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ABSTRACT

Wang, B., Chen, X. and Li, J., 2014. Inversion based data-driven attenuation compensation method.
Journal of Seismic Exploration, 23: 341-356.

Seismic data resolution can be reduced because of heterogeneity and viscosity of subsurface
medium. Inverse Q-filtering and Gabor deconvolution are able to effectively improve seismic data
resolution. However inverse Q-filtering requires accurate Q values and it is always unstable or
under-corrected for amplitude compensation, while Gabor deconvolution is based on the assumption
of a minimum phase wavelet, which deviates from real conditions to some extent, therefore its
application is limited. This paper combines merits of inverse Q-filtering and Gabor deconvolution:
neglecting effects of wavelet and just compensating attenuation. The procedures include: 1) Extract
an attenuation function by hyperbolic smoothing in Gabor domain; 2) Use non-combination theory
and inverse strategy to restore effective frequency components of the compensated seismic data; 3)
Perform an inverse Fourier transform to obtain compensated seismic data. This method, does not
need an accurate Q value, is stable and accurate compared with traditional inverse Q-filtering
methods; it is data driven and is applicable to different data sets because it avoids the assumption
of a minimum phase wavelet compared with Gabor deconvolution; it is computationally efficient
because only the effective frequency components are calculated compared with methods that need
to calculate the whole seismic data series. The validity of the proposed method has been verified
by tests on synthetic and real data.

KEY WORDS: inverse Q-filtering method, Gabor deconvolution, attenuation compensation,
data-driven, non-stationary combination.

INTRODUCTION

When seismic waves propagate in the subsurface media, there is a forward
Q effect because of heterogeneity and viscosity of the subsurface medium. This
attenuates the amplitude and distorts the phase, leading to decreased resolution
in the seismic data (Futterman, 1962). High resolution seismic data, which is
required by accurate reservoir description and for seismic data interpretation, can
be achieved through attenuation compensation methods (van der Baan, 2012).
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Inverse Q-filtering is one of the effective attenuation compensation
methods, which is stable and robust for phase correction while the amplitude
compensation factor increases exponentially as time and frequency increase,
leading to instability and noise sensitivity (Wang 2002,2003,2006; Zhang,
2007). Hargreaves and Calvert (1991) developed a fast inverse Q method which
is akin to Stolt’s wavenumber-frequency domain migration and can correct phase
distortion from velocity dispersion but amplitude compensation is neglected
because of its instability. Due to the instability of amplitude compensation,
Wang (2002,2003,2006) developed an amplitude gain-limited method and
stabilized inverse Q method that can compensate the amplitude and correct the
phase distortion simultaneously; An attenuation compensation algorithm in the
Gabor domain is developed to improve efficiency. When dealing with noisy
seismic data, the amplitude gain-limited method amplifies too much the noise
level, leading to instability; while the stabilized inverse Q method can correct
the phase distortion effectively, the amplitude is under compensated. Yan and
Liu (2009) applied a stabilized inverse Q-filtering method to multi-component
seismic data: shear wave Q values and primary wave Q values are extracted
from pre-stack converted wave gathers and primary gathers respectively,
achieving compensated pre-stack converted PS waves and PP waves whose
resolution is improved significantly. Zhao et al. (2012) developed a
time-frequency method which defines the S/N ratio in the time-frequency
domain and compensates the data whose S/N is greater than 1. This method
improves the seismic data resolution while not amplifying the noise level.
However all these methods need Q values as a prerequisite, and in order to
weaken the dependence on Q values, Braga and Morales (2013) implemented
inverse Q-filtering in the wavelet domain.

Due to instability or under-compensation of the amplitude compensation
in the inverse Q method, Zhang and Ulrych (2007) inverted the sparse
reflectivity series iteratively based on a least square error strategy and Bayes’
theorem, while still requiring Q values to correct phase distortion and the known
wavelet, or to extract a minimum phase wavelet from the seismic trace in order
to achieve the sparse reflectivity series. Wang (2011) developed a forward Q-
filtering formula which is based on the exploding reflector model and
Futterman’s attenuation model. Using regularization strategy and inverse theory,
compensated seismic data can be obtained by this method that avoids instability
or under compensation to some extent compared with traditional inverse Q
methods, but it still requires accurate Q values.

Margrave et al. (2003) generalized Wiener deconvolution, and developed
the Gabor deconvolution strategy; Margrave et al. (2011) estimated attenuation
spectrum and wavelet spectrum through hyperbolic smoothing over the Gabor
spectrum of seismic data, assuming that the spectrum of the reflectivity series
is white. Under the minimum phase assumption, an attenuation function and
wavelet can be achieved, then a high resolution reflectivity series may be
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obtained. Reine et al. (2009) analyzed the robustness of seismic attenuation
measurements using fixed and variable-window time-frequency transforms. A
variable-window time-frequency transform can reduce the uncertainty and bias
of the resulting attenuation estimate, resulting in higher precision.

Smoothing methods belong to the category of statistical methods and
different hyperbolic smoothing methods can lead to different accuracies in
attenuation spectrum estimation. Margrave et al. (2011) divided tf,, = tpafiax
into equal parts and obtain many hyperbolic stripes. When the number of
division is low, under sampling in the lower valued tf domain results in a larger
estimation error for attenuation function; increasing the division number can
reduce the estimation error but weakens its statistical reliability. In order to
overcome those defects, Li et al. (2013) developed hyperbolic smoothing with
a variable-step sampling method that can achieve a high accuracy attenuation
spectrum when the division number is small, while keeping statistical reliability.
Wu et al. (2011) and Sun et al. (2012) developed methods that estimate the
attenuation spectrum in the logarithmic spectrum using hyperbolic smoothing.

This paper combines the advantages of inverse Q-filtering, which neglects
the effect of the wavelet and just compensates attenuation, and that of Gabor
deconvolution method, which estimates the attenuation function through a
hyperbolic smoothing method in the Gabor domain. The procedures include: 1)
Extract the attenuation function by hyperbolic smoothing method in the Gabor
domain; 2) Use non-combination theory and an inverse strategy to restore the
effective frequency components of the compensated seismic data; 3) Perform an
inverse Fourier transform to obtain compensated seismic data. This method,
which does not need an accurate Q value, is stable and accurate compared with
traditional inverse Q methods; it is data driven and can be applied to different
data sets because it avoids the assumption of a minimum phase wavelet
compared to the Gabor deconvolution; it is also computationally efficient
because only the effective frequency components are calculated compared with
methods that need to calculate the whole seismic data series. Tests on synthetic
and real data confirm the validity of the proposed method.

METHOD
Non-stationary combination theory

Non-stationary combination formula in the mixed domain(Margrave,
1998) is as follows,

s = | alf,NSHedf )
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where s(7) is the attenuated seismic data, o(f,7) is a complex valued attenuation
function, S(f) is the spectrum of the original seismic data without attenuation,
e is the kernel of inverse Fourier transform. According to Gabor
deconvolution (Margrave et al., 2011), attenuation spectrum can be estimated
through hyperbolic smoothing over the Gabor spectrum of the attenuated seismic
data. The Gabor spectrum of the attenuated seismic data can be divided into
three parts, attenuation spectrum, spectrum of the stationary wavelet and the
spectrum of the reflectivity, shown as eq. (2),

S,(f,7) = af,)WER{E,7) , )

where S,(f,7), o(f,7), W(f) and R(f,7) are Gabor spectra of the attenuated
seismic data, the attenuation function, the stationary wavelet and the reflectivity
series, respectively. The attenuation function can be estimated through
hyperbolic smoothing over the Gabor spectrum of the attenuated seismic data,
under the minimum phase assumption for the attenuation function. Inserting the
attenuation function into eq. (1), we can restore the effective frequency
components of the compensated seismic data. The compensated seismic data can
be retrieved easily through an inverse Fourier transform.

Rewriting eq. (1) in matrix form,
s = Re(®S) , (3)

where s is the attenuated seismic data (real valued vector), ® is the complex
valued matrix that contains information about attenuation and the inverse Fourier
transform, S is the effective frequency components of the compensated seismic
data (complex valued vector). Transforming eq. (3) into a real valued equation,

d=Lm , 4)

where, d = s, L = [Re(®),—Im(®)], m = [Re(S);Im(S)]. Because of the
limitation of observed seismic data sets, band-limited seismic data and the effect
of noise, eq. (4) is ill-posed. Due to the smoothness of seismic data spectrum,
the functional is constructed as follows after adding smoothing constraints,

C(m) = |Lm — d|?> + u|Dm]? , (5)

where p is the regularization factor, and D is the differential operator that can
choose a unit operator, a first order differential operator or a second order
differential operator. The normal equation can be obtained through
differentiation with respect to m in eq. (5),

(L'L + uD™D)m = L'd . (6)
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Effective frequency components of the compensated seismic data can be
obtained by solving formula (6). Then the compensated seismic data is achieved
through an inverse Fourier transform. However, the complex valued attenuation
function «(f,7) is always unknown, and how to get the accurate attenuation
function is the key to attenuation compensation problems.

Estimation of the attenuation function
The theoretical formula of the attenuation function is as follows,
Ol(f,T) — e—(vrfr/Q)+iH(7rfr/Q) , (7)

where Q is the quality factor, H(®) is the Hilbert transform along the frequency
axis with the assumption of minimum phase. If the Q value is known, the
attenuation formula has an analytical form, but the accurate estimation of the Q
value is extremely difficult and its error will affect the precision of attenuation
compensation or even lead to deviation from real conditions. Therefore,
estimating the attenuation function directly can improve the precision of the
attenuation compensation.

According to the theoretical formula (7) of the attenuation function,
attenuation equates to the hyperbolic curve of tf = C, so the spectrum of the
attenuation function can be estimated through hyperbolic smoothing over the
Gabor spectrum of the attenuated seismic data with the assumption of a white
reflectivity series. Under the assumption of minimum phase, phase information
can be obtained through the Hilbert transform; then effective frequency
components of the compensated seismic data can be obtained by solving formula
(6); finally, compensated seismic data can be obtained through an inverse
Fourier transform. The algorithm is efficient and can reduce the effect of high
frequency noise to some extent compared with methods that solve the whole
frequency band of seismic data.

Different hyperbolic smoothing methods can result in estimated attenuation
functions of different accuracy. The traditional hyperbolic smoothing method
(Margrave et al., 2011) divides the whole domain into hyperbolic strips,
bounded by tf; = (i — 1)dtf, i = 2,...,N+1, tf, = 0, dtf = tfmax/N, shown as
Fig. 1.

Fig. 1(a) shows that the division method is under sampling in the lower
valued tf domain while the energy of seismic signal mainly focuses in this
domain. This under sampling may lead to an estimated attenuation function with
low accuracy. Increasing the division number can improve the precision to some
extent with the cost of weakening the statistical reliability because there are
fewer points in each strip, as shown in Fig. 1(b).
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Fig. 1. Bin division by traditional hyperbolic smoothing method (a) N = 10; (b) N = 30.

In order to overcome these defects of traditional hyperbolic smoothing,
Li et al. (2013) proposed a variable-step hyperbolic smoothing method. The
amplitude spectrum of theoretical attenuation function is A = exp(—tf/Q), and
the value of A lies in (0,1] when tf ranges in [0,tfmax]. Strip boundaries can be
determined as tf; = —log[(i — 1)dA](Q/7), i = 2,3,... and tf; = 0, through
dividing the energy intervals into equal parts dA = 1/N. We can take a constant
as an approximation to the unknown Q value because the estimated attenuation
function is insensitive to this Q value. This algorithm- divides the tf domain
according to its energy distribution and has its physical meaning. This avoids
the shortcomings of under sampling in the lower valued tf domain when the
division number is small compared with the traditional hyperbolic smoothing
method and keeps statistical reliability, as shown in Fig. 2.

After dividing the tf domain into N hyperbolic strips, we can obtain a

mean value estimation of the smooth, and central hyperbolic curve fflevel, in
each strip:

smooth, = mean{|S(7,H)|,(r,f) € Q} ,
tflevel, = 0.5(tf, + tf,,) ,
where (), is the k-th hyperbolic strip.

Assuming that a (t,f) point lies in the interval [tflevel,,tflevel, .,] where
iflevel, is the center of the k-th hyperbolic strip, whose spectrum has been
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obtained through hyperbolic smoothing in the latest step, then the spectrum in
the (t,f) point can be calculated through interpolation,

smooth(tf) = smooth, . |[(tf — tflevel)/(tflevel, ., — tflevel,)]

+ smooth[(tflevel, ., — th)/(tflevel, ., — tflevel)] . (8)

125
Frequency(Hz) Frequency(Hz)

(@) (b)

Fig. 2. Bin division by variable-step hyperbolic smoothing method (a) N = 10; (b) N = 30.

NUMERICAL EXAMPLES

The proposed method is a single channel processing method. In order to
verify the feasibility of this method, firstly, design synthetic seismic data
without and with attenuation using zero-phase or minimum phase wavelet and
reflectivity series based on non-stationary combination theory; secondly, based
on traditional and variable-step hyperbolic smoothing method to estimate
attenuation function; finally, using a non-stationary forward formula and inverse
theory, we can obtain the compensated seismic data. The consistency of the
compensated data with the seismic data without attenuation is judged to verify

the validity of this proposed method and then the method is applied in a real
case study.

Theoretical model analysis

A Ricker wavelet with a central frequency of 30 Hz, as shown in Fig.
3(a). Its amplitude spectrum is used to generate the corresponding minimum
phase wavelet by the Hilbert transform, as shown in Fig. 3(b). Synthetic seismic
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data and the corresponding compensation results using the proposed method
based on zero-phase and minimum-phase wavelets are shown in Figs. 4(a) and
4(b), respectively.
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Fig. 3. Theoretical wavelet(a) zero phase (b) minimum phase.
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Fig. 4. Synthetic records and the corresponding attenuation compensation results for a zero phase
wavelet (a) and a minimum-phase wavelet (b).
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Fig. 4(a) shows corresponding results based on a zero-phase wavelet
shown in Fig. 3(a). The first trace is the reflectivity series; the second trace is
the synthetic seismic data without attenuation based on the non-stationary
combination formula (1) (with the quality factor Q = o0); the third trace is the
attenuated seismic data based on the non-stationary combination formula (1)
(with a quality factor Q = 50). The latter indicates that with the increase of
travel time, the energy of the wavelet gradually decreases and the losses of high
frequency are relatively serious. The theoretical attenuation function spectrum
is shown in Fig. 5, indicating that with the increase of time and frequency, the
attenuation becomes more and more serious.

Time(s)

0 50 100 150 200 250
frequency{Hz)

Fig. 5. Theoretical spectrum of the attenuation function.

Performing a Gabor time-frequency transform over the attenuated seismic
records, i.e., the third trace of Fig. 4(a), we can obtain Gabor spectrum that can
be used to estimate the spectrum of the attenuation function by the hyperbolic
smoothing method. Phase information can be estimated through the Hilbert
transform under the assumption of minimum phase. Based on formula (6),
effective frequency components of the compensated seismic data can be restored
by inversion; finally, performing an inverse Fourier transform, the compensated
seismic data can be obtained. When the partition number is 10, 30, 50 or 100,
the estimated attenuation spectrum by the traditional hyperbolic smoothing
method is shown in Figs. 6(a) - 6(d), respectively. This shows that with an
increase in the partition number, the estimated attenuation spectrum is closer to
the theoretical attenuation spectrum (Fig. 5). However, more stripes lead to
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fewer points in each stripe that will weaken the statistical reliability. The
attenuation compensation results corresponding to Figs. 6(a) - 6(d) are shown
in 4th-7th traces of Fig. 4 indicating that with an increase in the division
number, the accuracy of the attenuation compensation gradually increases. Based
on the variable-step hyperbolic smoothing (N = 10), the estimated attenuation
spectrum is shown in Fig. 7. In this, the division number is less but it maintains
statistical reliability resulting in higher precision of the estimated attenuation
spectrum and an improved consistency with the theoretical attenuation model in
Fig. 5. When the partition number is 10, 20 or 30, the attenuation compensation
results are shown in the 8th-10th traces of Fig. 4, respectively. These all have
high precision and excellent consistency with the original seismic records
without attenuation. This demonstrates that variable-step hyperbolic smoothing
method is not sensitive to the partition number. The 4th-7th traces of Fig. 4
show that the compensation accuracy of the traditional hyperbolic smoothing
method (N = 10) is poorer when the partition number is lower, and with
increasing partition number, the accuracy of the compensation attenuation
gradually increases at the cost of reducing the statistical reliability to some
extent; the 8th-10th traces show that the variable-step hyperbolic smoothing
method can guarantee the statistical reliability as well as obtaining high precision
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Fig. 6. Estimated attenuation spectrum based on the traditional hyperbolic smoothing according to
different division numbers (a) 10, (b) 30, (c) 50, (d) 100.
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attenuation compensation results having a good consistency with the original
seismic record without attenuation, even when partition number is lower. Tests
on the synthetic seismogram with a zero phase wavelet demonstrate the validity
of the proposed method and that the variable-step hyperbolic smoothing is more
robust.

Tima(s)

0 50 100 150 200 250
frequency(Hz)

Fig. 7. Estimated attenuation spectrum based on the variable-step hyperbolic smoothing (N = 10).

After applying the traditional hyperbolic smoothing method and the
variable-step hyperbolic smoothing method combined with an inversion strategy
(the proposed method) to the synthetic seismic record using a minimum phase
wavelet, the result is similar to that with the zero phase wavelet synthetic
seismogram. The seismograms and the corresponding compensation results are
shown in Fig. 4(b); the first trace is the reflection coefficient series; the second
trace is the un-attenuated synthetic seismogram with a minimum phase wavelet;
the third trace is the seismic record with attenuation by non-stationary
combination formula (1) (with Q = 50); the 4th-7th traces are the attenuation
compensated seismic records by the traditional hyperbolic smoothing method
when the partition number is 10, 30, 50 and 100, respectively; and the 8th-10th
traces are the attenuation compensation results by the variable-step hyperbolic
smoothing method when the partition number is 10, 20 and 30, respectively.
This analysis illustrates that with an increasing partition number, the estimated
accuracy can be improved, while fewer sampled points within each stripe will
weaken statistical reliability for the traditional hyperbolic smoothing method.
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Fig. 8. Real data attenuation compensation before (a); after the traditional hyperbolic smoothing
method (b); after the variable-step hyperbolic smoothing method (c).
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On the other hand, the variable-step hyperbolic smoothing method can
guarantee statistical reliability and obtain an estimated attenuation function with
high precision with a low partition number. The compensation results through
this inversion strategy have a good consistency with the original seismic records
without attenuation that verifies the validity of this proposed method and that the
variable-step hyperbolic smoothing is more robust than the traditional hyperbolic
smoothing.

From the above discussions, the compensated seismic records by inversion
based on the variable-step hyperbolic smoothing method have high precision and
good consistency with the original seismic records without attenuation. The
proposed method only compensates for attenuation effect while not removing the
influence of the wavelet and leads itself to a data-driven method that can be
adaptive to various field data with wavelets of different phase.

Real data application

Due to heterogeneity and viscosity in the subsurface medium, the
amplitude of a seismic wave is attenuated and its phase is distorted as it
propagates. It is vital to improve seismic data resolution through attenuation
compensation method to enable reliable interpretation of deep strata. The
traditional inverse Q methods need a priori knowledge about the Q value and
this is always unstable for amplitude compensation; Gabor deconvolution does
not need an accurate Q value, but is based on the assumption of a minimum
phase wavelet, deviating from the real case to some extent; The proposed
method combines the advantages of the Gabor deconvolution method and the
inverse Q method, estimating an attenuation function in the Gabor domain and
just eliminating the attenuation effect. On the one hand, it ignores the effect of
the wavelet and can adapt to different seismic data sets; On the other hand, it
is based on inversion plus a regularization strategy and avoids instability or
under-compensation characteristic of the traditional inverse Q methods. A
synthetic seismic data experiment verified the validity of the proposed method,
next application to real seismic data is performed.

Fig. 8(a) shows post-stack seismic data from an oil field. There are 251
traces, 651 sampling points per trace, the time sampling interval is 2 ms, and
time range is between 0.5 s and 1.8 s. Fig. 8(a) shows that seismic energy is
attenuated and the phase is distorted as the wave propagates through the
subsurface, leading to a relatively difficult interpretation of the deep strata.
Firstly, using the traditional hyperbolic smoothing method and the variable-step
hyperbolic smoothing method (with a partition number of 10) to estimate the
attenuation spectrum from the Gabor spectrum of seismic records under the
minimum phase assumption, the phase information is obtained by the Hilbert
transform. Secondly, based on formula (6), the effective frequency components
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of the compensated seismic data can be restored. Finally, the compensated
seismic data can be obtained by an inverse Fourier transform, as shown in Figs.
8(b) and 8(c). The compensated seismic data has a balanced energy distribution
from shallow to deep. The deep seismic events become more continuous and
more easily recognized, and the phase distortion is corrected to some extent, all
of these infer that the seismic resolution is improved, especially in the places
indicated by black arrows and ellipses in the Figs. 8(b) and 8(c). The accuracy
of the variable-step hyperbolic smoothing method based on inversion is higher
than that of the traditional hyperbolic smoothing method. The normalized
average time-frequency spectra before and after compensation are shown in Fig.
9. After compensation, the seismic energy is relatively well balanced from
shallow to deep, and the compensation based on the variable-step hyperbolic
smoothing method is better. Real data application proves the validity of the

proposed method.
g —
"0 20 40 60 80 100 0 20 40 60 80 100 "0 20 40 e 80 100

Fraquency(Hz) Frequency{Hz) Frequency{Hz)

(a) (®) ©

Fig. 9. Time-frequency spectrum before compensation (a); after traditional hyperbolic smoothing
method(b); after the variable-step hyperbolic smoothing method.

CONCLUSIONS

Based on a non-stationary seismic model, we design a work flow to
improve seismic resolution for better interpretation. Firstly, estimates of the
attenuation function from the Gabor spectrum of attenuated seismic data by
hyperbolic smoothing method are made. Secondly, non-stationary combination
theory is used with a regularization strategy to retrieve the effective frequency
components of the compensated seismic data. Thirdly, the inverse Fourier
transform is applied to achieve the compensated seismic series. Due to ignoring
the wavelet effect, the method is adaptive to seismic data sets with wavelets of
arbitrary phase. On the other hand, it is based on inversion and does not require
a priori Q value, therefore it has high accuracy. Synthetic seismic data analysis
and real data analysis have verified the validity of the proposed method. Several
conclusions and suggestions for this research are as follows:
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