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ABSTRACT

Liu, Y., Zhang, J. and Hu, G., 2014. Variable step size-normalized 31gn gradient AVO inversion
algorithm. Journal of Seismic Exploration, 23: 265-278.

Pre-stack seismic inversion faces difficulties when applied to real seismic data because of
the existence of many types of noise. As we know, the /, norm minimization gives more robust
solutions than the [, norm does because it is less sensitive to spiky and high-amplitude noise. To take
advantage of /, norm and constraint on the deviation between two adjacent solutions, a variable step
size-normalized sign gradient algorithm (VSS-NSGA) is proposed to obtain a more rational inversion
result. By minimizing the /; norm of the error vector with a minimum disturbance constraint, the
proposed VSS-NSGA not only reduces the computational cost of the large scale seismic inversion
problems but also avoids the instability of the /, norm solution using the iteratively reweighted least
squares (IRLS) algorithm. Furthermore, the variable step size is introduced to overcome the
contradiction of the fast convergence rate and small steady-state error brought by fixed step size.
Synthetic tests demonstrate that the proposed VSS-NSGA algorithm out-performs the traditional
IRLS method in both convergence rate and steady-state error. The real data example shows the
validity of the proposed method for AVO inversion.

KEY WORDS: /; norm, spiky and high-amplitude noise, minimum disturbance constraint,
variable step size-normalized sign gradient algorithm (VSS-NSGA),
iteratively reweighted least squares (IRLS).
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INTRODUCTION

AVO inversion has been widely used as an effective approach of
carbon-hydrogen detection in the past few years (Riedel et al., 2003; Lavaud et
al., 1999; Sun et al., 2004; Zhang et al., 2013). Most of the seismic inversion
problems, including AVO inversion, can be formulated as an optimization
problem, where the goal is to find a model of subsurface that minimizes the
difference between the observed data and the modeled data (Li et al., 2012;
Saraswat and Sen, 2012).

The performance of the classic inversion methods, where the traditional
I, norm of the misfit is minimized based on the Gaussian assumption, tends to
deteriorate significantly when the observed data are corrupted by non-Gaussian
noise (Liu et al., 2007). As the /; norm shows less sensitivity to large
measurement errors, it yields far more stable inversion results than the
traditional /, norm does when handling certain types of errors (e.g., erratic data)
and noise distributions (e.g., non-Gaussian) that commonly occur in geophysical
applications (Claerbout and Muir, 1973; Chapman and Barrodale, 1983; Guitton
and Symes, 2003; Zou et al., 2006). Such insensitivity to large noise has a
statistical interpretation: robust /; norm is related to a long-tailed density
function, whereas /, norm is related to the short-tailed Gaussian density function
(Tarantola, 1987). However, the [, norm is singular where any residual
component vanishes, which leads to instability in numerical minimization
(Guitton and Symes, 2003). The iterative algorithm called IRLS has been used
to solve /; norm minimization problems (Gersztenkorn et al., 1986; Scales and
Gersztenkorn, 1988; Bube and Langan, 1997; Zhang et al., 2000; Ji, 2006),
which provides an easy way to compute than the traditional linear programming
techniques (Taylor et al., 1979). However, the IRLS algorithm is cumbersome
to use because users must specify numerical parameters with unclear physical
meanings (Li et al., 2010) and is time-consuming on updating the re-weighting
factors at each iteration in a large scale problem. Furthermore, it lacks of
stability because the /; norm-based IRLS method gives an infinite weight at the
zero point.

To take advantage of /; norm and constraint on deviation between two
adjacent solutions, we propose a novel objective function by minimizing the /;
norm of a posterior error vector with a minimum disturbance constraint on the
inversion parameters. The new constraint can ensure that the reflection
coefficient does not change dramatically and minimize the impact of singularities
to obtain a more stable solution. The proposed normalized sign gradient
algorithm (NSGA) only needs the sign of the iterative error in the updating
process without the need to calculate the weighting matrix as required by the
traditional IRLS algorithm; thus, it reduces the computational cost and is easier
to implement in large scale problems. However, the NSGA, with fixed step
size, leads to a contradiction between the convergence rate and the steady-state
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error. Therefore, a variable step-size normalized sign gradient algorithm
(VSS-NSGA) is proposed to improve the performance of both the convergence
rate and steady-state error.

The paper is broadly divided into two major sections. In the first section,
we give the detailed derivations of NSGA and VSS-NSGA in the AVO inverse
problem and simultaneously analyze the stable condition of the proposed
method. In the second section, we test the proposed VSS-NSGA using noisy
synthetic seismic data and field-based seismic data.

VSS-NSGA FOR THE AVO INVERSE PROBLEM

Without loss of generality, the forward model of the AVO inverse
problems can be described as a large-scale, ill-posed linear equation (Rodi and
Mackie, 2001):

d=Gm +n , ' (1)

where d denotes the observed data, n denotes the noise vector, m represents the
model vector to be estimated and G is the forward operator including both the
convolution and weak contrasts Aki-Richards approximation, which may be
ill-conditioned in general. Many different methods are used to find the optimum
solution for given data instead of solving the above equation directly. The
least-squares algorithm that minimizes the /, norm of the misfit is commonly
used with the assumption that the noise is consistent with a Gaussian
distribution. As the /; norm shows less sensitivity to large measurement errors,
it yields far more stable estimates of the earth parameters than the traditional /,
norm does. However, performing numerical minimizations of the /; norm is
difficult because it is singular where any residual component vanishes. The
IRLS algorithm provides an easy way to compute an /; solution, but it is
cumbersome to use. On the one hand, users must specify numerical parameters
with unclear physical meanings. On the other hand, it would result in a high
computational cost at each iteration and would require many iterations in large
scale problems. Furthermore, because the /, norm-based IRLS method gives an
infinite weight at any singular point, it lacks stability. In this paper, a novel
algorithm named VSS-NSGA is proposed for seismic inversion problems with
lower computational costs and greater stability.

NSGA for AVO inverse problem

Mathematically, the /, norm of the misfit function can be expressed as:

Jm) = [d - Gm]|, . @)



268 LIU, ZHANG & HU

Because the seismic inversion is always ill-posed, we usually add some
constraints to stabilize the solution. These constraints should not depend on the
data and can improve the stability of the AVO inversion. Due to the singularity
of the /;, norm, we introduce the /, norm constraint in the objective function:

min = |d — Gm|, . €)

myyy

Subject to | my,, — m,[3 < & , @
where m, is the estimated value at the k-th iteration, and § is a parameter that
ensures that m, does not change dramatically (Vega et al., 2010). We can also
view eq. (4) as the minimum disturbance constraint that controls the
convergence level of the algorithm and should be as small as possible. Using the
Lagrange multipliers method, the unconstrained cost function can be obtained
by combining egs. (3) and (4):

Jm,) = [d - Gm[, + B(|me,, - m} + 7 - &) , )
where § is the Lagrange multiplier, and v is a slack variable which converts the
optimization problems with inequality constraints to optimization problems with

equality constraints. The derivative of the cost function (5) with respect to the
vector m, ., is

dJ(my,,)/om,,,) = _GTSgn(ek+l) + 28(my,, — my) , (6)

where e,,; = (d — Gm,,,) and sgn(-) denotes the sign function. Setting eq. (6)
equal to zero, we obtain:

m,, — m, = (1/28)G"sgn(e,,,) . 0

Substituting eq. (7) into the constraint condition eq. (4) and selecting the equal
sign only, we obtain:

128 = V(6* — v))/\/{sgn"(e+)GG sgn(e,.)} - &

Substituting eq. (8) into eq. (7), the updated equation for the unknown
parameter is then:

m,, = my, + /(8 — v*) Gsgn(e,, )/’ {sgn"(e,,)GG"sgn(e,, )} . (9

Because the a posteriori error vector e, depends on m,,,, which is not
accessible before the current update, it is reasonable to approximate this vector
e, with the a priori error vector e,. /(5> — %) has a similar purpose as the
step-size parameter in conventional iterative algorithms; therefore, it can be
replaced by a step-size parameter p,. To avoid the instability caused by the ill-
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posed of forward model G, we add a small positive regularization parameter &
in the denominator. Then, eq. (9) can be rewritten as:

m,,, = m, + w[G sgn(e,,,)/~/{sgn"(e)GG"sgn(e,) + &} . (10)

Because y, comes from the minimum disturbance constraint 6, we should choose
0 < u <1 to ensure the stability of the algorithm and to achieve a small
steady-state error. Considering only the sign of the iterative error is needed in
the updating process and the denominator of eq. (10) can be seen as the
normalization of the molecules G"sgn(e,), the novel algorithm can be named as
a normalized sign gradient algorithm.

As shown in eq. (10), compared with the IRLS method, the proposed
NSGA only updates the sign operation of the error vector between the observed
and modeled data in each iteration, without calculating the weighting matrix.
Determining the weighting matrix is time-consuming and may bring instability
by infinite weighting at the zero point. Therefore, it is easier to implement than
the traditional IRLS method.

VSS-NSGA for AVO inverse problem

Although the proposed NSGA is more robust and easier to implement than
the traditional IRLS algorithm, the fixed step size u, will cause a conflict
between the convergence rate and steady-state error. A large step size will cause
a fast convergence but result in larger steady-state error; the results are reversed
when a small step size is used. Therefore, a variable step size algorithm is
proposed for the NSGA in this section to speed up the convergence rate and
lower the steady-state error simultaneously.

Let the model error vector i, ,; = m* — m,,, where m* is the optimal
solution that we expect to estimate. Then, by eq. (10), we have

m,,, = m, — p[G"sgn(e)]/~/{sgn"(e,)GG"sgn(e,) + M} . (11)

By taking the expectations after squaring both sides of (11), the update recursion
of mean-square deviation (MSD) is derived as

E[ | iy, |31 = EI | rin |3
— 2w E[sgn(ep)Grin/+/{sgn"(e)GG sgn(e,) + SM}] + pi . (12)
Using eq. (1), the error of the k-th iteration can be expressed as

ek=d_Gmk=Gm*+n_Gmk
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=Gm* —my) + n=Gm +n . (13)
Then,
Gy, = e —n . (14)
Eq. (12) can be rewritten as

E[

iy, |2 = E[| i ]2
— 2uEl | e || sgn(ed)nl//{sgn"(e) GG sgn(e,) + M} + pi (15)

Supposing that the iterative error e, is uncorrelated with the background
noise n, we obtain E[sgn(ef)n] = 0. Eq. (15) can be written as:

E[

|y, |31 = El] ]3]
— 2w E[ | e || /v{sen"(e)GG sgn(e,) + M} + i . (16)

Taking the derivative of the cost function (16) in respect to the step-size p, and
equating it to zero, we obtain the optimum solution of u,,

we = B[] el /v/{sen"(e)GG sgn(e,) + oM}] . 17

To improve the robustness of the algorithm, we propose that y, is to be
calculated recursively by time-averaging, as follows:

e = oy + (1—c)min((] e[| /v{sgn"(e)GG sgn(e) + SM}Lp—r) , (18)
where 0 < o < 1 is the smoothing factor.

Next, the Lyapunov stable condition is employed to guarantee the stability
of the proposed VSS-NSGA (Tanaka and Sugeno, 1992). The Lyapunov
theorem is defined as an energy-like Lyapunov function, and the theorem states
that the system is asymptotically stable when the Lyapunov function is
convergent.

Based on eq. (16), the VSS-NSGA will satisfy the Lyapunov stable
condition E[ ||t [|2] < E[| iy |}2] when and only when

0 < p < 2E[| e /+/{sgn"(e)GG sgn(e,) + SM}] . (19)

Considering eq. (18), it is obvious that
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0 < u < pr < 2E[| e /+/{sen"(e)GG sgn(e,) + oM}], 0 < o < 1(20)
which satisfies the Lyapunov stable condition.

In conclusion, the VSS-NSGA for AVO inversion can be concluded in Table 1.

Table 1. Pseudo-code for VSS-NSGA.

Input: seismic data d, forward model G
Output: to be estimated earth parameters m

Initialization: the initial point m,, the initial step-size y,, the termination
condition n and a small positive regularization parameter &

while [e,, — e, "% <17, do
e, =d — Gm,,

g = G'sgn(ey),

P = oy + (l—a)min( " € " A " gk"22 + 5M}’l‘k—1),

m,, = my, + pfg/V{ "gk"% + dM}],

end while

APPLICATION TO AVO INVERSION

In this section, we test our algorithm using the noisy synthetic data and
the field data. Our goal is to demonstrate that the proposed VSS-NSGA provides
a more robust estimate of the model parameters with lower computational costs
when the data are contaminated by impulse noise and has the feasibility of usage
in the seismic inversion.

Synthetic data examples

To assess the performance of the proposed algorithm, the time series
reflectivity is constructed from the P-wave velocity, S-wave velocity and density
shown in Figs. 1(a)-1(c). Then, the synthetic data are generated by convolving
the reflectivity series with a 40 Hz Ricker wavelet. The generated synthetic data
are shown in Fig. 1(d). The data consists of 60 traces with angles ranging from
0° to 32.56° and depths from approximately 5800 to 6500 m.
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Fig. 1. The real logging data and the corresponding synthetic seismic data.

Fig. 2 shows the "contaminated" CMP gather that is strongly affected by
a strong Bernoulli-Gaussian interference signal with a signal to noise ratio
(SNR) of five and Pr = 0.05. The Bernoulli-Gaussian (BG) distribution here is
used for modeling the interference signal. This signal is generated as the product
of a Bernoulli process and a Gaussian process such that n(k) = B(k)G(k), where

Angle(°)
0 7.90 12.83 17.76 22.69 27.62 32.56

Time (ms)

Fig. 2. The "contaminated" synthetic data affected by a strong Bernoulli-Gaussian interference signal
with SIR = 5 and Pr = 0.05.
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G(k) is a white Gaussian random sequence with a mean of zero and variance &2,
and B(k) is a Bernoulli process with the probability mass function given as P(B)
=1 — Prfor B = 0, and P(B) = Pr for B = 1, where Pr is a probability that
satisfies values of 0 < Pr < 1. The average power of a BG process is Pr-&..
Keeping the average power constant, a BG process is spikier when Pr is
smaller. It reduces to a Gaussian process when Pr = 1.

Fig. 3 shows the corresponding inversion results of the IRLS, NSGA with
p = 0.1, NSGA with p = 0.05 and the proposed VSS-NSGA with initial
step-size p, = 0.1. The true models are shown in blue, the initial models that
are obtained by a 30 Hz low-pass filter of the true models are shown in green,

5800 2 5800 & 5800, i 5800 s 5800 . 5800 9
mﬂ[ mﬂ[ 5900 r 5900 5900 mﬂl
6000 6000 6000} 6000 6000 6000
g 6100 6100 €100 6100 6100 6100
2 6200 6200} 62001 6200 6200 6200}
6300 6300 6300 6300 6300 6300
6400 6400 6400 6400 6400 6400
%meo ssozooowom smz 25 3 “oﬁ%maoﬂ “oz%omao mz 25 3
Vpl(mis) Vsi(mis) Densityl(g.cmi’) Vpl(mis) Vsl(m/s) Densityl(g.cmi”)
———True model ~— initial model inverted results
- (9 o (h) o U] 5800 [0} - (k) — ()
5900 mﬂ[ 3900[ r 5900 5900 5900 ;
6000 6000 6000 6000 6000 6000}
g 6100 6100 6100 6100 6100 6100
£ 6200 6200} 6200 6200 6200 6200
6300 6300 6300} 6300 6300 6300}
6400 6400 6400 6400 6400 6400
®%boosoooro00  **Foomooosooe %2 25 3 “Uocecoraoo  **Fomooossco %2 25 3
Vpl(m/s) Vs/(mis) Densityl/(g.cmi?) Vpl(m/s) Vsl(mis) Density/(g.cmi”)

Fig. 3. The inversion results of the noisy synthetic data. (a)-(c) is retrieved by the IRLS algorithm,
(d)-(f) is retrieved by the proposed NSGA with u = 0.1, (g)-(i) is retrieved by the proposed NSGA
with u = 0.05, and (j)-()) is retrieved by the proposed VSS-NSGA. The red bold line is the inverse
result, the green line is the initial model, and the blue bold line is the true model.
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and the inverted results are shown in red. We can see that the inversion results
of the proposed NSGA and VSS-NSGA are both similar with the truth, whereas
the traditional IRLS algorithm can hardly return a reliable inversion result. Fig.
4 shows the difference between the input data and the predicted data that shows
the degree of data fitting. Fig. 5 shows the convergence comparison of these
methods. Fig. 4 indicates that the VSS-NSGA results in the best degree of the
data fitting. The NSGA with u = 0.05 also reveals a similar degree of data
fitting, although it is slower than the VSS-NSGA, as is shown in Fig. 5 (the
vertical axis represents the mean square error). The convergence curves also
indicate that the proposed VSS-NSGA bears two advantages, faster convergence
speed and lower steady error than conventional IRLS algorithm, as well as the
fixed step-size NSGA.

To compare the execution efficiency of the IRLS, NSGA and VSS-NSGA,
CPU time is used as an index of complexity, although it gives only a rough
estimation of complexity. Our simulations are performed in a MATLAB 7.11.0
environment using an AMD Athlon (tm) 64 X2 Dual Core Processor 4400+,
2.3-GHz processor with 2-GB of memory on a Microsoft Windows XP
operating system. The final average CPU times (of total ten times, in seconds)
are listed in Table 2. p, is the initial value of the step-size of the VSS-NSGA.

It can be seen that the proposed NSGA and VSS-NSGA are much faster than the
traditional IRLS method.
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Fig. 4. The difference between the input data (with outliers) and the predicted data using (a) IRLS

algorithm, (b) NSGA with u = 0.1, (c) NSGA with u = 0.05, and (d) the proposed VSS-NSGA,
respectively.
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Fig. 5. The convergence performances comparison of the IRLS algorithm, NSGA with p = 0.1,
NSGA with p = 0.05 and VSS-NSGA in the Bernoulli-Gaussian interference.

Table 2. CPU time comparison of the IRLS, NSGA and VSS-NSGA.

Algorithms Average CPU times (in seconds)
IRLS 19.49

NSGA (p = 0.1) 4.90

NSGA (p = 0.05) 4.89

VSS-NSGA (g, = 0.05) 5.13

Field data example

We now test our algorithm with a field data example. As the reef
reservoirs in Western China are usually deeply buried (approximately 6000-7500
m underground), it is difficult to have high amplitude fidelity of seismic signals.
Because of the complex acquisition conditions and the disorder reflection
characteristics of the reef reservoir, the SNR of the seismic data is very low,
especially of the pre-stack seismic data. The low SNR of the seismic data is one
of the main factors that hinder reservoir prediction. Fig. 6 is the actual stack
section of a reef reservoir in a work area in western China, where there is a
drilling well in the 1060-th CMP and a reef reservoir at 2.43 seconds, 6100 m,
with daily gas production of 500 10° m?.
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Fig. 6. The stack section of real seismic data.

We obtain the wavelet and the background model using the commercial
software "Deliver". Fig. 7 is the P-wave velocity profile, S-wave velocity
profile, density profile and Poisson’s ratio profile retrieved using the proposed
algorithm. We can clearly see that the Poisson’s ratio of the reef reservoir is
lower than the Poisson’s ratio (the rectangle highlight areas) of the surrounding
rock that agree well with the drilling results. Therefore, the proposed inverse
algorithm for AVO inversion is feasible using in the real seismic data.

CONCLUSION

Because geophysical inverse problems are often ill-posed and sensitive to
noise, /; norm shows considerably less sensitivity to outliers and yields far more
stable model estimations than the classical least-squares (/, norm) method.
However, the singularity of the /; norm leads to instability of IRLS solution in
numerical minimization. A novel inversion algorithm called the VSS-NSGA is
proposed in this paper. The proposed algorithm is obtained by minimizing the
[, norm of the a posteriori error vector with a minimum disturbance constraint,
ensuring that the two adjacent solutions do not change greatly. Compared with
the conventional /; norm-based IRLS inversion algorithm, the VSS-NSGA
reduces computational complexity and averts the instability brought by infinite
weighting at the zero point. Furthermore, the variable step size leads to a faster
convergence rate and a smaller steady-state error than those of fixed step size.
Synthetic and field seismic data tests show that the proposed VSS-NSGA
performs better than the conventional /; norm-based IRLS algorithm in both the
robustness and the convergence performance.
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Fig. 7. Inversion results of (a) P-wave velocity, (b) S-wave velocity, (c) density and (d) Poisson’s
ratio. The rectangle highlights the reef reservoir in this work area.
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