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ABSTRACT

Ansari, H.R., Motafakkerfard, R. and Riahi, M.A., 2015. Probabilistic facies prediction in a
carbonate gas reservoir of Iran using stochastic seismic inversion and connectivity algorithm. Journal
of Seismic Exploration, 24: 15-35.

Inversion methods are valuable tools for obtaining reservoir properties from seismic data.
However, results of the seismic inversion are band-limited due to band-limited source wavelet.
Therefore, the low and high frequency information is lost in seismic traces. In order to overcome
this problem, well logs and seismic data were used together in a seismic inversion algorithm using
stochastic methods. In this paper, the stochastic inversion method was based on spectral simulation
to create acoustic impedance realizations. Also, an initial broad-band model was derived from
kriging of the well log data. Then, spectral simulation was applied for the seismic inversion. This
method was conducted on one of the marine carbonate gas fields in Iran and the results were
compared with deterministic inversion.

In the second part of this study, acoustic impedance realizations and rock density volume,
obtained from the previous section, were combined with instantaneous frequency as the input of an
unsupervised neural network for clustering the three rock facies and a vector quantizer network was
utilized for this purpose. The network results were calibrated with porosity in the well location and
provided threshold parameters to conduct the connectivity facies analysis. Finally, the connectivity
algorithm was applied to all the realizations of stochastic inversion results to achieve highly probable
favorable facies.

KEY WORDS: stochastic inversion, unsupervised neural network, probabilistic facies,
connectivity algorithm.
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INTRODUCTION

Acoustic impedance (Al) is an important attribute obtained by virtue of
the inversion of seismic data. There are many methods for seismic inversion and
most of the available methods are based on minimizing differences between
model and observed traces. These methods are commonly referred to as
"deterministic inversion". The result of a deterministic inversion is the relatively
smooth estimation of the impedance (Francis, 2006a). Due to the band-limitation
of seismic traces caused by source wavelet, low and high frequencies are lost
in the seismic data. Therefore, deterministic methods cannot reproduce the
absolute values of the impedance observed in the wells. More details on the
limitation of deterministic inversion can be found in Francis (2005; 2006a).

Stochastic (or geostatistical) inversion is an approach which is applied for
overcoming the mentioned limitations of deterministic inversion. Another
advantage of stochastic inversion is in computing a set of realizations used for
appreciating the uncertainty in seismic inversion.

The geostatistical inversion method was presented by Bortoli et al. (1993)
and Haas and Dubrule (1994) for the first time. This technique was a local trace
by trace optimization method and incorporated sequential Gaussian simulation
(Deutsch and Journel, 1998) to invert seismic data. Debeye et al. (1996)
presented the same geostatistical inversion method by adding the simulated
annealing optimization. Several studies have been conducted on geostatistical
inversion (Kane et al., 1999; Buland and Omre, 2003; Eidsvik et al., 2004;
Francis, 2006a; 2006b; Gonzalez et al., 2008).

Another method is global search technique for minimizing the mismatch
between observed data and forward synthetic model. Francis (2006a; 2006b)
exploited the fast Fourier transform based on spectral simulation in order to
construct multi-impedance realization conditional to well log data. The
advantage of the global methods such as spectral simulation is that they are
faster than sequential simulation methods.

In this study, Al realizations obtained from stochastic inversion algorithm
was based on spectral simulation method (Pardo-Iguzquiza and Chica-Olmo,
1993; Francis, 2006a; 2006b). This method was conducted in frequency domain
using geostatistical simulation. Spectral simulation is a global method which uses
a global density spectrum of variogram models and thus the inverse Fourier
transform is performed only once to generate a realization.

The second part of this study was facies clustering using multi attributes
analysis based on neural network clustering and connectivity algorithm
(Deutsch, 1998). Facies term is used for categorical groups, not merely by
lithology type, but also by the same property or a set of properties (Bosch et al.,
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2010). The intelligent seismic facies analysis would be supervised by the priori
geological information or could be unsupervised when there is not enough data
for guiding the analysis (Matos et al., 2005). An unsupervised vector
quantization (Gersho and Gray, 1992) was trained and utilized for clustering in
this study. Unsupervised neural networks do not require any target dataset.
Instead, they try to find patterns/clusters within the input dataset in
multi-dimensional space (Russel, 2005). The results of neural network were
applied to obtain the threshold parameter in the connectivity algorithm in order
to construct probability facies cube.

Geological and data overview

The area of study was an Iranian gas field located in the Persian Gulf.
Several reservoirs were explored and found to be productive in this field. The
oil reservoir belonged to the Khami and Bangestan group formations and the
gas-bearing formations were the Kangan and Dalan formations of Triassic and
Permian age. The field consisted of four independent reservoir layers which
were K, K,, K; and K, from top to bottom. These units were mainly composed
of dolomite, limestone, and some streak anhydrite. K, and K, constituted major
gas reservoirs (Tavakoli et al., 2011). A massive anhydrite body (the Nar
member) separated K, from the underlying Ky unit which had poor reservoir
qualities (Fig. 1).

Available data for this study were 3D post-stack seismic section operated
to cover 370 km? and Al logs prepared from four wells. Three wells (B, C, D)
were used directly in stochastic inversion process and another well (A) was used
for validating the results. Well data consisted of both a set of conventional well
logs and petrophysical measurements such as resistivity, porosity, and density.
The litho-stratigraphic charts of wells A and C, obtained from cutting data, were
prepared in the mentioned data set. Additionally, three interpreted horizon
surfaces, introduced as Dashtak-S,, K, and K,, were used for modeling.

METHODS
A priori model building

Fig. 2 shows the general scheme of methodology workflow. The initial
step is the preparation of data, such as picking time horizons, extracting
wavelet, producing Al log from the sonic and density logs, and getting spatial
relationships. In order to describe the spatial relationships, the semi-variogram
is most commonly applied in geostatistical methods. Semi-variogram is half of
the variogram that is defined as half of the variance of the difference between
the two values located [ distance apart (Kelkar and Perez, 2002). In a large
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distance, the semi-variogram reaches a value called sill and the distance at
which the semi-variogram reaches sill is called range. Then, estimated
variograms fit a common variogram model such as exponential, spherical, or
Gaussian.

In the next step, a 3D broad-band model is created using picked horizons
and interpolating well log by kriging. The kriging method utilizes a linear
estimation procedure in order to estimate a value in an unsampled location. All
kriging methods are elaborations on the basic generalized linear regression
algorithm. Let the value estimation be conducted in an unsampled location Z (u,)
from the values of n-point neighboring location Z(w;), i = 1, 2... n. Then, the
simple kriging estimator is defined by Deutsch and Journel (1992):

Z'w) = Y NZ'w) + (1 — Y am (1)
i=1

i=1

where A, is the weight assigned to the neighboring value and m is the expected
value of Z(u). Weights are estimated by solving the kriging system depending
on the spatial relationship between the neighboring observations.

Main lithology / Reservoir units Formation Age
Bangestan
Group Cretaceous
Khami Group
Jurassic
i
- P
Faraghan
Zakeen Devonian

Fig. 1. Generalized stratigraphic chart of this study field (not to scale). The lower Dashtak, Kangan
and upper Dalan were used in this study.
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In addition to the estimate in the least square scenes, kriging has another
advantage. It also assigns the uncertainty to the estimate at any unsampled
location. The uncertainty is small and close to sampled locations and will
increase away from them. Finally, the 3D model is created by kriging
interpolation and applied as a priori model in both deterministic and stochastic

inversion.
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Deterministic inversion

The observed data, d, and the model parameter, m, can be generally
related through a function, G, in the following forward model:

d=Gm) +e, 2)

where e is the error vector. The purpose of the inverse problem theory is the
estimation of m. In the seismic scenes, the signals recorded at the surface are
data observation and m which is referred to as earth model. Also, the forward
model is described by convolution model:

s(t) = r(t) * w() + n(t) . 3)
s(t) represents the seismic traces indicated by the convolution of reflectivity,

r(t), and wavelet, w(t), plus random noise, n(t). Reflectivity is related to the
acoustic impedance as follows:

r(t) = [AI(t+1) — AIO)/[AIt+1) + ALt)] . 4
Let:

g(ALY) = {[AI(t+1) — AID]/[AL(t+1) + AlM]} * w) . (5)
Then:

s() = g(ALt) + n(t) . (6)

Egs. (5) and (6) represent nonlinear inversion for the Al. Deterministic methods
use an approximation method for linearization. The Taylor series approximation
can be applied for linearization:

ALY = g(AL.D + dg(ALD/AI|  AAT , (7)

where Al is the initial acoustic impedance and AAI is the change in Al
Suppose the vector s(t) such that:

o) = g(ALy,p) ; ®)
and

G = 0g(ALt)/0AI| Aeal )
Then, if we substitute them in eq. (6), we can summarize as:

s(t) — so(t) = As(t) = GAAI + n(t) . (10)

Eq. (10) is the explicit linear forward model explained in the pose of Eq.

(2). This problem is an over-determined problem and the least squares error
method is used to solve the equation.
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In this study, deterministic inversion was seismic model-based inversion
that uses the generalized linear inversion (GLI) method (Cooke and Schneider,
1983) to obtain an optimal impedance solution whose forward convolution
sounds to be suitable for the seismic in a least squares sense (Russel, 1988).

Stochastic inversion

Stochastic (geostatistical) inversion adds well log data using spatial
relationships in stochastic processes scenes. In this study, stochastic inversion
exploited the FFT-based spectral simulation method to generate impedance
realizations, conditional to the well impedance data (Francis, 2006b). Details of
the 3D frequency domain simulation, which is called Fourier integral method,
were discussed in Pardo-Iguzquiza and Chica-Olmo (1993). Briefly, the
covariance function is determined for each layer using a 3D anisotropic
variogram and is characterized by a density spectrum in frequency domain.
Consider C(h) as a discrete covariance function; then, the discrete spectral
density S(w) is the Fourier transform of C(h). The spectral simulation can be
summarized as follows:

1. Computing covariance (or variogram) functions in each layer.
2. Calculating S(w) from C(h) using the (fast) Fourier transform.

3. Calculating the amplitude spectrum from S(w). The square root of spectral
density is amplitude spectrum.

4.  Generating a random phase spectrum. The amplitude and phase spectrum
are the Fourier transform parameters of a real random field.

5. Using inverse (fast) Fourier transform of amplitude and phase spectrum
to obtain the real random field variables.

The amplitude spectrum can be honored globally over the whole field,
instead of only within searching the neighborhoods, as with the traditional SGS
method (Yao et al., 2004). The spectral density is calculated once from
covariance function and inverse (fast) Fourier transform is accomplished on the
amplitude and phase spectrum only once to construct realization. Thereby, this
method is fast, especially when FFT is used. Increasing the speed of algorithm
causes a decrease in the computational cost.

Finally, stochastic inversion based on FFT-spectral simulation can be
achieved as follows:

1. Building initial model using kriging of well log data between seismic
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horizons.

2. Providing a spatial well constraint based on standard deviation map
obtained from simple kriging of the well data. Standard deviation is zero
in well locations and reaches the maximum value away from the well
locations, at distances greater than the variogram ranges. This map is
applied to relative importance of seismic data in inversion process.
Therefore, when far from the well locations, seismic data are significant
for model construction.

3. The AI values in well locations are converted to a standard Gaussian
PDF.

4. Inverting seismic data in the stochastic framework in frequency domain.
Conditioning to seismic data is accomplished by exploiting the GLI to
update the initial geostatistical realizations of Al. In spectral simulation,
separation of amplitude and phase allow for updating the model with other
information. Therefore, missing frequencies can be simulated by a priori
well log model.

5. In the final step, stochastic inversion results must be back transformed
from their standard Gaussian PDF into original impedance unit, which is
obtained by using the inverse normal score transform.

Unsupervised neural networks

In the unsupervised neural networks, the weights and biases are learned
in response to network inputs only. They classify the input data into a finite
number of clusters. Vector-quantization (VQ) networks (Gersho and Gray,
1992) are a form of unsupervised Kohonen neural networks. A VQ network has
only one hidden layer of nodes, where each node corresponds to one potential
cluster. This network consists of a number of codebook vectors, which
constitute cluster centers. When a new case is learned, the locations of the
codebook vectors are adapted so that the mean Euclidian distance between each
data point is minimized and is the closest to the codebook vector. This algorithm

is called competitive learning; i.e., the neurons in outputs compete with each
other for the inputs.

In this study, three attributes were used as input to the VQ neural network
including AI realization, rock density, and instantaneous frequency. Al
realizations were the results of stochastic inversion. The rock density volume
can be obtained using linear regression of the average of all realizations. The
instantaneous frequency can be obtained from original seismic volume. The
output was a unique volume of facies classes.
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Connectivity algorithm

The neural network results are calibrated by well data and then the
threshold impedances of the facies are obtained. The connectivity algorithm
scans each realization. If the grid nodes are within the specified Al range, they
are considered net connected; otherwise, they are non-net. The output of this
analysis can be represented as probability cube obtained from the probability of
the grid nodes to be connected given a specified range (Deutsch, 1998). Fig. 3
shows a schematic diagram of constructing probabilistic facies model using
connectivity algorithm.

Stochastic
Inversion
Realizations

Probabilistic

facies models

Unsupervised

VQ clustering Thresholds

parameters

Fig. 3. Schematic diagram of constructing the probabilistic facies model using connectivity
algorithm.

CASE STUDY
Al stochastic inversion

Variogram parameters such as range, sill, and model are essential for the
construction of the prior AI model. To obtain variogram parameters, it is
necessary to consider stationarity assumption in the variogram analysis of data.
Stationarity implies that data must be trendless. Relative impedance data does
not contain trend. Seismic colored inversion (Lancaster and Whitcombe, 2000)
is a tool that converts the seismic data into relative impedance data. In simple
terms, colored inversion defines an operator by the analysis of seismic and well
log data. The operator of colored inversion transforms the average seismic trace
spectra into the desired average Al log spectrum.
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Horizontal variograms were obtained from SCI results and vertical
variograms were acquired from log data (Fig. 4). Exponential models were the
best fitting model to the variogram results. In the next step, some zones must
be defined for constructing the initial 3D model. For this purpose, three
horizons were applied to define four zones. Each zone was bounded by two
horizons or by a horizon and top/base of the model. Then, a simple kriging
method was used to interpolate the AI values between the zones in order to
build initial 3D model. Moreover, a standard deviation map was computed
according to the initial models. The standard deviation map is also called error
grid map. The error grid map was zero in the well locations and reached a
maximum value at distances greater than variogram range. The error grid was
used to control the inversion convergence criteria.

Before conducting any inversion process, a wavelet was extracted from
seismic data by statistical method. Fig. 5 represents the extracted wavelet in
time domain, where the correlation between synthetic and real seismic in the
well locations was average 0.74. In addition to seismic and wavelet, the initial
model containing low frequency and error grid was considered to be the inputs
for inversion algorithm. Inversion output was assessed according to cross
validation and quality check (QC) in the well locations. Well A, in turn, was
hidden and the three remaining wells were used in the model building. QC
between well A and the inversion result is displayed in Fig. 6. In addition to
QC, the inversion results monitored the existing quantity by root mean square
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Fig. 5. Wavelet extracted from seismic data using statistical method. Cross correlation between
synthetic and real seismic in well locations was average 0.74.
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(RMS). The RMS results showed that the synthetic seismic error had the RMS
amplitude of less than 10% of the RMS of the seismic section, which was
acceptable for the seismic inversion. The synthetic seismic error referred to the
difference between synthetic and seismic traces. The synthetic section was
produced by eq. (5).

Correlation coefficient (R) between the deterministic inversion and real
Al log in the hidden well was 0.79, while this value for the stochastic method
was 0.82. Fig 7 shows the cumulative distribution (CDF) plots for the error of
each model. In this figure, the error was defined by the difference between
predicted results and well log data. Details of probability distribution of the
errors are gathered in Table 1. According to Table 1 and Fig. 7, 52.77% of the
stochastic estimations had the error of less than 1000 m/s * g/cm’, while this
value was 47.99% for the deterministic inversion. If there was the range of
15000 m/s * g/cm? for the Al values and the difference between actual and
prediction was 1000 m/s * g/cm?®, then the error would be 6.7%. A deep
insight into the above results reveals that R increased and error decreased in the
stochastic method. It can be clearly understood that the stochastic method had
better performance than the deterministic method.

Cross-line 6000 5800 5600 5400 5200
Time ---‘-..,,_ " . == =

(ms)

5000

Fig. 6. QC between hidden well A and seismic inversion result in the acoustic impedance domain
(m/s * g/cm’). Low frequency component of the log is not present in deterministic inversion.
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Table 1. Probability distribution of the inversion errors. The table shows that more than 50% of
stochastic results have an error less than 1000 m/s * g/cm’.

Method lel <500 le] < 1000 le! < 1500 le! < 2000
Deterministic 0.2604 0.4799 0.6530 0.7902
Stochastic 0.27294 0.5277 0.6856 0.7985

Low frequency components were added to the AI model using the
stochastic inversion. All the previous steps were applied as input to the current
step as illustrated graphically in Fig. 2. Fig. 8 demonstrates a realization of the
final stochastic result. Fig. 9 represents both the deterministic and stochastic
results where a low pass frequency filter was done to them. The comparison
between the deterministic and stochastic inversion represented that the
deterministic method was unable to reproduce the full range of impedance as
their result and deterministic impedance was smoother than a stochastic one.
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Fig. 8. QC between hidden well A and a realization of stochastic inversion result.

All realizations can be summarized in one section by averaging them (Fig.
10). The mean was much smoother than the realization displayed before and
appeared slightly similar to the deterministic inversion- results; however, the
stochastic method improved the deterministic results. Fig. 11 indicates that the
standard deviation of all realizations had larger variability near the bottom of the
model due to the slight well constraint at the bottom of the model.

Facies estimation

Facies estimation is an important step for reservoir characterization.
Estimating the facies by indirect method, with seismic attributes and log data,
is customary in petroleum industries. For this purpose, multi realization Al,
density, and instantaneous frequency were used in this step. Instantaneous
frequency responds to both wave propagation effects and depositional
characteristics and has high frequency in thin bed zones (Taner et al., 1994).

An unsupervised neural network is a good tool for facies clustering when
there is not enough data for the modeling process. Instantaneous frequency,
density, and five Al realizations from the previous section were used as input
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Fig. 9. Low frequency pass filter (below 10 Hz) was performed on: a) the deterministic inversion,
and b) the mean of the stochastic realizations. It is clear that low frequency components were missed
in deterministic section.
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Fig. 10. Mean of the stochastic realizations.
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Fig. 11. Standard deviation of all realizations in the Al domain (m/s * g/cm’). Variability at bottom
model increased.
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for training the unsupervised VQ network to create three clusters. 488 vectors
were used to cluster class 1 and average match was 0.91607. Class 2 was
trained by 736 vectors and 0.907354 matching. 473 vectors by 0.895914
matching were used for the final class. Fig. 12 illustrates a crossplot of the
extracted porosity from the log values against Al values in the well locations;
the color codes were assigned to the network classification. There were three
types of the facies that can be clearly distinguished from it. Number one
indicated facies with high Al and very low porosity. Cluster center of density
nodes was 2.85 (between dolomite and anhydrite density) and was called
unfavorable zone. Perhaps, poor reservoir properties in this zone can be due to
the existence of anhydrite which should be checked in a complementary study.
Facies 3 was a favorable zone with higher porosity and facies 2 was
intermediate between facies 1 and 3. Cluster centers of the facies are presented
in Table 2. The density decreased in the facies 3 due to the existence of gas in
the reservoir zone. The facies classification and their comparison with actual
data are shown in Fig. 13 in two well locations. The actual data revealed that
the dominant lithology of code 1 was anhydrite. Dolomite and limestone were
the dominant lithologies in codes 2 and 3, respectively. The results revealed that
favorable facies mainly consisted of limestone and facies 1 was poor reservoir
because of containing anhydrite.
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Fig. 12. Crossplot of the porosity against acoustic impedance from the mean of realizations values
in well C location; the color scale is assigned to the network classification (Al and porosity were
m/s * g/cm’® and v/v, respectively).
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Table 2. Centers of network clusters is tabled for some input node. Facies 1 is thin unfavorable beds
and facies 3 is favorable massive beds (Al realizations are m/s * g/cm® and density is g/cm®).

Node \ Class Center 1 Center 2 Center 3
Al Realization 1 16836.316 14258.045 12223.82
Al Realization 2 17182.964 14561.502 12159.55
Al Realization 3 16628.597 13975.793 11105.78
Al Realization 4 16916.472 14606.673 12385.96
Al Realization 5 16762.242 14178.476 11049.69
Density 2.852837 2.692746 2.533791
Well A Well C
Time (ms) 7] Time (ms) 7
1420 — 1510 —
1460 — 1530 —
1480 — 1540 —
1500 — 1550 —
1520 — 1560
1540 —f 1570 Facies;
1580 — 1580 2
1
Predicted Actual Predicted Actual

Fig. 13. Actual and predicted facies at well A and C. Actual classification was based on cutting data
and predicted chart was gathered by unsupervised VQ.
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Briefly speaking, an Al higher than 16000 (m/s * g/cm?®) indicated facies
1, lower than 13000 indicated facies 3, and between them showed facies 2. With
this cut off range, reservoir connectivity analysis was done based on facies
models. Fig. 14 shows that facies 1 was a thinner bed and facies 3 was massive
facies with more than 0.8 probabilities.

Probability
1

Fig. 14. (a) Facies clustering at well A location (inline 1100) with probability more than 0.8 for
facies 3. (b) Probability section for facies 3.
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CONCLUSIONS

In this study, a carbonate gas field of Iran was studied for probabilistic
forecasting of facies distribution. Stochastic inversion based on spectral
simulation was used to obtain acoustic impedance attribute and add low
frequency component to Al model. Some conclusions were obtained as follows:

1. Comparison between stochastic and deterministic inversion method
showed that the former provided lower error than the latter.

2. Standard deviation of the realizations showed that variability was much
larger than the case with there was relatively slight well constraint on the
model. Therefore, accuracy of the model was proportional to well
constraints.

3. Evaluation of the neural network classification illustrated that there were
three facies in this study: favorable, unfavorable, and moderate for
reservoir qualities. The results were correlated by porosity and checked
by litho-stratigraphic chart, which showed good correlation. It can be
concluded that the AI was a good parameter for facies estimation in this
case study.

4. The connectivity algorithm has a simple structure to obtain probability
facies cube when there is multiple realization of a problem. Final results
represented that unfavorable zones were thin beds and favorable zones
were massive layers with high probability.

5. The methodology applied in this paper was able to estimate high probable
facies from the large volume 3D seismic data. Therefore, exploration
success rate can increase in petroleum industries using proposed method.
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