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ABSTRACT

Wang, N. and Zhou, Y., 2014. A weak dispersion 3D wave field simulation method: A

predictor-corrector method of the implicit Runge-Kutta scheme. Journal of Seismic Exploration, 23:
431-462.

We propose a numerical method for solving the acoustic- and elastic-wave equations, which
is called the predictor-corrector method of the implicit Runge-Kutta scheme (IRK-PCM). This work
is an extension of the corresponding 2D IRK-PCM to the 3D case. To solve wave equations, we first
transform them into a system of semi-discrete ordinary differential equations (ODEs). And then we
use the local interpolation theory for spatial discretization, and use the 2-step predictor-corrector
method based on an implicit Runge-Kutta method for the temporal discretization. In this paper, we
investigate the theoretical property of the 3D IRK-PCM including stability criteria, approximation
error, numerical dispersion, and computational efficiency when solving the acoustic wave equation.
Seismic wave field simulations for both acoustic and elastic models show that the 3D IRK-PCM can
suppress effectively the numerical dispersion caused by the discretization of wave equations when
coarse grids are used, high frequency bands are chosen, or models have large velocity contrasts
between adjacent layers. Whereas other high-order schemes such as the fourth-order LWC and the
staggered-grid (SG) method suffer from serious numerical dispersion for the same cases. It suggests
that to achieve the same accuracy, the 3D IRK-PCM can increase greatly the computational speed
and save significantly the storage space. We conclude that the IRK-PCM provides us an useful tool
for the 3D large-scale wave field simulation, reverse time migration and full waveform inversion.

KEY WORDS: wave equation, wave-field simulation, numerical dispersion, implicit Runge-Kutta
method, predictor-corrector method, anisotropy, shear wave splitting.
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INTRODUCTION

Numerical methods always play an important role in seismic exploration
whether for forward modeling of seismic wave fields in complex media or for
solving inverse problems. Many methods have been developed and applied in
the 3D isotropic and anisotropic problems. Finite-difference (FD) methods for
solving wave equations provide us useful tools in exploration seismology,
however, they meet bottleneck for their costly central processing unit (CPU)
time and large amounts of direct-access memory or seriously numerical
dispersion, when too few samples per wavelength are used or models have large
velocity contrasts between adjacent layers. In order to break the bottleneck of
the FD methods when applying in large-scale wave-field modeling, one way is
to use the high-order finite-difference (FD) methods (Lax and Wendroff, 1964
Kelly et al., 1976; Dablain, 1986; Takeuchi and Geller, 2000; and many others)
such as high-order compact FD scheme including the so-called Lax-Wendroff
correction (LWC) scheme (Lax and Wendroff, 1964; Dablain, 1986) and the
staggered-grid FD method (Virieux, 1986; Fornberg, 1990). However, the
numerical dispersion also affects the performance of the high-order difference
methods especially when too-coarse grids or too few samples per wavelength are
used. In other words, the high-order FDs also suffer from the numerical
dispersion (Wang et al., 2002). Moreover, the high-order FDs demand more
grids in a spatial direction, resulting in difficulties in efficient parallel
computation and the implementation of the absorbing boundary condition.

The finite element method (FEM) (Turner et al., 1956; Whiteman, 1975;
Ciarlet, 1978; Johnson, 1990; Eriksson and Johnson, 1991; Solin et al., 2003:
Yang et al., 2008) is a variational method which can flexibly handle complex
topography and boundary conditions, but it needs to solve a system of linear
equations whose mass matrices are of wide bandwidths, resulting in large space
storage and computational CPU time especially when applied to the 3D wave
propagation modeling. The spectral method which uses a global basis has a good
property called exponential "convergence", but it involves the fast Fourier
transform (FFT) which is time consuming. Meanwhile, the spectral method also
has the numerical dispersion in time (Gottlieb and Orzag, 1977). The
spectral-element method (SEM) (Komatitsch and Vilotte, 1998; Komatitsch et
al., 2000) solves the partial differential equation in a frame of finite element
method, and combined with a high accuracy of spectral techniques. Though it
uses some diagonally techniques such as orthogonal polynomial basis, the SEM
cannot avoid solving linear equation. So the computational time should be taken
into consideration especially when it applied to the 3D case.

The flux-corrected transport (FCT) technique (Fei and Larner, 1995;
Zhang et al., 1999; Yang et al., 2002; Zheng et al., 2006) can effectively
suppress the numerical dispersion caused by discretizing wave equations, but it
is unable to fully recover the resolution lost by eliminating the numerical
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dispersion when the spatial sampling becomes too coarse (Yang et al., 2002).
The so-called "nearly analytic discrete method (NADM)" and its improved
algorithms were suggested by Yang et al. for reducing the numerical dispersion
caused by the discretization of acoustic- and elastic-wave equations for both 2D
and 3D cases (2003, 2007, 2010). These methods use the wave displacement-,
the particle velocity- and their gradient-fields simultaneously to reconstruct the
wave displacement-fields, and they are able to suppress the numerical
dispersions effectively. The weak numerical dispersion NAD methods or its
modified NAD methods are also extended to porous media (Yang et al., 2007,
2014). Meanwhile, they are combined with different time advancing algorithms
such as the explicit Runge-Kutta method (Chen et al., 2010), implicit
Runge-Kutta method (Yang et al., 2009; Wang et al., 2010), implicit multi-step
Adams method (Yang and Wang, 2010), and the symplectically partitioned

Runge-Kutta method (Ma et al.,, 2011, 2014) for solving isotropic and
anisotropic wave equations.

The main purpose of this paper is to present the 3D predictor-corrector
method (IRK-PCM) which can effectively suppressing the numerical dispersion
for modeling wave propagating in both isotropic and anisotropic media even by
using large grid steps. It is actually an extension of the 2D IRK-PCM (Wang et
al., 2012) for solving the acoustic- and elastic-wave equations for the 3D case.
We first transform the wave equation into a system of semi-discrete ordinary
differential equations (ODEs). And then we use the explicit IRK-PCM based on
an implicit Runge-Kutta method to solve the obtained semi-discrete ODEs. To
verify the numerical error behavior of the 3D IRK-PCM, we compare the
numerical error of the 3D IRK-PCM with those of the second-order
conventional FD scheme and the fourth-order LWC method for the 3D initially
value problem of the acoustic wave equation, measured quantitatively by the
root-mean-square deviation from the analytical solution. Meanwhile, we analyse
the numerical dispersion and stability condition of the IRK-PCM, compare
waveforms computed by the 3D IRK-PCM with the analytical solutions, and
present some seismic wave field snapshots in 3D multi-layer acoustic layers,
isotropic and transversely isotropic elastic media.

PREDICTOR-CORRECTOR METHOD BASED ON THE IMPLICIT
RUNGE-KUTTA SCHEME
Transform of wave equations
In a heterogeneous elastic medium, the wave equation can be written as
p(d*U/ot?) = Vg + f

o = C:¢
e = K[VU + (VU)T

; ()
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where p denotes the density, U = (u;,u,,u,)" the displacement vector, o and &
the second-order symmetric stress and the strain tensor, respectively, C the
fourth-order stiffness tensor, and f = (f,,f,,f;)" the external source force.

We can rewrite eq. (1) as follows

p(d*U/ot?) = D-U + f , )

where D is the second-order partial differential operator. For example, for the
3D homogeneous acoustic equation

0%2u/ot2 = c?[(0%u/dx?) + (0%u/dy?) + (d%/d9z?)] + f 3)
eq. (3) can be written as follows

0%u/ot2 = Du + f ,
where

D = c?[(9%/0x?) + (3%/dy?) + (0%/9z?)] ,
in which c is the wave velocity.

Let W = gU/ot = [(0u,/dt), (du,/dt), (u,y/dt)]T, then eq. (2) can be
written as

au/ot = W |
)
oW/at = (1/p)D-U + (1/p)f .
Let V = (U-W), then eq. (4) can further be written as

ovV/ot = L-V + F | ®)]
where

0 I 0
L = , F= .
(17/p)D 0 (I/p)f

From eq. (4), we have the following equations:

9?V/3tox = L-V, + F

X

3°V/otdy = L-V, + F, , ©)

d%V/otoz

LV, + F

z
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where V, = 9V/ox, V, = dV/dy and V, = dV/oz.
Let

V = (V,V,,V,,V)', E = (FF,E,E)", and L = diag(L,L,L,L),
then we have the following vector equation, from egs. (5) and (6),

oV/iot = L'V + F . (7

Formulation of the IRK-PCM

Owing to the local elastic property of rocks, we use the local interpolation
method (Kondoh et al., 1994; Yang and Wang, 2010) to approximate the
high-order derivatives (8**'*™U/ax*dy'dz™); ; , and (3**"*"W/dx*0y'dz™)};, (2 <
k+/+m < 3) included in the right-hand side of (7) through using the values of
the wave displacement, the particle-velocity, and their gradients at the grid point
(i, j, k) and its neighboring grid points. These computational formulae of
approximating the second- and third-order derivatives are listed in Appendix A.
In this case of discretizing the high-order spatial derivatives on the right-hand
side of eq. (7), this equation enters into a semi-discrete ODE system.

For the temporal discretization, similar to the 2D case (Wang et al.,
2012), we use the implicit Runge-Kutta method combined with the
predictor-corrector algorithm. The diagonal implicit Runge-Kutta method to
solve the semi-discrete ODEs (7) is as follows (Hairer et al., 1993)

Vil = Vi + (AU2)KD, + KDY (8)
Ko = LV, + rAtKS, ) + Fj(t, + A )
K2, = LIV, + (1-20AtK?,, + rAik? ;] + F [, + 1-0Atd ,  (10)

where r = (1/2) — (\/(3)/6).

Obviously, if using the algorithms (8)-(10) directly to compute the
wave-displacement and its gradients, we need to solve two systems of linear
algebraic eqgs. (9) and (10) at each step of time advancing, resulting in great
increase of the computational cost. To avoid solving the system of linear
equations caused by using the implicit method, in the following we try to change
the implicit method into an explicit predictor-corrector algorithm (IRK-PCM).
In detail, the 2-step explicit IRK-PCM is presented as follows (Yang et al.,
2012; Wang et al., 2012):
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Predictor:

v, | (11)

1
K3\
Corrector:

2) _ 1 T 1
K?,j,k‘) = K’;‘j,k() + rAtLK‘;,j,k”

LV, + A2V, (12)
K2 = K1, @ + rAlK? @ + Fj (¢, + rAv)
= LVi,, + 2rAtL2 Ve, + (rA)L VI, + By, + 1At (13)

where the second-order operator L2 can be obtained from definition of L as
follows

L? = Diag(L%,L2,L2,L?)

Il

Diag|[(1/p)D,(1/0)D,(1/p)D,(1/0)D,(1/p)D,(1/p)D,(1/p)D,(1/p)D]. (14)
Similarly, we can obtain the following approximation, deriving from eq. (10),
Ko = K@ + rAtL KO + Fy ot + (1-1)At]
= LWij, + 2rAL WY, + AL W, + Bty + (1-0AT , (15)

where K;, = LW, + rAtL2W?,, Wi, = VI + (1-20)AKD .

Combining eq. (8) with egs. (13) and (15), we obtain the explicit
IRK-PCM for solving the wave eqs.. For practical calculations, the
implementation of the IRK-PCM is divided into three major steps. The
computational steps are described below

1. Computing K ;, using egs. (11)-(13).

(a) Using formulae (A-1) to (A-5) to compute I_J\_/";J,k and Iiz\_’?,j)k , then
substituting them into eq. (12) to obtain K} ;,@;

(b) Using the obtained result K}, in the first step (a) and applying the
similar computational formulae as (A-1) and (A-5) to compute LK?;,®;
(c) Substituting these results obtained in steps (a) and (b) into eq. (13) to
obtain Kf ;.
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2. Computing I_('i‘,j,k through using eq. (15). In this step, we use the similar steps
to computing K1, in the first step to obtain K} ;. The difference is that these
vectors Vi and K?,j‘k‘z) in computing K ; , are replaced by the vectors W}, and
K3, when computing K} ,;

3. Substituting these obtained results K7;, and I_(?,j'k into eq. (8) to obtain the
values of Vi*}, at the (n+1)-th time level.

Note that the fourth-terms at the right-hand side of egs. (13) and (15) can
be easily computed because of the known analytical source function F.

ERROR ANALYSIS
Theoretical analysis

Using the Taylor series expansion, we can obtain that the errors of
(0 ™V/0x*ay'az™)};, (2 < k+I+m < 3) are O(Ax* + Ay* + Az*) caused by
the interpolation approximations presented in Appendix A. Due to using the
third-order implicit Runge-Kutta method and the predictor-corrector method to
solve the semi-discrete ODEs (7), the temporal error, caused by the
discretization of the temporal partial derivative, is O(At?). Therefore, the error
introduced by the IRK-PCM is O(At* + Ax* + Ay* + Az*). In other words, the
3D IRK-PCM suggested in this paper has a fourth-order accuracy in space and
second-order accuracy in time.

Numerical analysis

To further illustrate the accuracy of our present method, in the following
we compare the numerical errors caused by the IRK-PCM against other methods
such as the conventional second-order FD and the fourth-order LWC methods

for the 3D acoustic wave equation. Consider the following 3D initial value
problem

d%u/ot2 = c?[(0%u/dx?) + (d%u/dy?) + (0%u/9z?)] (16a)

u(0,x,y,z) = cos[—Q2wfy/c)(lyx + my'y + nyz)] (16b)
and

du(0,x,y,z)/ot = —2xfsin[—Q2xfy/c)(ly’x + my'y + nyz)] (16c)

where f;, denotes the frequency, c is the wave velocity, and the vector (/,,m,,n,)
is the direction of the incident acoustic wave at the time t = 0 s, which is

chosen by (/,,my,ny) = [(1/4/3),(1/4/3),(1/4/3)] in the experiment.
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Obviously, the analytical solution for the initial value problem (16) is
u(t,x,y,z) = cos{2nfy[t — Iy'(x/c) — my(y/c) — ny(z/c)]}

In this numerical experiment, we choose the number of grid points , the

peak frequency Hz, the velocity . The relative error () for the 3D case is
defined as follows (Konddoh et al., 1994)

Mz

)

Mz

E(%) =

[ 1_]k - u(tmxi’yjazk)]z

,_.
-
I
—

i

I
—_
-

N
Z [u(tn’xi’Yijk)]Z]l/z x 100 > (17)

™ =
=z

Il
—_

.

Ll
—
=~
—_

where uj;, is the numerical solution and u(t,,x;,y;,z,) is the analytical solution
of the initial value problem.

Figs. 1, 2 and 3 plot the relative errors E, versus time for different spatial
and temporal increments shown in a semi-log scale, where three lines of E,
corresponding to the IRK-PCM, the fourth-order LWC method, and the
second-order FDM. In these figures, the maximum relative errors for different
cases are listed in Table 1. From these error curves and Table 1 (Ax = Ay =
Az = h), we find that for the fixed time step, when the spatial step is relatively
small, the relative error E, of the IRK-PCM is bigger than that of the
fourth-order LWC method and is less than that of the second-order FDM (see
Fig. 1). As the spatial step increases, the relative error of the IRK-PCM is
smaller than those of both the fourth-order LWC method and the second-order
FDM (see Figs. 2 and 3).

Table 1. Comparison of maximum E, (%) for different cases and different methods.

Methods Second-order FDM  Fourth-order LWC IRK-PCM

Case 1: h=30m 134.633 7.46825 14.8178
At =1 x 107*

Case 2: h=40m 197.549 22.42 17.4703
At =1 x 107*

Case 3: h =50 m 204.629 53.7422 34.6667

At =1 x 107
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Fig. 1. The relative errors of the IRK-PCM, the fourth-order LWC method, and the second-order
FDM measured by E, [formula (17)] are shown in a semi-log scale for the 3D initial value problem
(16). The spatial and the temporal increments are 30 m and 1 X 107 s, respectively.
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Fig. 2. The relative errors of the IRK-PCM, the fourth-order LWC method, and the second-order
FDM measured by E, [formula (17)] are shown in a semi-log scale for the 3D initial value problem
(16). The spatial and the temporal increments are 40 m and 1 X 107* s, respectively.
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Fig. 3. The relative errors of the IRK-PCM, the fourth-order LWC method, and the second-order
FDM measured by E, [formula (17)] are shown in a semi-log scale for the 3D initial value problem
(16). The spatial and the temporal increments are 50 m and 1 X 10~* s, respectively.

STABILITY OF THE 3D IRK-PCM

It is well known that the temporal increment, the spatial increment, and
the wave velocity must satisfy certain relationship to keep numerical calculation
stable. In this section, through the Fourier analyses (Richtmyer and Morton,
1967; Guan and Lu, 2006), we obtain the stability criterion of the IRK-PCM for
the 3D case. The algebraic details for the stability of the 3D IRK-PCM are
discussed in Appendix B, and here we only give the stability condition under the
condition of AXx = Ay = Az = h as follows

c(At/h) < «,, < 0.505 , (18)
or '
At < 0.505(h/c) (19)

where «,,, denotes the maximum value of the Courant number defined by o =
cAt/h (Sei and Symes, 1994; Dablain, 1986) in which At is the temporal step
size and h is the spatial step size.
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When the 3D IRK-PCM is applied to solve the 3D anisotropic
elastic-wave equation, we roughly estimate that the temporal increment should
satisfy the following stability condition

At < Aty = 0.505(h/c,y) , 20)

where At,,, denotes the maximum temporal increment and ¢, is the maximum
P-wave velocity.

NUMERICAL DISPERSION OF THE 3D IRK-PCM

Fig. 4 shows the numerical dispersion curves as a function of the spatial
sampling ratio Sp = h/A (Moczo et al., 2000), computed by the IRK-PCM for
the acoustic wave equation at different propagation angles with respect to the
x-axis (6,) and z-axis (6,). The symbol R is defined as the ratio of numerical
phase velocity to the real phase velocity (R = c,,./c,). The 3D IRK-PCM
introduces no numerical dispersion when R is equal to one; whereas it suffers
from different amount of numerical dispersions when R is different from one.
The details of the dispersion analysis are discussed in Appendix C. In Figs.
4a-d, the Courant number « is fixed at 0.1, where the four lines correspond to
when 6, or 6, is fixed, the other angle changes from 0°, 15°, 30°, and 45°. We
find in Fig. 4a where §, = O that when the sampling ratio Sp € [0.3 0.45], the
3D IRK-PCM suppress numerical dispersions better as 8, increases; whereas as
the sampling ratio tends to 0.5 (2 points per wavelength are used), the 3D
IRK-PCM suppress numerical dispersion better when 6, = 30° than that when
0, = 45°. In other cases (see Figs. 4c-d), when 6, or §, is fixed, the 3D
IRK-PCM suppress numerical dispersions better as the other angle increases
when Sp € [0.3 0.5]. But it is shown in the four cases (Fig. 4) that the
maximum deviation of the numerical velocity from the exact one is within 2%
even when about 3 points per wavelength are used (Sp = 0.3).

Fig. 5 shows the numerical dispersion curves of the 3D IRK-PCM as a
function of the sampling ratio Sp = h/\ for solving the homogeneous acoustic
wave equation when the propagation angles 6, and 6, are fixed, where the four
lines correspond to when the courant number « changes from 0.1, 0.2, 0.3, and
0.4. We see that R increases as « increases when the sampling ratio S € [0.3
0.5], which means the courant number « too small or too large is not good for
suppressing numerical dispersion in practical use of the 3D IRK-PCM. Also, we
find that the maximum deviation of the numerical velocity from the exact one
is within 2% even when about 3 points per wavelength are used (Sp = 0.3) and
a € [0.10.4].
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Fig. 4. The ratio R of the numerical velocity (c,,,) to the exact phase velocity (c,) versus the spatial
sampling ratio S = h/\, generated by the IRK-PCM under the courant number o = 0.1 and at
different wave propagation angles with respect to the x-axis (§,) or the z-axis (6,). Where the four
lines correspond to when (a) 6, = 0°, (b) §, = 45°, (¢c) 6, = 45°, (d) 6, = 90° is fixed, and the
other angle changes from 0°, 15°, 30°, and 45°, respectively.
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Fig. 5. The ratio R of the numerical velocity (c,,,) to the exact phase velocity (c,) versus the
sampling ratio S = h/\, generated by the IRK-PCM at different courant number when wave
propagation angles with respect to the x-axis (8,) and the z-axis (3,) are fixed. Where the four lines
correspond to when (a) 6, = 0°, 6, = 30°, (b) §, = 30°, §, = 30°, (c) §, = 45°, §, = 45°, (d)
6, = 45°, 6, = 90° are fixed, and the courant number « changes from 0.1, 0.2, 0.3 and 0.4,

respectively.
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EFFICIENCY AND WAVE FIELD MODELING

In this section, we investigate the efficiency of the IRK-PCM for
wave-field modeling in the 3D acoustic, isotropic and transversely isotropic
elastic cases, and compare it against the fourth-order LWC method (Dablain,
1986) and the fourth-order staggered-grid (SG) FD method (Virieux, 1986).
Different spatial sampling rates are chosen so that we test the effects of
sampling rate, which is defined by

Ax = v, /f-G = \./G , Q1)

where v, denotes the minimum S-wave (or quasi S-wave) velocity, f is the
peak frequency, and G denotes the number of grid points per minimum
wavelength (G = \,;/Ax). All of our numerical experiments were performed
on an Intel(R) Xeon(R) CPU with 2.60 GHz and 64 GB memory.

Computational efficiency

To examine the efficiency of the IRK-PCM, we solve numerically the 3D
acoustic wave eq. (3) given previously. In this experiment, we choose the
computational domain of 0 < x < 4.8km,0 <y < 4.8km, 0 <z <4.8 km,
the acoustic velocity of ¢, = 3400 m/s. The time and spatial increments are
respectively At = 0.0025 s and Ax = Ay = Az = 48 m, resulting in G = 3.5.
The receiver R is at the grid point (2.4 km, 2.4 km, 2.4 km). The number of
grid points is 101 X 101 X 101 and the force source f is a Ricker wavelet
(Zahradnik et al., 1993)

f(t) = sinwft)exp(—4n*f2t?/16) (22)

with a peak frequency of f, = 20 Hz, and is located at the center of the
computational domain.

Fig. 6 shows the snapshots of seismic wave fields at t = 0.5 s in the x-y
plane, generated by the IRK-PCM, the fourth-order LWC, and the fourth-order
SG method, respectively. From Fig. 6 we can see that the wave-fronts of
seismic waves simulated by the three methods at the same time are basically
identical, and it took the IRK-PCM, the fourth-order LWC, and the SG about
166 s, 8 s, and 10 s to generate Figs. Sa, 5b, and 5c, respectively. However,
the snapshots in Figs. 5b and 5c¢ computed by the fourth-order LWC and SG
methods show serious numerical dispersion, whereas Fig. 5a computed by the
IRK-PCM shows no visible numerical dispersion, even the spatial increment is
chosen by Ax = Ay = Az = 48 m without any additional treatments. Those
comparisons demonstrate that the IRK-PCM can effectively eliminate the
numerical dispersion caused by discretizing the wave equation for the coarse
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(a) 0 Distance(km) 4.8

(b) 0 Distance(km) 4.8

4.8 Distance(km) 0

(c) 0 Distance(km) 4.8

4.8 Distance(km) 0

4.8 Distance(km) 0

Fig. 6. Snapshots of acoustic wave fields at time 0.5 s on the coarse grid (Ax = Ay = Az = 48 m),
generated by the IRK-PCM, the fourth-order LWC, and the fourth-order SG method, respectively.

(a) 0 Distance(km) 4.8 (b) 0 Distance(km) 4.8

4.8 Distance(km) 0
4.8 Distance(km) 0

Fig. 7. Snapshots of acoustic wave fields at time 0.5 s on the fine grid (Ax = Ay = Az = 20 m),
generated by (a) the fourth-order LWC, and (b) the fourth-order SG method, respectively.
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mesh case. It suggests that the IRK-PCM can improve computational efficiency
when a coarse mesh is used for large scale wave-field simulations.

To further investigate the efficiency of the-IRK-PCM, Fig. 7 shows the
snapshots of seismic wave fields att = 0.5 s in the x-y plane, generated by the
fourth-order LWC and SG methods, respectively, under the same Courant
number but on the fine-grid step of Ax = Ay = Az = 20 m. Figs. 6 and 7
show that the IRK-PCM can provide us an identical result on a coarse grid (Ax
= Ay = Az = 48 m) as that of the LWC and SG methods on a finer grid.

Fig. 8 shows the comparison of waveforms computed by the analytical
solution (see eqgs. (6.53) and (6.59), Aki and Richards, 2002) and numerical
solutions calculated by the IRK-PCM for the acoustic model with ¢, = 4 km/s.
The source wavelet has the form as (22) with a peak frequency of f, = 15 Hz.
The force source and a receiver R are located at (2 km, 2 km, 2 km) and (1.4
km, 2 km, 2 km), respectively. The spatial increment and temporal step are
respectively Ax = Ay = Az = 20 m and At = 0.005 s. The waveforms show
an excellent agreement between the analytical solution and that of the 3D
IRK-PCM, which demonstrates that the IRK-PCM can provide the same
accuracy as the analytic solution. For further test the accuracy of the IRK-PCM
for calculating seismograms, we chose a coarser grid with Ax = Ay = Az =
60 m, and under a peak frequency of f, = 20 Hz for the same acoustic model.
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Fig. 8. Comparison of the waveforms between the analytic solution and numerical solution generated
by the IRK-PCM on a fine grid with Ax = Ay = Az = 20 m.
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Fig. 9 is the waveform comparison between the analytical solution and the
numerical solution, computed respectively by the IRK-PCM, the LWC, and the
SG methods. We see from Fig. 9a that IRK-PCM matches the analytical solution
well even under such a coarse grid, whereas other two methods suffer from
numerical dispersions with the amplitudes oscillates from the analytical solution
(Figs. 9b, ¢).

Moreover, to simulate the same region and to achieve the same good results
without numerical dispersion, the IRK-PCM needs less memory and smaller
computational costs. Actually, it took the IRK-PCM about 166 s to generate
Fig. 6a, whereas under the same computer environment, it took the fourth-order
LWC roughly 3465 s and the SG about 5142 s to generate Figs. 7a and 7b,
respectively. It means that the computational speed of the IRK-PCM is about 21
times of the fourth-order LWC method, and roughly 30 times of the SG method
on a fine grid to achieve the same accuracy of the IRK-PCM. Meanwhile, the
required storage space for the IRK-PCM is also different from those of the
fourth-order LWC and the SG method. The IRK-PCM needs 32 arrays to store
uljy, Wi ultl, witi, and their gradients, and the number of grid points is
101 X 101 X 101 on a coarse grid for generating Fig. 6a. The fourth-order
LWC only needs 6 arrays to store the displacement u}~] ,, u};, uj*j, and their
spatial partial derivatives (02u/0x?)} ; \, (3%u/dy?)} ; i, (0%u/0z?)} ; 4, and SG method
needs 9 arrays to store the wave displacement and the stress fields at each grid
point, but the number of grid points for generating Figs. 7a and 7b on the fine
grid goes up to 401 X 401 X 401 for the fourth-order LWC and or the SG
method. It implies that the space storage of the IRK-PCM requires only roughly
8.5% of the fourth-order LWC method and about 5.7% of the SG method.

WAVE-FIELD MODELING

Two-layered acoustic model

To investigate the validity of the 3D IRK-PCM, in seismic wave field
simulation we choose a two-layer acoustic medium with wave velocities 2 km/s
and 4 km/s in the upper and lower layers, respectively. The number of grid
points is 201 X 201 X 201, the computational regionis 0 < x < 6 km, 0 <
y <6km,0< z < 6km.

The source wavelet is a f, = 24 Hz peak frequency symmetric Ricker
wavelet:

f(t) = —5.76f[1 — 16(0.6f,t—1)*]exp[—4(0.6ft—1)7] . (23)

The source is located at (x,,y,z,) = (3 km, 3 km, 2.7 km). The spatial
increments are AXx = Ay = Az = 30 m, and the time increment is At = 0.0075s.
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Fig. 9. Comparisons of the waveforms between the analytic solution and numerical solution
generated by (a) the IRK-PCM, (b) the fourth-order LWC, and (c) the fourth-order SG, on a coarse
grid with Ax = Ay = Az = 60 m.
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Fig. 10 is the wave-field snapshots at 0.9 s in the x-z plane, generated by
the 3D IRK-PCM, the fourth-order LWC, the fourth-order SG, respectively.
From the wave-field snapshot Fig. 10a, we can observe clearly the direct wave,
the refraction wave, and the reflection of the acoustic wave from the inner
interface. Also, the wave-field snapshot calculated by the IRK-PCM has almost
no numerical dispersions, even if the model velocity contrast between adjacent
layers is 2 times. However, the fourth LWC and SG have much serious disper-
sions. It took the IRK-PCM about 3.37 hours to obtain the result in Fig. 9a.

We show in Fig. 11 the two-layer acoustic waveforms recorded at 0.8 s
generated by the IRK-PCM, the fourth-order LWC, the fourth-order SG,
respectively. The source wavelet and peak frequency are same as Fig. 10. The
spatial increment and temporal steps are respectively Ax = Ay = Az = 30 m
and At = 0.003 s. The receiver is at R (1.05 km,1.5 km,1.5 km), and the
source is located at (X,y,,z) = (3 km, 3 km, 2.7 km). It is clearly shown
IRK-PCM has almost no numerical dispersions while the LWC and SG have
serious dispersion on the coarse grid.
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Fig. 10. Snapshots of acoustic wave-fields for a two-layer acoustic model at time 0.9 s in the x-z
plane on the coarse grid (Ax = Ay = Az = 30 m), generated by (a) the IRK-PCM, (b) the
fourth-order LWC, and (c) the fourth-order SG.
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generated on a coarse grid Ax = Ay = Az = 30 m by (a) the IRK-PCM, (b) the fourth-order LWC,
and (c) the fourth-order SG, respectively.
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For practical use of the 3D IRK-PCM, we show its efficiency of acoustic
wave field modeling when combined with a 2-times absorbing boundary
condition (Yang et al., 2002) in Figs. 12 and 13. For comparison, Figs. 12a and
12b respectively show the snapshots of wave field in x-y plane at 0.22 s for an
acoustic model with velocity of 4 km/s without and with absorbing boundary
condition. We see that the reflected waves at the four boundaries are absorbed
and we get a perfect wave-front information of the acoustic wave by using the
absorbing boundary condition (Fig. 12b). Similarly, we show synthetic
seismograms in Fig. 13 on the surface for a 2-layered acoustic model (Jarchow
et al., 1994) without (Fig. 13a) and with (Fig. 13b) the 2-times absorbing
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Fig. 12. Snapshots of wave field in the x-y plane at 0.22 s for an acoustic model computed by the
IRK-PCM, (a) without and (b) with the 2-times absorbing boundary condition, respectively.
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Fig. 13. Synthetic seismograms on the surface for a 2-layered acoustic model computed by the
IRK-PCM, (a) without and (b) with the 2-times absorbing boundary condition, respectively.
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boundary condition, respectively. The acoustic velocity in the upper layer is 2
km/s, and in the lower layer is 4 km/s. Without the absorbing boundary
condition, various reflected waves are observed in Fig. 13a which will misguide
us interpreting the structure of the acoustic model investigated. However, we
recover the wave field information in synthetic seismograms with the direct
wave and the easily picked reflected waves (Fig. 13b) by introducing the
absorbing boundary condition (Yang et al., 2002).

(@ O Xaxis(km) 6.6

0

(b) 0 Xaxis(km) 6.6

0

6.6 Y axis (km)

Z axis (km)

c) O Y axis (km) 6.6

6.6

Z axis (km) 0

6.6

Fig. 14. Snapshots of seismic wave-fields at time 1.2 s for the displacement component u, in (a) the
x-y plane, (b) the x-z plane, and (c) the y-z plane, for the isotropic elastic medium generated by the
IRK-PCM on a coarse grid Ax = Ay = Az = 33 m.

Isotropic elastic model

To further investigate the validity of the IRK-PCM for the 3D isotropic
elastic case, we choose the elastic constants by A = 4.75 GPa, u = 3.75 GPa,
and the density p = 2.1 g/cm’®. The spatial and time increments are respectively
Ax = Ay = Az = 33 m and At = 0.137 X 107? s, and the number of grid
points is 201 X 201 X 201. The force source is the same as those used in the
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acoustic experiments previously with a peak frequency of f, 15 Hz. Fig. 14
shows the wave-field snapshots of the displacement component u, at time 1.2 s
on a coarse grid (Ax = Ay = Az = 33 m) generated by the IRK-PCM, in the
x-y (Fig. 14a), the x-z (Fig. 14b), and the y-z (Fig. 14c) planes, respectively.
In Figs. 14a and 14b, the snapshots in the x-y and the x-z planes show very
clear wave-fronts of the P- and SV-waves. The snapshot in the y-z plane (Fig.
14c) shows clear wave-front of the SH-wave and very weak wave-front of wave.
The same waves can be found from the wave-field snapshots of u, and u,
components, which are omitted here. It took about 13.45 hours to generate the

results in Fig. 14 which was performed on an Intel(R) Xeon(R) CPU with 2.60
GHz and 64 GB memory.

Fig. 15 shows the waveforms computed by the 3D IRK-PCM in an elastic
isotropic medium, where the peak frequencies are respectively 50 Hz (Fig. 15a),
60 Hz (Fig. 15b), and 70 Hz (Fig. 15c). The elastic constants are X = 4.11
GPa, u = 7.74 GPa, and the density p = 1.6 g/cm’. The spatial increment is
chosen by Ax = Ay = Az = 10 m. In Fig. 15, we see clear waveforms of P-
and S-waves without visible numerical dispersions even when the peak

frequency is up to 70 Hz, illustrating the effectiveness of IRK-PCM in wavefield
simulation at high frequency bands.
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Fig. 15. Waveform records at a receiver R(0.7 km, 0.7 km, 0.7 km) for the displacement component

at different high peak frequencies (a) 50 Hz, (b) 60 Hz, and (c) 70 Hz for the isotropic elastic
medium generated by the IRK-PCM.
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VTI Model

In this subsection, we choose the transversely isotropic model with a
vertical symmetry axis (VTI) for which the medium parameters are listed in
Table 2. The spatial and time increments are Ax = Ay = Az = 30 m and At
= 0.8 X 1073 s, respectively. The number of grid points is 201 x 201 X 201,
and the computation domainis0 < x < 6km, 0 <y < 6kmand0 < z <

6 km. The source and the peak frequency are the same as those used in the
isotropic elastic model.

Table 2. Medium parameters used in the VTI model.

Ci Ci2 Cn Ci2 Cn Ci2 Ps
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa) glen?
20 6 4.5 17.5 4 7 1.8
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Fig. 16. Snapshots of seismic wave-fields at time 0.88 s for the displacement component u, in the
VTI medium on a coarse grid Ax = Ay = Az = 30 m, generated by the IRK-PCM.
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The wave-field snapshots for three components u;, u, and u, at time 0.88
s are given in Figs. 16, 17, and 18. Fig. 16 respectively presents the snapshots
of the u, component in the x-y, the x-z, and the y-z planes. Figs. 17 and 18
show the snapshots of displacement components u, and u, in three coordinate
planes. The wave-field snapshots in the x-y plane (transverse plane) for the three
displacement components which are shown in Figs. 16a, 17a, and 18a, illustrate
that the wave-fronts of P- and S-waves are circles in the VTI medium. Whereas
other snapshots in Figs. 16, 17, and 18 show that the wave-fronts of the quasi-P
(qP), quasi-SV (qSV) waves and quasi-SH (qSH) waves are elliptical, implies
the propagation velocity of these waves have a directional dependence. The qSV
wave-fronts can have cusps and triplications depending on the value of ¢, (Faria
and Stoffa, 1994). Triplications can be observed in the horizontal component
gqSV wavefronts in the x-z plane for the u, component (Fig. 16b), in the y-z
plane for the u, component (Fig. 17c), and in the vertical component qSV
wavefronts presented in Figs. 18b and 18c.
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Fig. 17. Snapshots of seismic wave-fields at time 0.88 s for the displacement component u, in the
VTI medium on a coarse grid Ax = Ay = Az = 30 m, generated by the IRK-PCM.
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By using the Christoffel equation, the velocities of quasi SV-wave and
SH-wave can be expressed by elastic parameters of the medium and the angle
0 between the axis of symmetry and the wave propagation direction, i.e.,
V) = VAICsin¥(0) + Cycos¥0) + Cy — YM©O1/20}, Vesu(®) =
VACessin(6) + Cyucos2(0)]/p}, M(0) = [(C;;—Cyy)sin®() — (Cy3—Cyq)cos(6)]?
+ (C,;;+C,)%in%(26), (Mavko et al., 2003). It means that the arrival time
difference between qSH and qSV waves, namely the shear-wave splitting
phenomenon, depends mainly on elastic parameter Cs;. By choosing an
approximate value of Cs;, we observe in the VTI medium the shear-wave
splitting phenomenon through comparing Figs. 16¢ and 17b with Figs. 16b and
17c, 18b and 18c. It took the IRK-PCM about 10.68 hours to generate Figs. 16,
17 and 18 on an Intel(R) Xeon(R) CPU with 2.60 GHz and 64 GB memory.
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Fig. 18. Snapshots of seismic wave-fields at time 0.88 s for the displacement component u; in the
VTI medium on a coarse grid Ax = Ay = Az = 30 m, generated by the IRK-PCM.
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CONCLUSION AND DISCUSSION

In this article, we propose the 3D predictor-corrector algorithm
(IRK-PCM) based on the implicit Runge-Kutta method, and apply it to solve the
acoustic- and elastic- wave eqs.. We first transform the wave equation to a
system of ordinary differential egs., and then use the predictor-corrector method
based on an implicit Runge-Kutta method to solve the ODEs. In detail, we first
transform the original wave eq. (2) into eq. (7). And then we use the
interpolation approximations (A-1)-(A-5) to approximate the high-order spatial
derivatives on the right-hand side of eq. (7), so that it is converted into a system
of semi-discrete ordinary differential eqs. (ODEs). Finally, we solve the
semi-discrete eq. (7) using the IRK-PCM for the temporal discretization, which
is actually an extension of the 2D IRK-PCM (Wang et al., 2012).

The theoretical error analysis shows that the IRK-PCM has fourth-order
accuracy in space and second-order accuracy in time, which is confirmed by the
numerical experiments for different cases. Using the Fourier analysis method
(Richtmyer and Morton, 1967), we get the stability condition of the IRK-PCM
for solving the 3D acoustic equation [see egs. (18) or (20)]. Theoretical
dispersion analysis illustrates that the IRK-PCM can effectively suppress the
numerical dispersion even when the grid sampling per wavelength is about 3
(numerical error is within 2%) (Figs. 4 and 5). Numerical simulations of
acoustic and elastic media in the wave-field modeling section, illustrate that the
IRK-PCM provides us accurate wave field information without numerical
dispersion (through snapshots and seismograms), even in the situation of coarse

grid or at high frequency bands, or geological models with large velocity
contrasts. '

It appears that the IRK-PCM costs more CPU time per iteration than the
fourth-order LWC and staggered-grid methods, but it yields less numerical
dispersion than the fourth-order LWC and SG methods. Therefore, we can
reduce computational time and space storage through choosing larger spatial or
time increments for the IRK-PCM, to achieve the same accuracy as those of the
LWC and SG methods on a fine grid with smaller time steps. Thus, as is
confirmed in the computational efficiency section, to achieve the same accurate
snapshots without numerical dispersions, the computational speed of the
IRK-PCM on a coarse grid is about 25 times of the fourth-order LWC and 30
times of the fourth-order SG on-a fine grid, and the space storage of the
IRK-PCM requires only roughly 8.5% of the fourth-order LWC and 5.7% of
the fourth-order SG. For its efficiency of suppressing numerical dispersion even
when about 3 points per wavelength are used, we conclude that the 3D
IRK-PCM provides us an useful tool for the 3D large-scale isotropic and
anisotropic wave-field modeling, reverse time migration and full waveform
inversion.
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APPENDIX A

APPROXIMATIONS OF HIGH-ORDER DERIVATIVES

For the 2D case, we have shown the formulae to calculate the
second-order and third-order spatial derivatives, which involved in the algorithm
IRK-PCM when solving the acoustic and elastic wave eqs. (Wang et al., 2012).
These formulae are based on the local interpolation methods in which the
nearly-analytic discrete operators are introduced, and can be easily extended to
the 3D case (Konddoh et al., 1994; Yang et al., 2003, 2007; Yang and Wang,
2010). In the local interpolation method, to calculate the spatial derivatives at
each grid point, we introduce spatial operators that involve only three grid
points that adjacent to it in each of the three directions.

Speaking in detail, when we use the explicit IRK-PCM to compute the
values of U at time t,,, in synthetic seismograms, we first need to compute the
high-order space derivatives included in the general eq. (7) or the detailed eqs.
(8-15) for the algorithm IRK-PCM. Following the local interpolation theory and
introducing the corresponding displacement operators (Yang et al., 2007; Yang
and Wang, 2010), we present here the approximation formulae for the
second-order spatial derivatives in 3D IRK-PCM as

(92V/0g2)T = [2/(Ag)*18 V1«

— (12A9)(E; — E;H@OV/0Q)?,, , & = X,,2, (A-1)
(92V/3gde); ;, = (1/2Ag)(EL — E;H(@V/dg)";,

+ (1/4AgAe)EE, + E;'E.' — EE;' — E;'EDV],, . (A-2)
corresponding to three cases g = X, e =y, g =y,e =z, and g = z, e = X,

and conditions (92V/dgde)} ; x = (32V/dedg)}; , are constrained for different pairs
of g and e.

The third-order spatial derivatives in IRK-PCM are given as follows
(VI8 = [15/2(Ag)’1(E} — E;DVEix
—[372(Ag")E; + 81 — E;HVY,, , g = xy,z, (A3)
(3°V/dg’de)t;, = (1/2AgAe)(—EJEI—E;'E;'E}+E;' —28)(3V/09)}
+ (1/Ag)°63(9V/de);;, + [1/4(Ag)*Ae](SEEL—5E'E;!

+ EIE;' — E;'E! — 6EL + 6E;' — 4El + 4E)VI,, , (A-4)
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where g,e = x,y,z, and g # e, and conditions (8°V/dg’de)};, = (0°V/dedg’)};,
are constrained for different pairs of g and e, and

(63V/6X6y32)‘i‘,j,k = (1/4AyAZ)(E;El+E;1E;1 —E;E;l —E;lE;)(aV/ax)’i‘,j,k

+ (1/4AXAZ)(E,‘(E;+E;1E;1-—E;E;l—E;IE;)(aV/ay)?‘j‘k

+ (1/4AXAy)(E,1(E;+E;1E;1—E,I(E;I—E;IE;,)(GV/BZ)?M

— (1/4AxAyAz)(E'E!E!+E;'E;'E;'+E;'E; 'E.~E!E!E "

+ B;'E!E;'~E!E;'E!-EIE;'E;'~E{'EE)V",, . (A-5)
The definitions of spatial operators involved in egs. (Al)-(AS5) are
intuitive. For example, when g = z, we have Ag = Az indicates the spatial
increment in the z-direction, 6; = &Vi;, = Vi;,,, — 2V}, + V},,_,, and E}
= E, = V1, E;' = E;' = V},,_,, which are related to spatial operations
on the z-direction. Other cases of g = x correspond to operators 6%, E}, and E}'

on the x-direction, and g = y corresponds to operators &, E;, and E;' on the
y-direction can be defined similarly.

APPENDIX B
DERIVATION OF THE STABILITY CRITERIA

For the 3D homogenous case, the stability condition of the IRK-PCM can
be also easily extended from the 2D case (Wang et al., 2012). We consider the
harmonic solution of eq. (8) under the condition of Ax = Ay = Az = h, and
substitute the following solution

n

<

Vl'l X

I,m,q

explitk,/h + kymh +kygh)] , (B-1)
y

z

SSSE )
<1<i<l

into eq. (8) together with relations (A-1)-(A-5), we can obtain the following eq.

o+l = Gyn+t! (B-2)

l,mq l,mgq >

where G is the amplification matrix.

Apply the same stability criteria p(G**G) < 1 as that in the 2D case
where G’ the conjugate transpose matrix of G and p(G™G) the spectral radius
of matrix (Yang et al., 2009; Wang et al., 2012), we derive in the following the
stability conditions of the IRK-PCM for the 3D homogenous case
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o < o, < 0.505 , (B-3)
or
At < o, (h/c,) = 0.505(h/cy) . (B-4)

where ac,At/h denotes the Courant number, «,,, denotes the maximum Courant
number that keeps the IRK-PCM computational stable, and c, the acoustic
velocity for the homogenous case. For the heterogeneous case, we choose c, as
the maximum wave velocity of the medium.

APPENDIX C
DERIVATION OF THE NUMERICAL DISPERSION RELATION

Following the dispersion analysis methods presented in Dablain (1986) and
Wang et al. (2012), we consider the harmonic solution of eq. (8) and substitute
the below solution for the 3D homogeneous case under the condition of Ax =
Ay = Az =h _
\Y

V?‘m,q = g"g" expli( —wymnAt + ki/h + k,mh +k;qh)] , (C-1)
yXo
anO

into eq. (8) together with relations (A1)-(A5), we can obtain the following
dispersion equation

Det(M) = 0 (C-2)

where is the time step increment, w,,, is the numerical angular frequency, k;,
k, and k; are respectively the three components of the wave number vector k =
(k;,ky,ks) in x-axis, y-axis and z-axis directions. For convenience, we introduce
the plane-wave propagation angle with respect to the x-axis as §, and to the
z-axis as §,, and define the L, norm as |k| = (ki,k3,k3)", then k,, k, and k, can
be substituted in eq. (C-2) as k; = |k|sind,cosd,;, k, = |Kk|sind,sind;, k; =
|k|cosé, (0<6,<2m, 0<§,<m), respectively. Due to the complexity of
elements of the matrix M, we omit its detailed expressions here.

From the dispersion relation (C-2), we can obtain the ratio of the
numerical velocity ¢, to the phase velocity c, as follows

R = cun/Co = wpmAt/ad = y/ab (C-3)
where « is the Courant number, v = w,,At, and § = |k|h satisfies the

dispersion eq. (C-2). In some work, by defining the spatial sampling ratio
(Moczo et al., 2000), we further have § = |k|h = 2s.





