical engineering (Renalear et al., 2010). In theory,
Vs is a function of ground compactness and rigidity variations (Hunter et al.,
2002). Also, V¢ imaging techniques allow for delineation of geologic boundaries
in the subsurface. In earthquake engineering, ground motion characteristics
including amplitude and duration are amplified in sites where soft soil layers
cover firm bedrock. This is in contrast to Vg values that strongly control
dynamic site response and the resulting damage (Bard and Riepl, 1999;
Somerville and Graves, 2003). So, Vy is required for evaluating site effects in
seismic hazard assessment. Shear-wave velocity (V) is in situ measured by
various methods including borehole tests, shear-wave refraction and reflection
studies and surface-wave techniques (Jongmans, 1992; Dasios et al., 1999;
Hunter et al., 2002; Boore, 2006). In recent years, surface waves have been
increasingly used for deriving Vg as a function of depth (e.g., Socco and
Jongmans, 2004).

The applied surface-wave method shares the same procedure to other
surface-wave analysis methods, which also can be concluded by these three main
steps (Socco et al., 2010):

1. Acquire the experimental data.
2. Process the signal to obtain the experimental dispersion curve.
3. Solve the inverse problem to estimate model parameters.

Each step can be performed using different approaches according to the
scale of the problem, target, complexity of the subsoil property distribution and
available equipment and budgets. The acquisition is conducted with a
multichannel layout of vertical low-frequency geophones (2-4.5 Hz) and a shock
source in an off-end pattern (MASW) or without active source (ReMi). In
deeper investigations, a number of 3-component seismographs (10-30 s) is used
in an array form (microtremor array). The common approaches used for
deriving the dispersion curve from passive-source can be classified to two main
families (Wathelet et al., 2004): frequency-wave number (Lacoss et al., 1969;
Capon, 1969; Kvaerna and Ringdahl, 1986; Ohrnberger, 2001) and spatial
auto-correlation (Aki, 1957; Roberts and Asten, 2004). As for active-source
surface-wave methods, there are several algorithms for generating images of
phase velocity dispersion energy: the F-K transformation (Yilmaz, 1987), the
Tau-p transform (McMechan and Yedlin, 1981), the phase shift (Park et al.,

1998), the slant stacking (Xia et al., 2007), and high-resolution Radon transform
(Luo et al., 2009).

In the third stage, the dispersion curve is inverted to obtain Vg (and
eventually V) vertical profiles, as in the classical active-source methods (Stokoe
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et al., 1989; Malagnini et al., 1995). Compared with these latter methods,
noise-based techniques offer the following advantages (Satoh et al., 2001): (i)
being easily applied in urban areas; (ii) not requiring artificial seismic sources;
(iii) allowing for greater depths to be reached (from tens of meters to hundreds
of meters according to the array aperture and the noise-frequency content).
Similar to all surface-wave methods, the obtained Vg profile is purely
one-dimensional and is averaged within the array (Socco et al., 2010). This
indicates that the technique is not appropriate when lateral variations are
present.

For performing inversion, four challenges are encountered: the method
of forward modeling, initial models, importance of higher modes, and choice
of proper inversion algorithm (e.g., Socco et al., 2010). The inverse problem
is usually solved with linearized algorithms that use a 1D forward model and
yield a 1D S-wave velocity profile (Socco et al. 2010).

The important distinction in local search methods (LSMs) and global
search methods (GSMs) is in between. The former one minimizes the misfit
between the experimental and synthetic dispersion curve, starting from an initial
velocity model and searching its vicinity; the latter one explores the solution
space systematically (Socco et al., 2010).

Global search methods have been popular as they avoid all assumptions
of linearity between the observable and the unknown, and offer a way of
handling the non-uniqueness problem and its consequences (Cercato, 2009; Foti
etal., 2009). However, GSMs require greater computing effort because multiple
simulations must be performed to adequately sample the model parameter space.
Several optimization methods have been applied over the years to make GSMs
affordable. These methods use random generation of model parameters, but they
can guide their search using a transition probability rule, e.g., simulated
annealing (SA), on the basis of the Metropolis algorithm (Metropolis et al.,
1953); or, they can apply genetic algorithms (GA) or an important sampling
method (Sen and Stoffa, 1996). These approaches reduce the number of required
simulations and sampling concentrated on the high-probability-density regions
of the model parameter space. A number of examples for GSM applications can
be found for surface wave inversion. The genetic algorithm has also been
applied at different scales in numerous studies (e.g., Yamanaka and Hishida,
1996, Pezeshk and Zarrabi, 2005; Dal Moro et al., 2007). Beaty et al. (2002)
and Pei et al. (2007) have used simulated annealing methods for geotechnical
characterization to a depth of 10 m using fundamental and higher modes. Also,
the neighborhood algorithm of Sambridge (1999), which can be considered an
important sampling method, was adopted by Wathelet et al. (2004) to invert
dispersion curves retrieved from noise measurements at seismologic scale. Socco
and Boiero (2008) proposed an improved Monte Carlo approach that used
non-dimensionalization of the forward problem of Rayleigh-wave propagation
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to optimize sampling of the model space and a statistical test to draw inferences
from the final results. Maraschini and Foti (2010) proposed a Monte Carlo
multimodal inversion of surface waves.

As a disadvantage to GSMs, the final result is not a single V profile but
is a set of acceptable Vg models. This result, even though more rigorous and
consistent with non-uniqueness of the solution, is not easy to handle.

In this paper, the focus was on GSMs algorithm. Development of GSMs
was done due to the following problems:

1. Reducing risk of being trapped in local minima.
Noisy dispersion curves, especially in the case of passive methods
(microtremors).

Here a new code was developed using hybrid mutation particle swarm
Optimization (called MPSO) algorithm. Particle swarm optimization (PSO) is
a population-based stochastic optimization algorithm, first introduced by
Kennedy and Eberhart (1995). It is a metaphor of the social behavior of
animals, such as bird flocking and fish schooling. Comparing with other
population-based stochastic optimization methods, such as Genetic Algorithms
(GA) and Evolutionary Programming (EP), PSO has comparable or even
superior search performance for many hard optimization problems with fast and
stable convergence rate (Kennedy and Eberhart, 2001). It has already been
applied with success to many scientific areas. However, PSO exhibits some
disadvantages: sometimes there is a high possibility for this to be trapped in
local optima (i.e., premature convergence), and the convergence rate decreased
considerably in a later period of evolution (Gao and Xu, 2011). Mutation
operators are an integral part of evolutionary computation techniques and
preventing loss of diversity in a population of solutions. This allows a greater
region of the search space to be covered. Furthermore, mutation operators
introduce new individuals into a population by creating a variation of a current
individual, thus adding variability into the population and preventing stagnation
of the search in local optima (Dumitrescu et al., 2000). Therefore, the addition

of mutation operator to PSO enhances its global search ability and thus improves
its performance.

METHODOLOGY
Particle Swarm Optimization
Swarm Intelligence (SI) is a novel distributed intelligent paradigm for

solving optimization problems and has originally taken its inspiration from the
biological examples by swarming, flocking and herding phenomena in
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vertebrates. Particle swarm optimization (PSO) incorporates swarming behaviors
observed in flocks of birds, schools of fish, swarms of bees and even human
social behavior, from which the idea is emerged (Kennedy and Eberhart, 2001;
Clerc and Kennedy, 2002). PSO is a population-based optimization tool, which
could be implemented and applied easily to solve various function optimization
problems. In terms of the algorithm, an important feature of PSO is its
algorithmic simplicity and fast convergence (Lu et al., 2010), which is favorably
compared with many global optimization algorithms, such as genetic algorithms
(Goldberg, 1989), simulated annealing (Triki et al., 2005) and other global
optimization algorithms. Feasible implementation of PSO depends on
appropriately mapping the problem solution into the PSO particle (Eberhart and
Kennedy, 1995).

The particles in PSO consist of a D-dimensional position vector x;, and
a D-dimensional velocity vector v;; so, the i-th member of a population’s
position is represented as X; = [X;,Xp,...,X;p] and its velocity as v, =
[Vi1,Vi,...,Vip]. The PSO algorithm begins by randomly initializing a population
of these particles and then iteratively evaluating and updating them until finding
better solutions. The particle update method tries to move particles to better
positions by accelerating them towards their own previous best solution which
has been achieved so far, as the factor pbest, and the best solution achieved by
any particle in its neighborhood, as the factor nbest. So for the i-th member of
a population, the pbest is represented by vector p, = [p;,Pi»----Pip] and the
nbest as p, = [Py1,Pm2>----Panl, Where n is the particle index of the best neighbor
of i. Original particle update equations of Eberhart and Kennedy (1995) have
been improved in a number of studies. Eberhart and Shi (2000) stated that the
best approach was to use the constriction factor method of Clerc (1999), which
investigated use of a parameter called constriction factor K inspired by the
earlier work on the use of an inertia weight by Shi and Eberhart (1998). Using
the constriction factor, the particle velocity dimensions are updated via:

Vig® = KIviet—1) + cir{py—xat—1} + cnp{pua—xu(t—1} (1)
K=2/2-¢—-le?-40)| , ¢=c¢ +c, ¢ >4 2)

With the particle position dimensions being updated via the original
equation of Eberhart and Kennedy (1995):

Xig() = X(t—1) + viu(t) .. 3)

Here, t is the current algorithm iteration, ¢, and c, are two positive constants
and r, and r, are two separately generated random numbers in a uniform range
[0:1]. Typically, values of 2.05 are used for ¢, and ¢,, making ¢ = 4.1 and K
= 0.729. These equations have the effect of accelerating particles toward the
weighted sum of the pbest and nbest positions with an element of randomness.



56 ZAREAN, MIRZAEI & MIRZAEI

There are two main versions of the PSO algorithm called local and global ones,
which differ in the way the particle neighborhoods are defined. In the global
version, a particle’s neighborhood consists of all other particles, whereas in the
local version, a particle’s neighborhood is a subset of other particles. This
neighborhood is defined as topological neighbors in the particle array and does
not change during the algorithm’s run. So for a neighborhood size of 3,
neighbors of particle i are particles i—1, i and i+1. In both of these versions,
the gbest denotes the best solution of any particle in the population. The benefit
of a local version is that it is more resistant to getting stuck in local minima;
but, it is generally slower to converge. For further details, the reader can refer
to Kennedy and Eberhart (2001).

Hybrids of the PSO algorithm have also been produced by introducing
ideas from evolutionary computation techniques such as selection (Angeline,
1998) and mutation operators, which are to be discussed in the next section.

Mutation Based Particle Swarm Optimization (MPSO)

The behavior of PSO in the gbest model presents some important aspects
related to the velocity update. If a particle’s current position coincides with the
global best position, the particle will only move away from this point if its
inertia weight and previous velocity are different from zero. If their previous
velocities are very close to zero, then all the particles will stop moving once
they catch up with the global best particle, which may lead to a premature
convergence of the algorithm. In fact, this does not even guarantee that the
algorithm has converged on a local minimum. It means that all the particles
have converged at the best position discovered so far by the swarm. This
phenomenon is known as stagnation (Esmin et al., 2005; Esmin et al., 2006).
Like evolutionary computation techniques, Ratnaweera et al. (2004) stated that
lack of population diversity in PSO algorithms was understood as a factor in
their convergence on local minima. Therefore, addition of a mutation operator
to PSO could enhance its global search capacity and thus improve its
performance.

We included the mutation process used in GA into PSO and by varying
the mutating space along the search. The stagnation is assuaged by this
technique and introduces diversity into the population. This process allows the
swarm to escape from the local optima and to search in different zones of the
search space. As a result, the proposed algorithm has the automatic balance
ability between global and local searching abilities and achieves better
convergence.

This process starts with the random choice of a particle in the swarm and
moves to the different positions inside the search area. During every iteration,
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the population is divided into two parts: the first is generated according to a
population-based transition rule and the second is generated by a proposed
mutation-based scheme. Note that, the main part is the population-based section.
The reason for employing the second part is to avoid convergence in a local
minima solution. As the number of iteration is increased, PSO leads to fast
convergence in a non-optimal (non near-optimal) solution. So, having a more
population-based one is preferred at the beginning; as the iteration number is
increased, the mutation-based population will be raised. In this way, a
percentage of the mutation-based part is represented by PPm, which increases
linearly from PPm,;, to PPm,,, during the execution of the algorithm that is
tuned as eq. (4). It,,, is the maximum number of iteration and It is the current

iteration. We set the PPm,;,, PPm,,,, and It ,, as 0.05, 0.5 and 50, respectively,
in this study.

PPm; = PPm,;, + (It/It,,)(PPm,,, — PPm,,) . “)
By applying the mutation process, the particle moves to the other side in

the space. This prevents the particles from being trapped in the local minima.
Fig. 1 lists the pseudo-code for the basic MPSO algorithm.

Begin
Create an initialize:

While (stop condition is false)
Begin

Evaluation
Update velocity and position
Mutation

End
End

Fig. 1. The pseudo code for MPSO algorithm.
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MPSO for surface wave analysis

The experiments were tested on an Intel PC with 1.7 GHz processor and
2 GB memory running MATLAB R2009a in Windows XP. The experiments
were carried out on the models (Tables 1, 3). For tuning the parameters,
different values were tested and the best values were considered for each
algorithm. The population size and max-iteration for MPSO were set to the
same values of 50 and 50, respectively.

The codes we developed here aims at performing nonlinear inversion of
fundamental-mode and/or higher-mode Rayleigh-waves using a MPSO strategy.
In the current research, the focus was on inversion results of fundamental-mode
and first high-mode Rayleigh-wave dispersion curves for near-surface S-wave,
P-wave velocities and layer thicknesses. Rayleigh-wave dispersion is dominated
by S-wave velocity and thicknesses (Xia et al., 1999) but since in Rayleigh-
wave dispersion P-wave plays a minor but not completely negligible role (please
notice that in porous media P-wave values are strongly affected by the water
content and are then subject to large variations), Poisson values are free to vary
around a value and by a percentage which the user can define (Dal Moro et al.,
2011). The inversion was done for S-wave and P-wave velocities by the

assumption of (0.2 < Poisson’s ratio < 0.5) and fixing densities to their known
values.

To fully evaluate the capability of the proposed inversion strategy and
simulate more realistic cases in which no prior information is available, a wider
search scope of the solution space was used. The lower and upper limits of the
search areas departed 50% or more from their true values in all of the latter
tests. As presented by Xia et al. (2003), the best match with the measured data
does not necessarily result in the best inversion results. Here, after a few runs
of MPSO we set the number of iterations to 50 for noise-free, contaminated,
and field data.

The forward modeling of Rayleigh-wave dispersion curves is based on the
fast Dunkin’s (1965) formulae algorithm developed by Wathelet et al. (2004),
who used an efficient root search based on the Lagrange polynomial which was
constructed by iteration with Neville’s method (Press et al., 1992). The
procedure was designed to find the global minimum of RMS (root-mean-square)
error misfit between the measured and predicted phase velocities. The objective
function was defined as (Dal Moro et al., 2007):

misfit = || V> — Vit //m 5)
where V™ is an mXx 1 vector of the observed Rayleigh-wave phase velocities,
V' is an mX 1 vector of the theoretical Rayleigh-wave phase velocities and m
is the number of dispersion points (phase velocities versus frequency).
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SYNTHETIC DATA INVERSION
Example 1: The two-layer model

In the first example presented here, a simple earth model consisting of a
homogeneous single layer overlying a half-space was used. This example was
performed to test the efficiency and stability of MPSO. The model A with
different velocity contrasts was used in this section (see Table 1 for more
details). Here a frequency range of 1-30 Hz with 50 samples was utilized for
computing noise-free synthetic dispersion curve for this model. Also prior to
applying MPSO to Rayleigh-wave dispersion curves, different types of
initialization were chosen:

1. Joint inversion S-wave, P-wave velocities and thickness by the assumption
of (0.2 < Poisson’s ratio < 0.5) by selection of search space departing

50% true values.

2. Adding 10% Gaussian noise to dispersion curve due to the step one
conditions.

3. Joint inversion of fundamental and first higher modes of Rayleigh-wave
dispersion curves due to the step one conditions.

Table 1. Benchmark model to evaluate calculation efficiency and stability of MPSO.

Layer Thickness (m) 50% Vp 50% Vs 50% Density

Search Space (m/s) Search Space (m/s) Search Space (kg/m*)
Model A 1 30 15-45 500 250-750 200 100-300 1800
2 Half-space 1600 800-2400 800 400-1200 2000

Three different disturbing of dispersion curve and initialization was performed
using the MPSO algorithm. Standard deviation (SD) and average relative error
(RE %) between the true models and models estimated from MPSO inversions,
on three different data sets, are shown in Table 2.

Fig. 2 shows the inversion results of noise-free data for model A. A good
agreement between measured and inverted dispersion curves can be seen here
(see Fig. 2a). For this curve the average relative error for all parameters of
model A (H;,Vy,,Vs,) are less than 1%. For this example we found the
experimental surface wave phase velocities to be very noisy. Here, in order to
investigate the effect of noise inclusion on the surface wave data and also to
examine the vulnerability of our algorithm, 10% white Gaussian noise was
added to the dispersion curve. For this scenario, the inversion results show more
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relative error in model parameters, and higher misfit values were observed
relative to the free-noise data. Also as shown in Fig. 3, the inversion results
were acceptable for this case. The misfit function was also computed. Fig. 4.
compares the misfit function between the noise-free data and the data calculated
for the situation wherein 10% noise was added. It is seen here that the misfit
function for the noise-free run (shown as dots in Fig. 4.) rapidly decreases in
the first 20 iterations through the solution. Here, a minimum misfit value of
approximately 1073 was obtained after 50 iterations. As for the second run in
which the white noise was added, the misfit decreases to approximately 107!
after 5 iterations and then remains constant.

Joint inversion of fundamental and first higher modes of Rayleigh-wave

dispersion curves could increase the reliability Vg and thickness results (relative
error 0.0% for thickness and Vy,) (Fig. 5).

Table 2. MPSO inversion results and statistics of inversion results A.

ModelA | True | model | SD [ RE%)
50% Search Space
H;(m) 30 29.8 0.67 0.67
Vsi(m/s) 200 200.5 1.35 0.25
Vso(m/s) 800 803.3 14.31 0.41
50% Search Space
with 10% Gaussian noise
H,(m) 30 29.4 0.84 2.00
Vsi(m/S) 200 200.7 1.49 0.35
V(') 800 779.6 7.69 2.55
50% Search Space
Joint with First Higher Mode
H;(m) 30 30.0 0.00 - 0.00
Vsi(m/S) 200 200 0.0 0.00
Vso(n/S) 800 812.1 6.52 1.51

Example 2: The five-layer model

The second example presented in this study investigates the efficiency and
stability of MPSO for three distinct models. The first model, indicated as model
B, consists of five-layer model in which S-wave velocities increase with depth.
The second model, indicated as model C, considered the same layers wherein
a soft layer is trapped between two stiff layers. For the third model, namely
model D, presented here there are five-layer too with a stiff layer sandwiched
between two soft layers (Table 3). Here for each model, a frequency range of
0.5-30 Hz with 50 samples was utilized for computing a noise-free synthetic
dispersion curve. Different types of initialization were chosen as the same as
example 1. For each model Standard Deviation (SD) and average relative error
(RE %) between true models and models estimated from MPSO inversions on
three different data are shown in Table 4.
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Table 3. Benchmark model to evaluate calculation efficiency and stability of MPSO.

Layer Thickness (m) 50% Vp 50% Vs 50% Density
Search Space (m/s) Search Space (m/s) Search Space (kg/m3)
Model B 1 20 10-30 600 300-900 200 100-300 1800
2 10 5-15 900 450-1350 300 150-450 1900
3 30 15-45 1200 600-1800 400 200-600 1900
4 50 25-75 1800 900-2700 600 300-900 2000
5 Half-space | - 3000 1500-4500 1000 500-1500 2100
Model C 1 10 5-15 600 300-900 200 100-3-- 1800
2 20 10-30 450 225-675 150 75-225 1900
3 30 15-45 900 450-1350 300 150-450 1900
4 50 25-75 1500 750-2250 500 250-750 2000
5 Half-space | - 2400 1200-3600 800 400-1200 2100
Model D 1 10 5-15 450 225-675 150 75-225 1800
2 20 10-30 750 375-1125 250 125-375 1900
3 30 15-45 600 300-900 200 100-300 1900
4 50 25-75 1500 750-2250 500 250-750 2000
5 Half-space | = ------ 2400 1200-3600 800 400-1200 2100

Table 4. MPSO inversion results and statistics of inversion results B, C & D.

Model | True | model | SD | (R,,/f) Model | True | model | SD | (R,,/B Model | Truel||Fmodel | D | (R/f)
Model B) Fund: 1 Mode Model C) Fund. 1 Mode Model D) Fund 1 Mode
H,(m) 20 19.6 26 175 H,(m) 10 9.3 29 7.00 H,(m) 10 10.1 0.6 1.82
H,(m) 10 10.2 24 2.40 H,(m) 20 212 1.4 6.00 H,(m) 20 19.7 6.4 1.50
Hs(m) 30 312 6.8 4.17 Hy(m) 30 28.6 8.7 4.44 Hy(m) 30 315 6.6 5.15
Hy(m) 50 48.2 14.7 3.60 Hy(m) 50 41.5 14.7 16.89 Hy(m) 50 394 13.4 21.09
Va(m/s) 200 200.4 0.8 0.20 Va(m/s) 200 216.5 33.8 8.25 Vg (m/s) 150 151.0 1.7 0.73
Vo(m/'s) 300 312.7 36.8 423 Vo(v's) 150 150.4 0.5 0.27 Vo(m/s) 250 276.1 26.7 10.47
V(m/s) 400 407.2 273 1.80 Vg(m/s) 300 328.6 58.7 9.53 Va(m/s) 200 199.4 14.1 0.27
Va(mv/'s) 600 625.8 349 430 Vy(mv/'s) 500 472.4 79.9 5.51 V(m/s) 500 549.2 163.7 9.84
Va(m/s) | 1000 | 1005.2 7.9 0.53 Va(m/s) | 800 8243 212 3.04 V(m/s) | 800 | 8153 25.1 1.92
Model B) Fundamental Mode with 10% Gaussian Model C) Fundamental Mode with 10% Gaussian Model D) Fundamental Mode with 10% Gaussian
noise noise noise
H,(m) 20 20.9 22 4.50 H;(m) 10 9.1 34 9.00 H,(m) 10 10.0 1.8 0.00
H,(m) 10 10.6 4.3 6.00 H,(m) 20 18.2 23 9.00 H,(m) 20 17.7 5.2 11.50
H(m) 30 29.5 10.0 1.67 Ha(m) 30 30.1 8.6 033 Hs(m) 30 31.8 7.1 6.00
Hy(m) 50 553 18.3 10.60 Hy(m) 50 44.3 15.4 11.40 Hy(m) 50 35.1 16.4 29.80
Va(m/'s) 200 200.1 0.6 0.05 Va(m/'s) 200 221.3 373 10.65 Vg (m/s) 150 149.0 8.5 0.67
Vo(m/s) 300 343.9 74.9 14.63 Vo(m/s) 150 151.4 12.5 0.93 Vo(m/s) 250 270.7 22.6 828
Vga(m/s) 400 404.9 SI1 1.22 Vga(m/s) 300 271.3 76.7 9.57 Vga(m/s) 200 203.8 24.4 1.90
Va(m/s) 600 625.4 106.3 423 Va(m/s) 500 663.5 76.5 32.70 Va(m/s) 500 612.5 132.4 22.50
Vs(m/'s) 1000 1026.9 26.9 2.69 Vs(m/s) 800 788.1 23.3 1.49 Vs(m/s) 800 825.2 24.4 3.15
Model B) Joint with First Higher Mode Model C) Joint with First Higher Mode Model D) Joint with First Higher Mode
H,(m) 20 20.1 1.1 0.56 H,(m) 10 9.8 0.9 2.00 H,(m) 10 10.0 0.0 0.00
Hy(m) 10 9.9 2.7 1.00 H,(m) 20 20.3 1.3 1.50 H,(m) 20 19.1 1.5 4.55
Ha(m) 30 294 6.3 1.85 Ha(m) 30 30.1 6.9 037 Hi(m) 30 312 20 4.07
Ha(m) 50 49.3 8.1 1.33 Ha(m) 50 41.2 6.1 17.60 Hy(m) 50 50.1 19.0 0.18
Va(m/s) 200 200.1 0.9 0.05 Va(m/s) 200 207.4 21.5 3.70 Vi (m/s) 150 149.9 0.3 0.06
Vo(m/s) 300 297.3 45.4 0.90 Vo(m/'s) 150 149.9 0.6 0.07 Vo(m/s) 250 2553 2.8 2.11
V(m/'s) 400 405.8 24.9 145 Vga(m/s) 300 303.3 20.2 1.10 Va(m/s) 200 201.2 1.8 0.59
Vu(m/'s) 600 627.8 322 4.63 Vy(m/'s) 500 494.1 89.6 1.18 Vy(m/s) 500 537.4 73.6 7.48
Vs(m/s) 1000 1005.7 15.0 0.57 Vs(m/s) 800 809.1 249 1.14 Vs(m/s) 800 810.6 159 1.32

Figs. 6 to 8 show the inversion results of MPSO on noise-free
fundamental mode of dispersion curve for model B, model C, and model D,
respectively. A good agreement was found between Vg, and the inversion results
for all models. In model B (see Fig. 6) with increasing Vy, layers, the relative
error and standard deviation were higher than that of the simple two layer
model. By comparing to model B, the results in model C (LVL) were
remarkable (see Fig. 7); low relative error was shown for the low velocity layer
in this model. Theoretically refraction method fails to find the low velocity layer
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modeled dispersion curve (solid line). (b) The lower and upper bounds (50%) of the search area
(dash-dots lines), true model (dashed line) and inverted S-wave velocity profile with standard
deviation (solid line).
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but in such a case (LVL), the surface wave inversion method can be more
effective. This was obtained for the inversion performed for model D (see Fig.
8). Here for all models, the maximum relative error was observed in the forth
layer. However, in all models, MPSO works as well as. possible.

Figs. 9 to 11 show the inversion results of MPSO on noise-corrupted
fundamental mode of dispersion curve for model B, model C, and model D,
respectively. Similar to the noise-free data, the agreement between true models
and inversion results obtained here are also good. The inversion results for all
models (Figs. 9 to 11) show that the general velocity trend is properly
identified. However, in comparison to the results for the noise-free data, a
higher relative error was observed here. Here again the maximum errors are
observed at layer 4 in each model. We recognize that MPSO algorithms are
robust, not only in terms of accuracy but also in terms of computation effort,
when applied to the surface wave inversion problem.

To improve the inversion results, we include the first higher mode and
tested the results. Figs. 12 to 14 show the shear-wave vertical profiles for model
B, model C, and model D, respectively. By comparing to the results obtained
for the fundamental mode only (Figs. 6 to 8), an improvement of the inversion
results with smaller relative error is observed.



APPLYING MPSO FOR SHEAR WAVE VELOCITY MODELS 65

(@) x 107 Reyleigh-wave dispersion curve

451

Phase Slowness (s/m)

1.5} ® Measured
Inverted

1 1 1 1 1 L
0 5 10 15 20 25 30

Frequency (Hz)

U T T T T T T
w=eeme Thje

Inverted
Limited

(b)

20

40

Depth(m)

60

80

100

0 00 400 600 800 1000 1200 1400
S-wave Velocity(m/s)
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Comparison between PSO, GA and MPSO

One feature of the MPSO method is the convergence and stability of the
models. To further highlight this feature, we again use Model B to implement
a Rayleigh-wave dispersion curve inversion scheme by genetic algorithms (GA)
developed by Yamanaka and Ishida (1996) and PSO by Eberhart and Shi (2000).
We set the population size to 50, crossover probability to 0.7, and mutation
probability to 0.03. The algorithm is terminated after 50 iterations. A final
solution is determined from an average of 10 trials of random constructions.
Fig. 15 summarizes PSO, GA and MPSO inversion results of Rayleigh-wave
dispersion curves. As shown here, the misfit values for PSO and GA rapidly
decrease in the first 20 iterations, and then gradually converge to a minimum
of 107 in the next 30 iterations. Here the MPSO algorithm has the greatest
convergence rate as the misfit is reduced to 107*. A great deal of the
computation time for the models presented here was caused by the forward
problems in function evaluations, whereas the inversion scheme used here was
fast. By comparison (see Fig. 15) the MPSO outperforms the GA and PSO
algorithms in terms of quality of the solutions.

EXPERIMENTAL DATA INVERSION

After testing the applicability of MPSO algorithm in various synthetic
models, the MPSO was applied to the dispersion curve derived from
microtremor records in a real site. The selected site was located at Golestan
Park, Tabriz, north-east of Iran (Fig. 16a). Three non-simultaneous arrays were
recorded with radii of 20, 40 and 60 m (Fig. 16b). Due to the near borehole,
soil structure mainly consisted of a sequence of sandy-clay, clay, marl and
gravel horizontal layers overlying a Miocene marl bedrock (Fig. 17a). Similar
to the inverse strategy of the synthetic data, S-wave, P-wave velocities (the
assumption of 0.2 < Poisson’s ratio < 0.5) and thicknesses of layer were
considered as variables while fixing densities. Search space and densities
adopted for nonlinear inversion of the MPSO approach are reported in Table 5.

Table 5. Real model parameterization to evaluate calculation efficiency and stability of MPSO.

Layer

Thickness (m)
Search Space

Vp (m/s)
Search Space

Vs (m/s)
Search Space

Density (kg/m’)

Real Model

10-50

400-1200

100-400

1800

10-50

800-2000

300-1000

2000

20-60

1000-3000

500-1200

2000

I[N

Half-space

2000-4000

800-2000

2100
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column) Misfit behavior of algorithm iteration.
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During the inversion procedure, a suggested 4-layer subsurface structure
was adopted to perform an MPSO inversion of the observed dispersion curve.
Inversion results of MPSO for the real example are illustrated in Fig. 17. Panel
¢ in this figure includes a limited frequency spectrum (approximately 2-8 Hz).
Panel d here shows the convergence process of MPSO iteration for this
example. It is seen here that misfit is significantly decreased in the first 10
iterations and then converged to a similar constant value. This indicates that the
algorithm completed the exploration for an optimum solution.

Fig. 17b reports the best solutions of the implementation from MPSO. In
particular, the MPSO-estimated profile was in fairly good agreement with
borehole stratigraphy shown in Fig. 17a. The seismic bedrock shear-wave
velocity, which consists of marl, sand and gravel, marley sand and gravel,
determined from the microtremor, is about 950 m/s. However, the shear-wave
velocity determined for the Miocene marl bedrocks is higher than 1400 m/s.
Depths of the velocity discontinuities between all layers, including three
contrasts (sandy-gravel to clay, clay to sandy-marl and bedrock contacts) were
well delineated by MPSO. According to the log stratigraphy, the actual bedrock
was found to be 85 meters. We estimated the depth to bedrock to be 81 meters
using Rayleigh-wave dispersion curve inversion.
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CONCLUSION

A new computer code based on the MPSO algorithm was developed for
the inversion of Rayleigh dispersion curves, with the aim of integrating any data
resulting from processing of active-source experiments or ambient-noise
recordings. Performance of the mutation based particle swarm optimization
(MPSO) was investigated for Rayleigh-wave inversion of broadband noise-free,
wide search space and noise-added dispersion curve data. Wider search space
boundaries were adopted to simulate more realistic cases where a priori
information was not available, and also to examine the capability of MPSO
approach. According to the present analyses, MPSO was a simple, effective and
robust algorithm for inverting Rayleigh-waves. Adding 10% Guassian noise to
dispersion curve data from two-layer model had a slight effect on the inversion
result; but, adding 10% Guassian noise to dispersion curve data from five-layer
models had a considerable effect on the inversion result of the fourth layer. The
implementation was tested on four synthetic and one field data sets. The
inversions on one field data set yielded S-wave velocity profiles that followed
the geological log in a proper manner.

As the main advantages of MPSO, it was found to be easy to implement.
Also there were few parameters for adjusting. For the future studies we will be
introducing joint inversion of surface waves, in higher mode Rayleigh-waves
and Love-waves, for other geophysical data such as refractions and geoelectrics.
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