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ABSTRACT

Choi, S., Min, D.-]J., Oh, J.-W., Chung, W., Ha, W. and Shin, C., 2014. Frequency-domain
acoustic and elastic modeling and waveform inversion in the logarithmic grid set. Journal of Seismic
Exploration, 23: 103-130.

One of the factors influencing the accuracy of the seismic modeling is the boundary
condition. Several boundary conditions have been developed and have their own advantages and
disadvantages. One possible method to perfectly remove edge reflections is to extend the dimension
of a given model so that the edge reflections cannot be recorded within the recording duration. To
make this idea feasible without increasing computational costs, we propose acoustic and elastic
modeling algorithms performed in the logarithmic grid set, where grid size increases logarithmically
from the middle of model surface. This method has an advantage to reduce the number of grids by
the property of logarithmic scale. For acoustic and elastic wave modeling in the logarithmic grid set,
the wave equations are first converted from the uniform scale to the logarithm scale. Then we apply
the conventional node-based finite-difference method for the acoustic case and the cell-based
finite-difference method for the elastic case. Numerical examples show that the new modeling
algorithms yield solutions comparable to those of the conventional modeling algorithm, although they
can suffer from numerical dispersion when the source is located in the coarse grids (far from the
origin). Inversion results for the simple layered model and the modified version of the Marmousi-2
model show that the logarithmic inversion algorithms provide results comparable to those obtained
by the conventional inversion achieving computational efficiency when the recording duration is not
too long and the influence of numerical dispersion is almost negligible in the inversion. We expect
that computational efficiency achieved by the logarithmic grid set would be greater in 3D than in 2D.
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INTRODUCTION

Seismic modeling, which is a useful tool to describe seismic wave
propagation in subsurface media, is also used in seismic inversion and
migration. Since seismic modeling is iteratively conducted in seismic inversion
and migration, the accuracy and efficiency of seismic inversion and migration
depend largely on those of seismic modeling.

Seismic modeling has mainly been performed using the discrete methods
such as finite-difference and finite-element methods, where boundary conditions
are necessary to suppress the edge reflections arising from finite-sized models
unlike real media. Several boundary conditions have been developed. Reynolds
(1978), Clayton and Engquist (1977) and Higdon (1991) applied one-way wave
equations so that incoming waves cannot be generated and only outgoing waves
can propagate through boundaries. Cerjan et al. (1985) and Shin (1995) defined
damping areas surrounding a given model, where amplitudes of waves gradually
decrease. The perfectly matched layer method (Collino and Tsogka, 2001)
eliminates edge reflections in a similar way. These damping methods increase
computational costs due to the additional damping areas. However, even though
we apply the aforementioned boundary conditions, edge reflections are not
perfectly removed. In order not to suffer from edge reflections, we may want
to extend the given model so that edge reflections cannot return to receivers
within the recording duration. In that case, however, we need a lot of

computational efforts. To alleviate computational overburden, the variable grid
sets are necessary.

In seismic modeling using the finite-difference or finite-element methods,
grid sizes are determined by the maximum frequency and the minimum velocity
of given models to minimize numerical dispersions of waves for the entire
model as well as by the ability to represent discontinuous structure. In general,
as waves propagate through subsurface media, low-frequency components
become dominant. In addition, velocities are usually higher in the deeper part
than in the shallow part. As a result, grid sizes suitable for low velocity regions
near source points may be redundant for regions far from source positions.
Based on this feature, non-uniform grid sets have been proposed to reduce
computational costs. Moczo (1989) introduced irregular grids whose size is
horizontally constant but vertically varying for SH-waves in 2D heterogeneous
media. Jastram and Tessmer (1994) used discontinuous grids where the
horizontal spacing changes abruptly and vertical spacing becomes gradually
coarser on a staggered grid set. Ha and Shin (2012) proposed efficient modeling
and inversion techniques using an axis transformation in the Laplace domain.

In this study, we propose a new grid set called ‘logarithmic grid set’,
where grid spacing increases logarithmically with distance from the middle of
the surface of a given model and apply it in modeling and inversion algorithms.
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Using the logarithmic grid set, we can make edge reflections not recorded
within the total recording time, which allows us to efficiently obtain
edge-reflection-free modeling results without applying any absorbing or damping
boundary condition. In the following sections, we first introduce how the
acoustic and elastic wave equations and the source positions in the uniform grid
set can be transformed into the logarithmic grid. Next, we verify the modeling
operators composed in the logarithmic grid set by comparing them with those
composed in the conventional grid set and then apply it to the acoustic and
elastic waveform inversion. For waveform inversion, we apply the gradient
method based on the adjoint state of modeling operator (e.g., Lailly, 1983;
Tarantola, 1984; Pratt et al., 1998) and use the pseudo-Hessian matrix to scale
the gradient (Shin et al., 2001). The modeling and inversion algorithms are
applied to a simple layered model and a modified version of the Marmousi-2
model (Martin et al., 2006).

ACOUSTIC WAVE EQUATIONS ON THE LOGARITHMIC SCALE

For 2D heterogeneous isotropic media, acoustic wave equation in the
frequency domain can be expressed by

—(w?/c?)p = (0%p/0x?) + (0%p/dz?) + 6(x — x)86(z — z)f , €))
where w is the angular frequency, c(x,z) is the velocity, p(x,z,w) is the
Fourier-transformed pressure, and f is the source wavelet, respectively. 6(x —x,)

and 6(z — z,) are delta functions locating the source in (X, z,).

To obtain the wave equation on the logarithmic scale, we use the
relationship shown in Fig. 1, which can be expressed as follows

x = gx) = sgn(x)log[1 + xsgn(x)/x,] , )
{ = h(z) = sgn(@)log[1 + zsgn(z)/z,] , ?3)
where X, and z, are constants with dimension of distance.

According to the relationships, the differential operators can be changed into

dp/dx = [e *E"W/x ]1(dp/dx). , )
ap/dz = [e~5e"@/z|(3p/d}) ®)
O’plax® = [e™ = /xf][(8°p/dx?) — sgn(x)(@p/dx)] , (6)

Oploz* = [e*="/7][(3p/ag*) — sgn(z)(dp/d)] - )
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Fig. 1 Diagram showing the relationship between the conventional grid and the logarithmic grid.

The source position can be changed by the intrinsic property of delta
function on the logarithmic scale as (Roach, 1982)

8871001 = 8(x — xo)/ |87 (xs)| = 8(x — x9)/e™*¥'® ®
S'(O) = 8k =t/ |h ()| = 8 — g™ ©)

Substituting eqs. (6) - (9) into eq. (1) gives the 2D acoustic wave
equations on the logarithmic scale as follows

—(w?/cA)p = (e @/xH[(8°p/dx*) — sgn(z)(dp/dx)]
+ (e7@/Z)[(8%p/a®) — sgn(z)(Ap/dY)]

+ [0 — x)/eEFPNB(F — fo)le @ f (10)
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ELASTIC WAVE EQUATIONS ON THE LOGARITHMIC SCALE

For 2D heterogeneous isotropic media, the elastic wave equations can be
expressed in the frequency domain by

—w?pu = (3/0x)[(N + 2u)(du/0x) + N(0v/0z)]

+ (8/0z){u[(dv/3x) + (du/dz)]}

+ 0(x — Xg)0(z — zo)f, , 11)
—w?pv = (3/0x)[(N + 2u)(dv/0z) + N(Au/dx)]

+ (8/3x){ul(du/dz) + (av/3x)]}

+ 6(x — x9)0(z — zo)f, , (12)
where u(x,z,w) and v(X,z,w) are the Fourier-transformed horizontal and vertical
displacements, respectively, p(x,z) is the density, N(x,z) and u(x,z) are the
Lamé constants for isotropic media, and f, and f, are the horizontal and vertical

forces, respectively.

According to egs. (2) and (3), the differential operators in egs. (11) and
(12) can be expressed on the logarithmic scale as

(3/8%)[k(0u/dx)]

= (e 0/x){(du/ax)[k(0u/dx)] — sgn()[k@w/dx)l} ,  (13)

(8/02)[k(8u/dz)]

= (e7@/z)){(8u/d$)[k(du/d9)] — sgn(z)[k(Bu/dD)]} , (14)
(8/9%)[k(du/dz)]

= (e ety 70du/dx)[k(@u/d9)] (15)
(8/32)[k(3u/3x)]

= (7P PRy 20)Bu/d[k(BU/3Y)] (16)

where k represents Lamé constants N\, u or A+2pu.

Substituting egs. (8), (9) and (13) - (16) into eqs. (11) and (12) gives the
2D elastic wave equations in the logarithm-scaled coordinate, as follows



108 CHOI, MIN, OH, CHUNG, HA & SHIN

—wrpu = (e XEW/x)(0/3x)[(\ + 2u)(du/dx)]
— sgn(x)(e™*W/x(\ + 2p)(8u/dx)
+ (e EW ey 7 (3/8%)[NBV/8P)]
+ (eTxEn0 R x,70)(8/0 ) [1(3V/3X)]
+ (€7@ 2)(3/08)[m(du/df)]
— sgn(z)(e " @/Z)u(0u/¢)

+ [6(x — xo)/e NS — fre @ ], an

—w?pv = (e7D/Z)(0/00)(N + 2u)(0v/39)]
— sgn(x)(e " @/z)(N + 2u)(3v/0%)
+ (e7xe-Isen@yyx 7)(8/8§)[N(u/dx)]
+ (e7eE W=y x,7)(8/9x) [n(0u/d9)]
+ (e W/x3)(3/9x)[w(dv/ax)]
— sgn(x)(e ™" /xg)u(0v/dx)

+ [60¢ — x9)/e B O N[5 — §le #@ ] 18)

MODELING AND INVERSION ALGORITHMS ON THE LOGARITHMIC
SCALE

Modeling

For acoustic modeling, we need to discretize the modified acoustic wave
equations, i.e., eq. (10). We adopt the conventional finite-difference method for
acoustic modeling. For elastic modeling, we also use the finite-difference
method that only uses displacements rather than the staggered grid methods. In
order to properly describe the stress-free boundary conditions at the free
surface, we employ the cell-based finite-difference method (Min et al., 2004),
where material properties are defined within the area rather than at the nodes.
We do not apply any boundary conditions to remove edge reflections. In both
acoustic and elastic forward modelling for a wave equation in the frequency
domain, the difference equation can be written in a matrix form as
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Su=f, 19)

where S is the complex impedance, and u and f are the displacement and source
vectors, respectively.

Inversion

For acoustic and elastic waveform inversion, we build objective functions
based on the /,-norm of residuals between model responses and observed data,
and minimize the objective function using the gradient method. For simplicity,
if we consider the monochromatic data recorded for one shot, the objective
function can be expressed as

E=%|u-4d| , 20)

where u and d are the model responses and observed data, respectively. The
gradient direction can be obtained by taking partial derivatives of eq. (20) with

respect to the parameters. The gradient with respect to the kth parameter can be
written by

0E/0m, = Re{(du/dm)"(u — d)*} , (21)
where the superscripts T and * indicate the transpose and the complex
conjugate, respectively. The partial derivative wavefield can be computed from
the matrix equation [eq. (19)] for forward modeling. Takmg eq. (19) with
respect to the kth model parameter yields

S(@u/dm,) = —(8S/0m)u = f® | (22)

du/dm, = ST | (23)

where f{* is the virtual source vector for the k-th parameter. Substituting eq.
(23) into eq. (21) gives

0E/om, = Re{[fI"(S™)"(u — d)*} . 24)
For the entire model parameter, the gradient can be rewritten by

0E/om = Re{(F,)"(S™HT(u — d)*} , (25)
where m is the model parameter vector, and F, is the virtual source matrix.

Note that S is asymmetric in the logarithmic grid set unlike in the conventional
grid set, which gives different solutions when we switch source and receiver
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positions to check the reciprocity theorem. While the phase of solution is the
same, the amplitude is scaled by the scaling factors for source positions
expressed in egs. (8) and (9). Because (S™!)T means that the source and receiver
positions are switched, the scaling factors in eqs. (8) and (9), which are
supposed to be applied to source positions, should be applied to solutions at
receivers to compute (S™")T(u — d)*. This process does not require additional
computing memory.

To obtain the gradient for all the sources and frequencies, the gradients
for one source and one frequency, eq. (24), are summed and scaled over shots
and frequencies as follows (Ha et al., 2009),

VE = NRM{ ), (NRM[{ ¥ diag(F"F}) + 8I}~'[ ), (BE/6m)]])} , (24)
f s s

where I is the identity matrix, s and f indicate source and frequency,
respectively, and NRM indicates the normalization operator. Gradient is scaled
by the diagonal of the pseudo-Hessian matrix (Shin et al., 2001), which is
computed by the square of virtual source matrix (F'F,). To avoid the
ill-condition or singularity of the pseudo-Hessian matrix, the damping factor 8
is added to the diagonal elements. Next, the gradient vector at each frequency
is normalized with its largest absolute value and summed over all frequencies.
This resultant gradient is normalized once again.

We also apply the modified version (Ha et al., 2009) of the conjugate
gradient method (Fletcher and Reeves, 1964). The conjugate gradient direction
g is obtained by

g® = —VEO | (25)

g” = —VE® + {[(VE®)TVE®]/[(VE®~")TVEC-D]INRM[g" " , (26)
where the superscript (n) is the iteration number. The normalized conjugate
gradient direction obtained in the previous iteration is used to compute the
conjugate gradient direction at the present iteration. Consequently, the model
parameter vector is updated by

meth = m® + ag(ﬂ) , (27)

where « is the step length.
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NUMERICAL EXAMPLES

The modeling and inversion algorithms composed on the logarithmic scale
are demonstrated for the modified version of the Marmousi-2 model. The model
on the uniform scale is shown in Fig. 2a, and Fig. 2b shows the model on the
logarithmic scale. The modified version of the Marmousi-2 model is obtained
removing the water layer and the parts of the left- and right-hand sides. The
dimension of the modified version is 9 km in width and 3.02 km in depth.
Poisson’s ratio and density are fixed at 0.25 and 2 g/cm?®, respectively.
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Fig. 2. P-wave velocity models for the modified version of Marmousi-2 model on the (a)
conventional uniform and (b) logarithmic scales.
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Fig. 3. Synthetic seismograms of pressure obtained in the conventional grid set (a), converted
through interpolation from the conventional to the logarithmic grid set (b) and obtained in the
logarithmic grid set (c).
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Modeling results

We first verify the modeling results obtained in the logarithmic grid set
by comparing them with those obtained in the conventional grid set.
Particularly, the accuracy of the new elastic modelling algorithm was
demonstrated for Lamb’s problem in Appendix A. In the logarithmic grid set,
because of the nature of the logarithmic scale, the same-sized model can be
simulated with fewer grid points than in the conventional grid set. Therefore,
it is easy to extend the given model so that edge reflections cannot be recorded
at receivers within the recording duration. For the conventional grid set, the
PML boundary condition is applied to remove edge reflections, whereas in the
logarithmic grid set, we do not use any boundary conditions but extend the
model for boundary areas. In both the conventional and logarithmic grid sets,
we use 50 additional grids for boundary areas. Grid size is 10 m for acoustic
wave modeling and 5 m for elastic wave modeling. When grid space is 10 m,
the total number of grids is 1001 in width and 353 in depth in the conventional
grid set, whereas the number of grids is 441 in width and 190 in depth in the
logarithmic grid set. In elastic case, the total number of grids is 1901 by 657 in
the conventional grid set, whereas the number of grids is 783 by 330 in the
logarithmic grid set. For source wavelet, the first derivative of the Gaussian
function whose maximum frequency is 10 Hz is used and the maximum
recording time is 4 s. Fig. 3 shows seismograms of pressure in the conventional
and logarithmic grid sets. In Fig. 4, we compare single traces obtained in both
grid sets with each other. In Figs. 5 and 6, we display elastic modeling results.
These results demonstrate that the modeling results obtained in the logarithmic
grid set are compatible with those obtained in the conventional grid set and the
interpolation is properly applied.

& \ 2" A
3 os H ﬂ. A Z os i !‘;
- \ ] A = 1 A
8 o —— LAl AN~ § 0 AM A A
- W ;'u"-“‘r ¥ =] U TR 11‘.{ ‘k,‘
ﬁ-lu “ 1“ \: ] 0.5 v
-4 1! £
M a ! Pa:
0 1 2 3 4 0 1 2 3 4
Time(s) Time(s)

Fig. 4. Comparison of traces extracted at distances of 3.15 km and 5.85 km of the seismograms for
pressure (Fig. 3) obtained in the conventional (solid line) and logarithmic (dashed line) grid sets.
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Fig. 5. Synthetic seismograms of horizontal (left) and vertical (right) displacements obtained in the
conventional grid set (a, b), converted through interpolation from the conventional to the logarithmic

grid set (c, d) and obtained in the logarithmic grid set (e, f).
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Fig. 6. Comparison of traces extracted at distances of 3.15 km, 4.5 km and 5.85 km of the
seismograms for horizontal (left) and vertical (right) displacements (Fig. 5) obtained in the
conventional (solid line) and logarithmic (dashed line) grid sets.

Inversion results

We perform the acoustic waveform inversion in the logarithmic grid set.
We first use the simple model shown in Fig. 7a, where the high-velocity layer
exists in the middle of the model. The dimension of the model is 4 km by 2 km.
We apply the inversion algorithms in the conventional and logarithmic grid sets
to the same synthetic data generated in the conventional grid set with PML
boundary condition. The maximum recording time is 3 s. We assume that 399
shot gathers are acquired with the interval of 10 m for field data. For the
inversion in the logarithmic grid set, the field data should be transformed to the
logarithmic grid set through interpolation. For initial guesses, the linearly
increasing velocity model (1.5 < 4.5 km/s) is used for the conventional
method, whereas the exponentially increasing velocity model is employed for
the logarithmic inversion.
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Fig. 7. (a) True simple layered velocity model and inversion results obtained at the 200th iteration
by using the (b) conventional and (c) logarithmic grid sets. For comparison, the logarithmic
inversion result (c) is converted to the conventional grid set in (d).

Figs. 7b and 7c show the models inverted at the 200th iteration in the
conventional and logarithmic grid sets. For comparison, the model inverted in
the logarithmic grid set is converted to the conventional grid set through
interpolation (Fig. 7d). In Fig. 7, we observe that the logarithmic inversion
yields results comparable to those obtained by the conventional inversion. In
Fig. 8, we display depth profiles extracted in the middle of the inverted velocity
models of Figs. 7b and 7d as well as the true velocity model. Fig. 8 shows that
both the conventional and logarithmic inversion algorithms give reliable
solutions. However, the resolution of the logarithmic inversion is not as good
as that of the conventional inversion for deeper part, which may be because of
the logarithmically increasing grid interval in the logarithmic grid set.

We proceed to perform the inversion for the synthetic data generated in
the conventional grid set for the modified version of the Marmousi-2 model
(Fig. 2a) for both acoustic and elastic cases. We apply both the conventional and
logarithmic inversion algorithms to the same synthetic data generated in the
conventional grid set with PML boundary condition.
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Fig. 8. Depth profiles at the center of the true velocity model (solid line) and the inverted velocity
models generated in the conventional (dotted line) and logarithmic (dashed line) grid sets.

For acoustic waveform inversion, the maximum recording time is 4 s. We
assume that 899 shot gathers are acquired with the interval of 10 m for field
data. For the inversion in the logarithmic grid set, the field data should be
transformed to the logarithmic grid set through interpolation. Figs. 9a and 9b
show models inverted at the 200th iteration using the conventional and
logarithmic grid sets, respectively. For comparison, we also convert the model
inverted in the logarithmic grid set to the conventional grid set through
interpolation. Fig. 10 shows depth profiles extracted from the inverted velocity
models of Figs. 9a and 9c as well as the true velocity model. In Fig. 10, it is
observed that velocities inverted by using the conventional and logarithmic grid
sets are compatible with the true velocities. :

We compare the computing time required to perform acoustic waveform
inversion in the conventional and logarithmic grid sets. Table 1 shows CPU
times taken to iterate inversion process 200 times for the simple layered model
and the Marmousi-2 model using 20 Intel Xeon E5640 2.66 GHz CPUs on the
Linux-cluster machine. This indicates that it is more efficient to use the
logarithmic grid, because we can reduce the number of grids.

Table 1. CPU times required to perform the acoustic inversion for the simple layered model and the
Marmousi-2 model for 200th iteration.

Model Conventional grid set Logarithmic grid set Ratio (C/L)
Simple layered model 18330.65815 6323.366236 2.9

Marmousi-2 model 112242.7616 22074.23556 5.1
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Fig. 9. Inversion results obtained at the 200th iteration by using the (a) conventional and (b)
logarithmic grid sets. For comparison, the logarithmic inversion result (b) is converted to the
conventional grid set in (c).
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Fig. 10. Depth profiles at distances of (a) 4.5 km and (b) 6 km of the true velocity model (solid line)
and the inverted velocity models generated in the conventional (dotted line) and logarithmic (dashed
line) grid sets.

However, when the recording time increases, the boundary area of the
model should also increase. If the recording duration is too long compared to
the model dimension, the logarithmic inversion becomes less efficient than the
conventional inversion. We may conclude that the efficiency of the waveform
inversion in the logarithmic grid set is dependent on the recording time.
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For the elastic waveform inversion, the maximum recording time is 5 s
and we use 898 shot gathers for field data. In the elastic case, the frequency
marching method (Bunks et al., 1995) is also employed over 5 stages: 0.2 ~
2 Hz, 02 ~ 4 Hz, 0.2 ~ 6 Hz, 0.2 ~ 8 Hz, 0.2 ~ 10 Hz. For each
frequency group, the inversion process is repeated for 30 iterations. Fig. 11a
shows the inverted model for P-wave velocity in the logarithmic set. Through
interpolation, the inverted model on the logarithm scale is converted to the
conventional grid set (Fig. 11b). Fig. 12 shows depth profiles extracted from
the true and inverted P-wave velocity models for quantitative comparison. Figs.
11b and 12 indicate that inversion results obtained by the new elastic waveform
inversion method are comparable to true values.

(a)
Distance (km)
2.0 4.0 6.0 8.0
4.7
—_ 39 <
z :
‘E-' a1 E
=5 5
A 23
15

Distance (km)
2.0 4.0 6.0 8.0

o
o

‘g =
Z ]
s 31 %-
= 3
2 Fa™
15

Fig. 11. (a) P-wave velocity models inverted at the 200th iteration in the logarithmic grid set for the
modified version of the Marmousi-2 model and (b) its interpolated version to the conventional grid
set.
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Fig. 12. Depth profiles at distances of (a) 4.5 km and (b) 6 km of the true velocity model (solid line)
and the inverted velocity models.

CONCLUSIONS

We developed new acoustic and elastic wave modeling and waveform
inversion algorithms, which are performed in the logarithmic grid set. In the
logarithmic grid set, since the grid interval increases logarithmically with
distance, we require fewer grid points than in the conventional uniform grid set.
Based on this feature, we can extend the given model without increasing
computational efforts compared to the conventional method, so that edge
reflections cannot be recorded at receivers within the recording duration. Since
the number of additional grids used to extend the given model can be
determined considering the recording duration, the efficiency of the new
modeling and inversion algorithms is mainly dependent on the recording
duration.
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In order to apply the new modeling and inversion algorithms in the
logarithmic grid set, interpolation is needed. Field data acquired in the
conventional uniform grid should be converted to the logarithmic grid set, and
inversion results on the logarithmic scale need to be converted to the
conventional uniform grid set. The new modeling algorithm yielded numerical
solutions compatible with analytic solutions. However, we need to know that
when the source is applied near the boundary of the given model where the grid
interval is large, the seismograms can suffer from numerical dispersion. We
examined if the numerical dispersion is serious in waveform inversion or not.
Inversion results for the simple layered model showed that the logarithmic
waveform inversion yields results comparable to those obtained by the
conventional waveform inversion. By comparing the inversion results obtained
by the logarithmic waveform inversion with those of the conventional method
for the modified version of the Marmousi-2 model, we showed that the new
logarithmic waveform inversion can be applied to the complicated model with
computation efficiency. From all the inversion results, we noted that numerical
dispersion does not seriously influence inversion results. The frequency
marching method may contribute to reducing the influences of numerical
dispersion in high frequencies. Although we only test the new modeling and
inversion algorithms to 2D problems, their efficiency will be greater in 3D
problems. We also feel that the new modeling and inversion methods may
contribute to improving the efficiency of data acquisition.
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APPENDIX A

COMPARISON OF NUMERICAL SOLUTIONS WITH ANALYTIC
SOLUTIONS

In order to investigate the accuracy of the elastic modeling algorithm in
the logarithmic grid set, we need to compare numerical solutions with analytic
solutions for Lamb’s problem, for which we assume the semi-infinite
homogeneous model shown in Fig. A-1. We compute analytic solutions referring
to Ewing et al. (1957). We first compute analytic solutions in the
frequency-wavenumber domain, and then take their inverse Fourier transform
to obtain solutions in the time-space domain. Solutions in the logarithmic grid
set are obtained through interpolation. Fig. A-2 shows analytic solutions and
numerical solutions obtained in the logarithmic grid set. From Fig. A-2, we see
that numerical solutions agree well with analytic solutions.
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Fig. A-1. The geometry of the semi-infinite homogeneous model for Lamb’s problem.
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the source point.
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APPENDIX B
DISPERSION CURVES

We compute numerical phase velocity curves for dispersion analysis in the
logarithmic grid sets. We begin with eq. (1) discarding the source term.
Uniform grids in the logarithmic scale correspond to the exponentially
increasing grids in the uniform scale (Fig. B-1). If we assume that the grid
interval in the logarithmic grid set is constant as "a", the grid interval increases
by "e*" in the conventional grid set as shown in Fig. B-1. Numerical phase
velocities are computed for the exponentially increasing grid set.

(a) (b)
e(-‘—llu, (j-2)a
1 (] ]
i1-# 00 G S *-
i E E e{i—l)u , e{ j-la
i ] Y Am— =
j- : Eem:;n’ pliNa E gel
: : : E (i-a ja :
1 i H i |e 5 i
e oo ¢ . S -
! ! ! r - X B
i-1 i i+1 i-1 i E i+l

Fig. B-1. (a) Grid set where grid interval is uniform as ‘a’ in the logarithmic scale and (b) its
corresponding grid set in the uniform scale where grid interval increases exponentially.

The second-order partial derivative terms in 2D acoustic and elastic wave
equations can be discretized as

0%2u/0x2 = (4/0x)(du/9x)

U

{[(is1;—w)/h*] = [(u;—w_; /b7 1}/ [(h* + h7)/2]

= 2/ K[y —wp) — —u_ )0 /h)]/[(h*/h7)+1](h*/h7)}

= 2/ K[ -y — (@—w_eli(e + e’} (B-1)
02u/022 = [2/(h)2 N[y —u5) — (U—ui)EV(E + et} (B-2)

0%u/0xdz = [2/(h* +h)IWyy 5o — Wigyor = Wimpger — Yoy - (B-3)
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If we substitute the plane wave solutions u;; = ¢ “~**~%2 into egs. (B-1) to
(B-3), we obtain

azp/axz =~ [2/(h“)2]{[(e ikh*_ 1) _ (l—e_ik*h_ )]/(ea_|_l)ea}e—(iwt—ikxx—ikzz) ,(B—4)
0?2p/oz2 = [2/(h){[(e™ 1) — (1—e ™" )]/(e*+1)e*}e (@t -ka-ka)  (B.5)

" G _ ek ik

e —-e " e

—ik i ikt | ik ik

d%p/oxoz = [2/(h7)Xe*+1)?]
—e e +e e

}e'“”‘““‘x*'“‘z’% (B-6)
The normalized phase velocity can be expressed as follows:
cp/c = (w/k)/c = (1/kh7)\/(Axx + Azz)
= [1/27n/G)IW(Axx + Azz) , B-7)
Axx = =2{[(e™ — 1) — (1 — e * M )]/(e* + 1)e*} , (B-8)
Azz = =2{[(™"" — 1) — (1 — e ™" H)A)/(& + 1)e*} , (B-8)
for 2D acoustic wave equation, and
ap/a = (w/k,)/a
= (1/kh)V{A[1 + (B¥a?)](Exx + Ezz)
+ [1 = (Ba)]VI(Exx — Ezz)* + 4(Exz)’]}
= [1/Qn/G)B/)IN{~[1 + (B*a?)](Exx + Ezz)

+ K[l — (B*a»)WI(Exx — Ezz)* + 4(Exz)?]} , (B-10)

Bu/B = (wky)/B
= (I/kh)V{%[1 + («2/B)](Fxx + Fzz)

+ B[l — (B)IFxx — Fzz)* + 4(Fxz)}
= [1/Qm/GYW{%I[1 + (o?/8H](Fxx + Fzz)

+ 12[1 — (o2/B?)]I(Fxx — Fzz)* + 4(Fxz)’]} , (B-11)
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_(eik,, cosOh® 1) _ (1 _ o kocoson )e”]
Exx=-2= '
(e“ + 1) e’
—(eikxgcoseh* _ 1) _ (1 _ e—ik,écos&h‘ )ea] > (B-12)
=-2L
(e" + 1) e’
|:(eik_‘.§sin9h+ _ 1) _ (1 _ e—-ik.‘.gsinﬁh' )ea ]
Ezz=-2
(ea +1)ea s (B-13)
1 eik.‘. £ coson* eikx-gsin ont eik,. Zcosgn* e—ik“. Lsingn*
Exz =
| 2 —ik, £ coson* +ik, ZsinOn* —ik, LcosOn* —ik Bsinon* |» (B_14)
e + —e a e a +e ta e va
Ii(eik_\. cosOh” _ 1) _ (1 _ e—ikx cosOh™ )ea:l
Fxx=-2 (e“ N l)e" , (B-15)
ik sindh* e -
l:(exkA sinéh” 1) _(1 —e ik, sin&h )ea:|
Fzz ==2 (e" " 1) = , (B-16)
- 1 eik.‘. cosOn* eik_‘. singh* eik_‘. cosOh* e-—ikx sin@h*
XZ =
( &+ 1)2 — i COSOH" ik, sinOA* + g ki COsON" ik sindh® | 5 (B-17)

for 2D elastic wave equations using the relationship k, = k (8/c).

Normalized phase velocity curve for acoustic wave equation obtained for
a = 1 is shown in Fig. B-2. For comparison, we also display the normalized
phase velocity curve obtained for the conventional, uniform grid set in Fig. B-2.
The normalized phase velocities for the conventional, uniform grid set can be
computed using a = 0. From Fig. B-2, we note that the logarithmic grid set
requires more number of grid points per wavelength than the conventional
uniform grid set to keep the same level of numerical dispersion, because the
grid interval increases with distance when a is not zero. Numerical dispersion
in the logarithmic grid set is dependent on the value of a.
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Fig. B-2. Dispersion curves for 2D acoustic wave equation in the (a) uniform and (b) logarithmic
grid sets. In the logarithmic grid set, the grid interval increases with exponentially (¢! = 2.718). G
indicates the number of grid points per wavelength.

Figs. B-3 and B-4 show normalized P- and S-wave velocity curves,
respectively, for elastic wave equation obtained for a = 1. We consider
Poisson’s ratios of 0.1, 0.2, 0.3 and 0.4. The overall patterns of numerical
dispersion in the logarithmic grid set are similar to those of the conventional
uniform grid set.
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Fig. B-3. Dispersion curves for P waves of 2D elastic wave equation in the uniform (a, c, e, and
2) and logarithmic (b, d, f, and h) grid sets, when Poisson’s ratio is 0.1 (a and b), 0.2 (c and d),
0.3 (e and f), and 0.4 (g and h). In the logarithmic grid set, the grid interval increases with
exponentially ( ¢' = 2.718). Gs indicates the number of grid points per shear wavelength.
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Fig. B-4. Dispersion curves for S waves of 2D elastic wave equation in the uniform (a, c, e, and
g) and logarithmic (b, d, f, and h) grid sets, when Poisson’s ratio is 0.1 (a and b), 0.2 (c and d),
0.3 (e and f), and 0.4 (g and h). In the logarithmic grid set, the grid interval increases with
exponentially (e' = 2.718). Gs indicates the number of grid points per shear wavelength.





