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ABSTRACT

Chen, Y., Zhou, C., Yuan, J. and Jin, Z., 2014. Applications of empirical mode decomposition in
random noise attenuation of seismic data. Journal of Seismic Exploration, 23: 481-495.

In this paper, we give an exclusive introduction about the applications of empirical mode
decomposition (EMD) to random noise attenuation of seismic data. EMD can be used to denoise
each 1D signal from the 2D seismic profile in time-space (t-x) domain either along the time direction
or space direction. However, because of the mode-mixing problem, t-x domain EMD along the time
direction will cause some damage to a useful seismic signal. A better.way is to apply EMD along
the space direction and remove the highly oscillating components. The frequency-space (f-x) domain
EMD can help obtain faster implementation and even better performances. In order to deal with
complex seismic profiles, a hybrid denoising approach based on f-x EMD is also introduced. The
hybrid denoising approach can also be inserted into an iterative blending noise attenuation
framework, and can help obtain better results. We use both synthetic and field data examples to
demonstrate the proposed applications of EMD.

KEY WORDS: empirical mode decomposition, random noise attenuation, t-x EMD, f-x EMD,
iterative blending noise attenuation, shaping regularization.

INTRODUCTION

Empirical mode decomposition (EMD) is a new signal processing method
(Huang et al., 1998), which was proposed to prepare a stable input for the
Hilbert Transform. The essence of EMD is to stabilize a non-stationary signal.
That is, to decompose a signal into a series of intrinsic mode functions (IMF).

0963-0651/14/$5.00 © 2014 Geophysical Press Ltd.



482 CHEN, ZHOU, YUAN & JIN

Each IMF has a relatively local-constant frequency. The frequency of each IMF
decreases according to the separation sequence of each IMF. EMD is a
breakthrough in the analysis of linear and stable spectra. It adaptively separates
nonlinear and non-stationary signals, which are features of seismic data, into
different frequency ranges.

EMD has found successful application in the signal-processing field.
However, the application of EMD in exploration geophysics community is still
unexploited. In this paper, we give an exclusive introduction about the
applications of EMD to random noise attenuation of seismic data. We intend to
provide an alternative to the existing random noise attenuation approaches, such
as those prediction based approaches (Abma and Claerbout, 1995). We first give
a short review of the 1D EMD theory, and introduce the basic idea for using the
1D EMD to a denoising 1D signal. Then, we introduced two ways to attenuate
random noise in the time-space t-x domain. One is along the time direction,
where the problem of mode-mixing is severe. The other way is to apply EMD
along the space direction, which can fully utilize the spatially stationary property
of post-stack and NMO-corrected profile to achieve a successful performance.
Next, we introduce another domain for performing EMD, which is the
frequency-space (f-x) domain, in which the computational cost will be reduced
a great deal because of the conjugate symmetric property of FFT for real traces
and band-limited property of seismic data. In order to deal with the complex
seismic profile, we introduced a hybrid denoising approach based on f-x EMD.
We also applied the proposed hybrid approach to the iterative blending noise
attenuation process arising from the recent development of simultaneous-source
acquisition. Finally, three synthetic examples and one field data example
demonstrate the performances of the introduced methods.

THEORY

1D EMD

The aim of empirical mode decomposition (EMD) is to empirically
decompose a nonstationary signal into a finite set of sub-signals, which are
termed intrinsic mode functions (IMF) and are considered to be stable. The
IMFs satisfy two conditions: (1) in the whole data set, the number of extrema
and the number of zero crossings must either equal or differ at most by one; and
(2) at any point, the mean value of the envelope defined by the local maxima
and the envelope defined by the local minima is zero (Huang et al., 1998).

Provided that s(t), c,(t), r(t), and N denote the original non-stationary
signal, the separated IMFs, the residual and the number of IMFs, respectively,
the mathematical principle of EMD can be expressed as:
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N

st) = Y, cut) (1)

n=1

For a non-stationary signal s(t), using eq. (6), we get a finite set of sub-signals
c, (), (m =1, 2, ..., N). The last component is the residual such that:

on® =1, @
where r denotes the residual after the EMD procedures.

A special property of EMD is that the IMFs represent different
oscillations embedded in the data, where the oscillating frequency for each
sub-signal c,(t) decreases as the sequence number of the IMF becomes larger.

Due to the low pass filtering effects, EMD has been used outside
geophysics for noise attenuation (Mao and Que, 2007; Kopsinis, 2009). Since
random noise represents mainly the highly oscillating components, by removing
the IMFs with the highest frequency, we can attenuate this type of noise.

Random noise attenuation by EMD in the t-x domain

A naive extension from the signal-processing field to the geophysics
community is to apply the 1D EMD onto each trace of seismic profile and by
removing the first several IMFs, we can remove the highly oscillating
components in the time direction, which mainly correspond to random noise.
The mathematical formulation can be expressed as:

N,
sm,t) = ). d, (m) , 3)

n=2

where d (m,t) is n-th decomposed signal (along the time direction) such that

N,
dm,p = Y, d,m,\) , )

n=1

where d(m,t) is the 2D seismic data. m and t denote the indices in space and
time directions, respectively.

However, in exploration geophysics, applying EMD to time traces is not
effective because of the mode-mixing problem. Kopecky (2010) defined mode
mixing as any IMF consisting of frequencies of dramatically disparate scales.
When mode mixing exists, the first one or two IMFs contain a great deal of
useful reflection energy. Extensions to EMD, such as ensemble empirical mode
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decomposition (EEMD) (Wu and Huang, 2009) and complete ensemble
empirical mode decomposition (CEEMD) (Torres et al., 2011) have been
proposed to solve the mode-mixing problem in signal processing. However, the
computational cost of EEMD and CEEMD can be much larger than the conven-
tional EMD, which impedes the practical application of EEMD and CEEMD.

An alternative way to remove random noise in the time-space domain is
to apply EMD to space traces. For post-stack or NMO-corrected seismic
profiles, the events are generally flat, which indicates a spatially stationary
properties of the seismic data. We can remove the first several IMFs to remove
the spatially non-stationary components, which are mainly corresponding to
random noise. This scheme can be formulated as:

N
sm,) =Y, d, (m,) ,
n,=R

N (5)
dm,t) = Y, d, (m,) ,

n,=1

where R denotes the minimum index of the preserved IMFs.

Radon noise attenuation by EMD in the f-x domain

Considering that the space-direction EMD should be applied to each space
traces, which is time-consuming when the number of temporal samples is large,
we can turn the t-x domain to f-x domain. We can apply EMD onto each
frequency slices along the space direction, and remove the first several IMFs in
order to remove the random noise. Considering the conjugate symmetric
property of FFT for real traces, the computational cost can be decreased a lot,
especially when the number of temporal samples are around an order of 2 (due
to the basic FFT property). Note that the computation cost for the additional
FFT is much less compared with that of EMD. Due to the fact that most seismic
signals are band-limited, we can only process on a few frequency slices, which

helps in saving more computational cost. The f-x domain approach can be
summarized as:

Nm
$(m,t) = .?“l[ZCnm(m,w)] , W, <w<w
=R (6)

N,
Fdm,H) = Y, C, (mw) , 0 <w < W)

n,=1
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where §(m,t) and d(m,t) denote the estimated signal and acquired noisy signal,
respectively. .# and .# ! denote the forward and inverse Fourier transforms along
the time axis, respectively. C, (m,w) denotes the n,-th EMD decomposed
component in the f-x domain. w, and w,, denote the lowest and highest frequency

for processing. w,,, denotes the Nyquist (or folding) frequency.

Radon noise attenuation by hybrid f-x domain EMD

A problem occurs when applying f-x EMD, because the dipping events
will also be removed. This problem occurs because, for many data sets, the
random noise and any steeply dipping coherent energy make a significantly
larger contribution to the high-wavenumber energy in the f-x domain than any
desired signal (Bekara and van der Baan, 2009).

Provided that the noisy data d is composed of the clean data s and noise
n, f-x EMD can get a denoised section with all the horizontal events §,, while
leaving the dipping events in the noise section:

§h = E[d] s

(7
s + n=d — E[d]

Here, E denotes the noise attenuation operator by f-x EMD, s, denotes the true
dipping events, and n denotes random noise in the original seismic section.

We can retrieve the useful dipping events by applying another denoising
operator onto the noise section,

§, =~ P[d — E[d]] , (8)

where P denotes a denoising operator which estimate the lost dipping events
from the initial noise section, and §; denotes the estimated dipping events. The
final denoised section § is given by the summation of the horizontal and dipping
signal section:

§=38,+8§, ~ E[d] + P[d — E[d]] . ©)

The denoising operator P in eq. (8) can be chosen as f-x predictive
filtering (Chen and Ma, 2014), wavelet-domain thresholding (Chen et al., 2012),
or curvelet-domain thresholding (Dong et al., 2013). Thus, eq. (8) becomes a
general framework for all those f-x EMD based random noise attenuation
approaches.
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Iterative blending noise attenuation by EMD

As the development of simultaneous-source technique, blending noise
attenuation is becoming more and more important in seismic data processing.
The blending noise differs from the conventional random noise in two aspects.
On the one hand, the blending noise appears as spike-like random noise, and on
the other hand, the blending noise can be modeled, because it’s caused by
another simultaneous source with a pre-defined time shift. Thus, we can use
inversion approach to remove the blending noise. In this paper, we propose to
use EMD based denoising operator to iteratively remove the blending noise.

Let us first consider the classic modeling equation:
Fm =d , (10)

where F denotes the forward blending operator (Chen et al., 2014), m denotes
the unblended clean data and d denotes the noisy blended data.

In order to solve m efficiently, we utilize shaping regularization
framework (Chen et al., 2014):

m,,; = S[m, + Nd — Fm)] , (11)

where A\ denotes the length of each update step, S denotes the shaping operator
which aims to shape each model to its admissible model space iteratively. In this
paper, we use two-source blending, and thus the best selection for \ is 0.5
(Chen et al., 2014), and S is chosen as a hybrid f-x EMD approach.

EXAMPLES
Synthetic examples

In this first synthetic example, we use a simple flat-events profile. The
clean and noisy data are shown in Figs. 1a and 1b, respectively. We applied
three different approaches to remove the random Gaussian white noise. Figs. 2a
and 2b show the denoised data using t-x domain EMD along the time direction
and the corresponding noise section. Figs. 2c and 2d show the denoised data
using t-x domain EMD along the space direction and the corresponding noise
section. Figs. 2e and 2f show the denoised data using f-x domain EMD along
the space direction and the corresponding noise section. In order to numerically

test the effectiveness of the three approaches, we define the signal-to-noise ratio
as:

SNR = 10log,o[[s]%]s — &

121, (12)
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where s is the noise-free signal and § is the denoised signal. In Table 1, we
listed the comparison of SNRs and CPU cost. It’s obvious that the f-x EMD can
get better results (higher SNR) than both t-x domain approaches by less CPU
cost.
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Fig. 1. Synthetic flat-events profile. (a) Clean data. (b) Noisy data.

The second synthetic example is a complex profile, containing two
dipping events (Fig. 3). In this example, we compare the results using four
different approaches. The denoised results are all shown in Fig. 4. As can be
seen from the caption, we use f-x EMD, combined f-x EMD and auto
regression (AR) (Canales, 1984), combined f-x EMD and Cadzow filtering
(Oropeza and Sacchi, 2011) and combined f-x EMD and curvelet-domain

thresholding (Neelamani et al., 2008). Fig. 5 shows the corresponding noise
sections.

Table 1. Comparison of SNR and CPU cost using different approaches (flat-events profile).

Method SNR (dB) CPU cost (s)
Original 0.648

t-x EMD-T 3.926 1.356

t-x EMD-X 7.746 8.278

f-x EMD-X 10.848 4.446
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Fig. 2. (a) t-x domain EMD along the t-direction. (b) Noise corresponding to (a). (c) t-x domain
EMD along the x-direction. (d) Noise corresponding to (c). (¢) f-x domain EMD along the x-
direction. (f) Noise corresponding to (e).
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Table 2 shows the comparison of SNRs and CPU cost for the four
approaches. We can conclude from the comparison both visually and
numerically that the combined f-x EMD and AR can obtain the best denoised
result. The CPU cost for the four approaches are nearly the same. So there
should not be any computational bias for practical applications.

Table 2. Comparison of SNR and CPU cost using different approaches (Complex profile). CF
denotes Cadzow filtering and CT denotes curvelet-domain thresholding.

Method SNR (dB) CPU cost (s)
Original 1.267 -
f-x EMD 3.917 9.191
f-x EMD and AR 4.069 9.174
f-x EMD and CF 3.164 8.944
f-x EMD and CT 2.719 8.843
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Fig. 3. Synthetic complex profile. (a) Clean data. (b) Noisy data.
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The third synthetic example is a hyperbolic-event profile (Fig. 6), used
to test the iterative deblending performance of the f-x EMD based denoising
approaches. In this case, we compare the combined f-x EMD and AR with the
conventional AR, and show their deblending result after 20 iterations in Figs.
7a and 7b. The blending noise sections are shown in Figs. 7c and 7d. The
convergence diagram is shown in Fig. 8. It is clear that the combined f-x EMD
and AR can get an obvious better result than conventional AR.
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Fig. 4. Denoised results. (a) Using f-x EMD. (b) Using f-x EMD and AR. (c) Using f-x EMD and
Cadzow filtering. (d) Using f-x EMD and curvelet-domain thresholding.
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Fig. 5. Noise sections. (a) Using f-x EMD. (b) Using f-x EMD and AR. (c) Using f-x EMD and
Cadzow filtering. (d) Using f-x EMD and curvelet domain thresholding.
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Fig. 7. (a) Deblended data using AR. (b) Deblended data using combined f-x EMD and AR.
(c) Blending noise corresponding to (a). (d) Blending noise corresponding to (b).
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Fig. 8. Convergence diagram for AR and combined f-x EMD and AR. "e" denotes AR and
denotes the combined f-x EMD and AR.

Real data example

The field data comes from a part of a post-stack section from the South
China Sea. We used f-x EMD and combined f-x EMD and AR, and combined
f-x EMD and Cadzow filtering to remove the random ambient noise. The noisy
field data and denoised results using different approaches are shown in Fig. 9.
As the clean data for a real case is unknown, we can not calculate the SNR.
However, from the denoised results, we can draw the conclusion that f-x EMD
can get the cleanest image but harm most useful energy. The combined f-x
EMD and AR can preserve the most useful small features.
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© )

Fig. 9. (a) Noisy section. (b) Denoised section using f-x EMD. (c) Denoised section using combined
f-x EMD and AR. (c) Denoised section using combined f-x EMD and Cadzow filtering.

CONCLUSIONS

We have provided an overall introduction of the applications of EMD in
random noise attenuation of seismic data. We have introduced two t-x domain
approaches and one f-x domain method based on EMD, analyzed and compared
their differences. We have introduced a hybrid denoising approach using f-x
domain EMD in order to deal with the complex seismic profile. Numerical
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results show that the CPU cost for the common hybrid denoising approaches are
similar but the combined f-x EMD and AR can get better result. We have also
applied the f-x EMD based denoising approach to the iterative blending noise
attenuation process. Field data example also show that the hybrid f-x domain
EMD can help preserve much more useful energy.
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