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ABSTRACT

Sun, S.Z. and Liu, L., 2014. A Numerical study on non-linear AVO inversion using chaotic
quantum particle swarm optimization. Journal of Seismic Exploration, 23: 379-392.

Particle swarm optimization (PSO) is a common method for a non-linear system used in
AVO inversion, which is much more advantageous than traditional linear inversion, due to
independence of initial model establishment and wavelet estimation, etc. However, the method is
prone to fall into local optimum. And it is so easy to be affected by noise interference that fails to
tackle the issues of reservoir and fluids in most cases. Based on the method above, a new non-linear
AVO inversion method is proposed in this paper, with the employment of chaotic quantum particle
swarm optimization (CQPSO) to solve non-linear problems. By comparison with conventional PSO,
CQPSO shows more efficient capability, including shorter computation time, higher efficiency for
convergence, and global search capability, etc. Due to these characteristics, CQPSO inversion could
be used to extract elastic properties directly from the synthetic seismogram, and provide more
precise results, especially for density gradients. After the testing with model data and seismic data,
the results of CQPSO inversion are all coincident with well data on reservoir properties and fluid
content. These coincidences mean confirmed feasibility and effectiveness of the new inversion
method.

KEY WORDS: non-linear inversion, particle swarm optimization, global search capability,
chaotic mapping, reflection coefficient of density.

INTRODUCTION

Seismic inversion is generally divided into two major categories: pre-stack
inversion and post-stack inversion. Pre-stack inversion always maintains the
characteristics of seismic reflection amplitude varying with offset, and thus
could provide many kinds of elastic properties, such as P-wave reflection
coefficient (Rp), S-wave reflection coefficient (Rg), density reflection coefficient
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(R,) and Poisson’s ratio. Then the reservoir and fluids could be identified by
these properties. Two types of inversion methods are proposed by predecessors
from the method implementation: linear inversion and non-linear inversion.
They are sometimes both summed up into some extreme values of each objective
function. The function of linear inversion always has only one set uncertain
values, while the function of non-linear inversion has more.

The essentially process of pre-stack inversion is non-linear, and has more
extreme values. However, linear inversion methods, which use the Zoeppritz
equation [see eq. (A-1) in the Appendix] and its simplified equations directly,
are usually the linearization of non-linear problem, providing an unstable
solution, influenced by the initial model (Wang, 2007). On the contrary,
non-linear inversion, which needs not any approximation but runs with
optimization methods, is a basic way to solve the non-linear problems
(Tarantola, 1984; Pratt et al., 1998). Also, non-linear inversion method has
other defects, including big workload, long operation time, and low operation
efficiency. But non-linear inversion would be the mainstream method in the
future, because of its characteristics of fast convergence, global search capability
and independence on initial geological model (Kuzma and Rector, 2004; Yang
and Yin, 2008; Peng et al., 2008; Yan et al., 2009; Bing et al., 2012).

Particle swarm optimization (PSO) is a common non-linear method used
in non-linear AVO inversion, showing advantages of less artificial adjustable
parameters, high precision and fast convergence speed. Based on this method,
a new non-linear AVO inversion method is proposed in this paper, with an
employment of chaotic quantum particle swarm optimization (CQPSO) to solve
non-linear problems. The method could be used to correct the faults in PSO
inversion, include of easily falling into local optimum and difficultly converging
in global space.

BASIC PRINCIPLE OF AVO INVERSION

The kernel of CQPSO inversion is conventional AVO inversion. The
Gidlow approximate equation (Gidlow et al., 1992) is employed in CQPSO
inversion. Gidlow et al. rearranges the classic equation of Aki and Richards in
accordance with the reflection coefficients of P-wave impedance, S-wave
impedance and density. The equation is as follows:

Rpp(0) = (1 + tan?6)R, — 8(V¢/V,)?Rgsin6

+ [4(Vs/Vp)’sin?d — tan?|R, (1)
where

Ry = V2(AVeo/Viep) = A (AL/T)
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Rg

152 (AVg/Vgp) = % (AlL)

R, = Y%(Aplp) ,
and 6 is the average angle of incidence angle and transmission angle, Ry is the
reflection coefficient of P-wave impedance; Rg is the reflection coefficient of
S-wave impedance, R, is the reflection coefficient of density; AVy, AV, and Ap
are the difference properties of P-wave, S-wave and density respectively of
between above interface medium and below interface medium; V,, Vgand p are
average properties of P-wave, S-wave and density, respectively, of between
above interface medium and below interface medium.

THE PRINCIPLE OF CQPSO

When the ergodic regularity of chaotic mapping is employed into QPSO
(see the Appendix), CQPSO is proposed with features of jumping out quickly
from local optimum, and keeping the variety of swarm. The basic idea of
CQPSO could be expressed by two factors. On the one side, the initialized
position of particle in chaotic mapping is employed in CQPSO, ensuring to
traverse the entire searching space as much as possible. Not only the
randomness would be preserved in the initialization stage of the CQPSO
process, but the variety and ergodicity of swarm would be improved in chaotic
mapping. On the other side, when quantum particle swarm is evaluated to be
fallen into the state of premature convergence in the CQPSO process, the initial
particle would be replaced with global extremum particle, and suboptimal
particles would be replaced with optimal particles in chaotic sequence. Then, the
CQPSO process could jump quickly out of local optimum, and continue the
searching process in feasible solution space. As a result, global searching is
continued to run.

PROCESS OF CQPSO INVERSION

In eq. (1), the uncertainty of V¢/V, leads to a non-linear characteristic.
Conventional linear inversion method uses certain assumption value, which is
obtained from logging data and the initial model of rock physics, to replace the
uncertainty of Vg¢/Vp in eq. (1). Therefore, the AVO relation in eq. (1) is turn
to a linear relation in conventional linear inversion process. And the results are
strongly dependent on the initial model.

On the other hand, non-linear inversion is performed to work out the
non-linear equation by using non-linear method directly. Then the CQPSO
inversion is proposed as following Step 1 ~ Step 7 to provide accurate results.
And the process diagram is shown in Fig. 1.
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Fig. 1. The process diagram of CQPSO inversion.

Step 1: Stacked seismic data with partial angles, named stack data 1, stack
data 2, stack data 3, ..., respectively, according to incident angles, are used as
input data in CQPSO inversion. The unknown quantities are Rp, Rg, R, and
Vp/Vs.

P

Step 2: The total numbers of particles is initialized to M, and the
dimension of each particle is 4, including Ry, Rg, R,, and V,/V. The maximum
time of iteration process is QPSO iteration. The maximum time of chaotic
sequence is Chaos_iteration. The threshold fitness of ending condition is &, and
the variance threshold fitness of premature convergence is A. The maximum
value and minimum value of quantum particle positions are X, and X,
respectively.

Step 3: A four-dimension random vector generated from [0,1] is used as
initial particle. According to Tent mapping (see eq. (A-7) in the Appendix), a
Chao_iteration number of random chaotic sequences is generated.
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Step 4: M particles are introduced into eq. (1) to calculate the theoretical
reflection coefficient of each particle. These coefficients are then introduced into
eq. (2), respectively, to evaluate the fitness of each particle, which is considered
as the Error E between the theoretical reflection coefficient and the actual
reflection coefficient. The smaller is the fitness of the particle, the more
accurate to real result. All the particle fitness is then sorted to obtain the
individual extremum p,., and the global extremum g,,.

E® = Y, [Re®) — Ra®)I 2)

i=1

where R, is the reflection coefficient extracted from gathers; R, is the
reflection coefficient calculated by eq. (1); n is the number of partial-angle-
stacked data, usually 3 or 4; 6, is the j-th average angle of incidence angle and
transmission angle; i represents the i-th particle.

Step 5: Premature convergence judgment. If the variance of global fitness,
calculated by eq. (3), is smaller than A, turn to Step 6, or turn to Step 7.

o2 = (IIM) Y, [(f; — )/ . 3)
j=1

Step 6: Chaotic variation. The global extremum g, is chosen as the initial
particle. According to the Tent mapping, certain percentages of most optimal

mapping particles are selected to update the raw particles with suboptimal
behaviour. ‘

Step 7: Ending condition judgment. If the fitness of the global extremum g
is smaller than the variance threshold fitness A, exit; and if the number of
iteration time reaches the maximum time Chaos_iteration, exit. Or, update all
particles by using egs. (A-3)~(A-5) in the Appendix, and turn to Step 4.
Reiterate until the global optimal value is found out.

MODEL DATA FOR TESTING

A forward modeling is proposed to verify the availability of CQPSO
inversion. The model is generated by logs of high-yield drilling in the Tarim
basin. To correspond with seismics, the logs of P-wave, S-wave and density are
converted from depth domain to time domain. And the logs are sampled with
a 2 ms interval, the same as the interval of seismic data (Fig. 2). The gathers
data of the model is generated by using complete Zoeppritz equation (see eq.
(A-1) in the Appendix) with a 40 Hz Ricker wavelet (Fig. 3).
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Fig. 2. The model is generated by logs of a high-yield drilling in Tarim basin. To correspond with
seismic, the logs are converted from depth domain to time domain with 2 ms sample interval.
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Fig. 3. The gathers data of model is generated by using complete Zoeppritz equation. The maximum
incident angle is 30°. The convolution is performed with a 40 Hz Ricker wavelet.
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PSO INVERSION FOR MODEL GATHERS DATA

Model gathers data is used in PSO inversion to achieve elastic properties.
The parameters of PSO inversion is as follows: The total number of particle
swarm is 30. The maximum iteration time is 100000. The accelerating factors
¢, and c, are both 2.04 (see eq. (A-2) in the Appendix). The initial inertia factor
Wnax 18 0.9. When the iteration time reaches the maximum time, the inertial
factor w,,, is set at 0.5. The search range of Ry, Rg, R, and V,/V; are (—0.1
~ 0.1), (=0.1 ~ 0.1), (—=0.05 ~ 0.05) and (0.4 ~ 0.7), respectively. The
ending condition of error threshold ¢ is 107",

The results of PSO inversion are diagramed in Fig. 4. The logs are
reflection coefficient of Rp, Rg, and R,. Blue dot line represents the properties
from drilling logs, while pink dot line represents corresponding properties from
PSO inversion result. R; result is coincidence with R, log in the left part of Fig.
4. And Rg result is also coincidence with Rg log in the central part of Fig. 4,
with a slightly unfitness.

Rp Rs
3440 3440 3440
3460 3460 3460
3480 3480 3480
3500 3500 3500
3520 3520 3520
£
g 3540 3540 3540
E
3560 3560 3560
3580 3580 3580
3600 3600 - 3600
—
3620 J 3620 3620
3640 : 3640 : 3640
0 0.15 -0. 15 0 0.15 -0.05 0 0.05
Rd Rd Rd

—e— Properties from drilling logs —e— Properties from inversion results

Fig. 4. The properties of drilling logs and PSO inversion results are diagramed with dot lines. The
logs are reflection coefficient of Ry, R, and R, respectively. Blue dot line represents the properties

from drilling logs, while pink dot line represents corresponding properties from PSO inversion
result.



386 SUN & LIU

However, R, result is incidence with R, log in the right part of Fig. 4.
Actually, R, result is more dependent on the large incident data in seismic
gathers, and always shows a high accurate requirement because of the small
coefficient value in eq. (7). This incidence means that PSO inversion is not
accurate enough to provide benefit R, result.

CQPSO INVERSION FOR MODEL GATHERS DATA

Model gathers data is also used in CQPSO inversion to achieve elastic
properties. The corresponding parameters of CQPSO inversion is the same as
in PSO inversion. To the difference, the maximum iteration time is 100, and the
iteration time of chaotic mapping is 100,000.

The results of CQPSO inversion are diagramed in Fig. 5. As a same
result, the logs are also reflection coefficient of Ry, Rg, and R,. It shows a high
coincidence in respective comparison of three properties between drilling logs
and inversion results. It is obvious that R, result has been improved to be fit
with R, log in the right part of Fig. 5. It means that CQPSO inversion is more
accurate to provide benefit R, result than PSO inversion. The high efficient
global search capability of CQPSO makes the greatest contribution to improve
the accuracy.

Rp Rs Rp
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Fig. 5. The properties of drilling logs and CQPSO inversion results are diagramed with dot lines.
The properties of logs are the same as in Fig. 4. It is obvious that R, result has been improved to
be fit with R, log. It means that CQPSO inversion is more accurate to provide benefit R, result than
PSO inversion in Fig. 4.



NON-LINEAR AVO INVERSION 387

Practical industry application needs a non-linear inversion with a fast
convergence rate, and a high operation speed. Fitness and iteration times are
two criterions of process efficiency. Two comparisons of fitness (Step 4) and
iteration times (Step 7) between PSO inversion and CQPSO inversion are
employed and shown in Fig. 6. The 99 samples are used to test the process of
two inversions. In PSO inversion, only 20 samples have available a fitness less
than threshold ¢, when the iteration time is less than 100,000. And another 79
samples do not have the fitness available. For the whole PSO inversion process,
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Fig. 6. The results of two comparisons are shown for fitness (a) and maximum iteration time (b)
between PSO inversion and CQPSO inversion. The available converged samples in CQPSO inversion
are more than that in PSO inversion. While the iteration time in CQPSO inversion are less than that
in PSO inversion.
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the convergence rate is 20.2%, and the process time is 422 s. In CQPSO
inversion, 26 samples have the available fitness in the initial stage. And 56
samples get the available fitness in the stage of less than 10 iteration times. And
only 5 samples could not get the available fitness. For the whole CQPSO
inversion process, the convergence rate is 94.9%, and the process time is rarely
21 s. Although the chaotic mapping process is added in CQPSO inversion
process with a result of increasing extra process time, the global optimization
capability has greatly improved the operation speed of CQPSO inversion. With
chaotic mapping, the global extremum particle could be found out in a few
iteration times. As a result, the process time of CQPSO is obviously cut down
to 21 s. Although it still has a larger process time than the linear inversion, the
non-linear inversion has been accepted by the practical application, through the
measurement of parallel algorithm.

CASE STUDY

CQPSO inversion is employed in X area in Tarim basin to analyze its
effectiveness. The target in X area is weathering crust karst reservoirs in
carbonate layers of Ordovician. These reservoirs are always linked to bead-like
reflection in seismic profiles. In order to identify the lithology, reservoir
properties and fluids, AVO inversion is needed to be employed.

Four wells with different reservoir properties and different yield are
sampled in this paper. And the results of CQPSO inversion around every well
are shown and compared with each other. A few profiles of seismic data and
inversion results through wells are shown in Fig. 7. As a matter of fact, well
X1 and well X2 have the same financial yield in formation test. But well X1 has
great yield in production, while well X2 has a bad yield. Well X3 and its
sidetracked hole are all water yield in formation test. And well X4 has a mud
filled reservoir, and none yield of a dry hole.

The profiles of inversion properties show some low noise and high quality
result data of inversion. Properties values are clear enough to be used to identify
lithology, reservoir properties and fluids. R;, could express a great sensitiveness
to fracture-cavity carbonate reservoir (Han et al., 2013). Actually, other than
the reservoir in well X4 is filled with mudstone, reservoirs in other three wells
are all good quality. And the value of R, data related to well X4 is small, while
the values of R, data related to others wells are big. The values of R, data
related to reservoirs are clear enough to be used to identify carbonate reservoir.

R, is always difficult to be accurately gained in common AVO inversion
because of the poor quality of large incident gather data. But CQPSO inversion
could be improved to provide accurate R, data by integrated the method of
CQPSO. The availability of R, data is always verified by comparison with gas
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saturation in reservoir. Research has disclosed an approximate linear relationship
between density and gas saturation (Wang, 2005; Chen, 2007). When the gas
saturation increases, the density decreases. There is only well X1 with high gas
saturation in four wells according to the production data. And only well X1 has
a strong amplitude reflection in R, data. That means that R, data of CQPSO
inversion is clear enough to be used to identify high yield wells in X area.

Fig. 7. CQPSO inversion results are shown in short profiles through four typical wells respectively.

CONCLUSIONS

The erdogic feature of chaotic mapping is used into normal PSO algorithm
to improve its capability of global optimization. With chaotic mapping, CQPSO
could quickly jump out of local optimum, and could avoid falling into the
premature convergence. Furthermore, CQPSO could have the qualities of
preserved swarm variety and improved searching efficiency.

The process of CQPSO inversion is established to achieve good quality
and accurate results. By comparison with conventional PSO, CQPSO has more
efficient capability include of shorter operation time, higher efficiency
convergence, and global search capability, etc. Due to these available
characteristics, CQPSO inversion could be used to extra elastic properties
directly from the synthetic seismogram, and provide more precision results,
especially for reflection coefficient of density. After the testing with model data
and the case study with seismic data, the results of CQPSO inversion are all
coincident with drilling data in reservoir properties and fluid enrichment.
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APPENDIX

ZOEPPRITZ EQUATION

sin i, cosj , -sin i, cosj , )
cosi,  -sinj, cosj, sin j, Ree —sin i,
2 .
. a . [+ 2 o . cos/ -1
sin 2, —‘cosy, %i‘sm 2, %221005212 Ros - . 2; (D
1 pibia, PPy Tep sin 4,
. . . (07 . . . - i
cos?, —-ﬂism 2, - P 2cos?, ———pz’stm %, LTes cos2
L @, Py Py ]

where Ry is the reflection coefficient of the P-wave; Rpg is the reflection
coefficient of the S-wave; Tpp is the transmission coefficient of the P-wave; Tpg
is the transmission coefficient of the S-wave; «y, B, p;, @, 3, and p, are the
P-wave velocity, S-wave velocity and density of the media 1 and media 2,
which are closely adjacent and different from a reflection interface; i, is the
incident angle; i, is the reflection angle; i, and j, are transmission angles.

The principle of the family of Particle Swarm Optimization methods

PSO

Particle swarm optimization (PSO) was first proposed by Dr. Eberhart and
Dr. Kennedy in 1995, inspired by feeding behavior of birds and fish (Kennedy
and Eberhart, 1995). By the sharing information and multiple iterations in whole
swarm, PSO shows its advantage of global search method. However, the
convergence process in PSO goes easily into local optimum to ending process
incorrectness. As a result, PSO is not a global optimization algorithm, and could
not ensure to find out the global optimal solutions.

k+1
Vi

lei( + i1 (Ppest — Xl.() + Corp(hest — le) ) (A-2)
X = Xk 4 v (A-3)

where k is the iteration time; c, and ¢, are constant values, which are called
acceleration factors. c; and c, represent the alteration speeds from the current
particle values to py., and g, respectively; w is the inertial factor, which
represents the influence weight from current speed to its next generation; r, and

r, are random numbers in [0,1]; V; and X represent particle speed and position,
respectively.



392 SUN & LIU
QPSO

In order to improve the global search capability of PSO, Sun et al. (2004)
proposed a method of quantum particle swarm optimization (QPSO). In QPSO,
particle movement is regarded as a quantum behavior, which means an uncertain
trajectory and an arbitrary position in feasible solution space with a certain
probability. The global optimization capability of QPSO is far stronger than the
one of PSO (Fang, 2010). However, QPSO could not overcome the inherent
shortcoming of premature convergence, like other intelligent swarm
optimization. In QPSO, all particles are concentrated into a small space, with
an almost zero velocity. And particles could not be globally searched in feasible
solution space. As a result, QPSO could fall into a state of premature
convergence, where QPSO could put all particles together in a later stage,
because of its particle memorability and extremum convergence.

M M M M

My = (/M) Y, X5 = [(IM) Y X5, (/M) Y X5, (M) Y. X5, (A4)
i=1 i=1 i=1 i=1

Pi = @ Pves T (1 - ﬂo)'gbesnso = Thpaa > (A-5)

)(li(+1 = Db t a.lmbesl - Xll(l 111(1/[1,) ’ (A-6)

where m,,,, represents the average optimal position of all particles; ¢ and p are
random numbers, evenly distributed in [0,1]; « is shrinkage-expansion
coefficient, which is used to control the convergence speed; X; is the position
of the i-th particle.

Chaotic mapping

Chaos is a kind of common phenomenon in the evolution of a non-linear
system. By using some simple deterministic rules, it could provide a complex
long term but not fixed cycle behaviour, which is sensitive to initial conditions.
It has some features included of regularity, randomness and ergodicity. And it
could traverse all possible states non-repeatedly in a certain space according to
its own regularity (Lu, 2006; Tavazoei and Haeri, 2007).

Tent mapping is one of rules which are used to generate chaotic data. It

has some advantages of simple structure, good uniformity traversal, and fast
iterative speed (Shan et al., 2005).

2X, , 0=x,<05
Xn+1 —{ , wheren = 1, 2, 3, ...(A-7)
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