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ABSTRACT

Wang, D., Bao, W., Xu, S. and Zhu, H., 2014. Seismic data interpolation with Curvelet domain
sparse constrained inversion. Journal of Seismic Exploration, 23: 89-102.

To improve the accuracy of seismic data processing, the irregular, missing seismic data need
interpolation. Retrieving the missing data can decrease the error in the prediction of multiple and
the aliasing of image etc. The iterative threshold method based on /; norm optimization inversion
with sparsity constraint can achieve better result with increase of the sparsity of the inversion
parameters. Take the advantage of the sparse representation of seismic data in the Curvelet domain,
we can get a better result when performing a /; norm optimization problem in seismic data analysis.
In this paper, we apply this method in interpolation of missing seismic data, and using the Curvelet
threshold iterative method after NMO correction, which make the data sparser. By comparing the
results of the interpolation with and without NMO correction, we confirm that the Curvelet threshold
iterative method can get a better effect in seismic missing data interpolation. Its results are more
close to the initial model as well after the process of NMO correction.
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INTRODUCTION

Seismic data processing requires the density and the regularity of the
seismic data itself. However, data acquisition is affected by the geological
environment of the field and the economic condition. The acquisition geometry
grid of the seismic data are often irregular and not complete (Liu et al., 2011).
Moreover, the irregular, discrete and missing seismic data may increase
additional alias in multiple prediction and imaging. The seismic data
interpolation is required to handle these issues. The interpolation of seismic data
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plays an important role in seismic data processing and interpretation such as
multiple attenuations, wave equation migration, and seismic data regularization.
The interpolation of the missing data can make the seismic data more accurate
and regular under the circumstance of the increasing of the signal to noise ratio,
which establishes a better foundation for the further steps. In recent years,
seismic data regularization has become increasingly popular, the scholars
propose many effective methods, such as the largest coherent dip interpolation,
the tilted coherent power spectrum difference interpolation, the prediction
filtering interpolation in f-x domain (Spitz, 1991) and the Curvelet threshold
iteration combined with focal transform (Felix et al., 2008a,b).

The Curvelet transform is widely used in seismic data processing and
interpretation in the last few years (Felix et al., 2008a,b; Wang et al., 2008).
Curvelet transform has the property of multi-scale, multi-direction and locality,
and has significant advantage compared with wavelet transform and Ridgelets
transform in solving sparsity constrained norm optimization problems. The
application of the Curvelet transform, within recent years, has developed into
every field from computer image processing to seismic data processing and
interpretation. Actually, this mathematical transform method can be used not
only in the attenuation of the multiple (the correlated noise) and random noise
but also in the area of the interpolation and migration of seismic data processing
and interpretation. The Curvelet transform is kind of anisotropic wavelet
transform, whit the multi-scale and multi-angles properties. It’s primary function
can make a sparse representation of graphics with segmented smooth edge. It
takes the advantage of these properties to produce an optimal decomposition of
the seismic reflection events. The superiority of the Curvelet transform in that
it can show the feature of the function with two or more dimension, which can
achieve the optimal result handling the singularity of the curve of seismic travel
time. In this article, we applied the Curvelet threshold iteration method into
missing trace interpolation of seismic data. More important, we conduct the
interpolation process for pre-stack missing trace after NMO correction, which
make the data sparser and got better results with /; norm optimization.

BASIC THEORY
The basic principles of interpolation

In brief, the interpolation is to fit a curve with series discrete point
control. The function indicating the curve can be called the interpolation
function. We can find the function value of other points besides these finite
numbers of points. In seismic data interpolation, this means we can get the
missing seismic data from the known traces. We assume that the array of the
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given sampling point is {m;, i = 1,2,3,...,N}, here m;,m,,m,,...my is called the
interpolation nodes. By inserting some sampling points into this array, it make
the data become a Q sampling sequence {n;, j = 1,2,3,...Q}, and Q = N. The
order of the sampling points we get from the field is usually with equal distance.
The interpolation process can be shown as following (Chen et al., 2005):

N-1

ym) = ), Cyh(m — m,) , 1)

n=0

where h is the core of the interpolation, Cy is the weight characteristic. Usually
function h(m) is a symmetric function, we can evaluate the character of the
function in the frequency domain. Generally, when we interpolate the missing
seismic data, the simplest way is to interpolate between two sampling points,
namely the linear interpolation, as can be shown in the form of the
interpolation:

y(my) =y, + [(m; — my)/(m; — myl(y, — yo) - @

There are many interpolation methods for the missing trace of the seismic
data in practice, such as the largest coherent dip interpolation, SINC function
interpolation, prediction filtering interpolation in the f-x domain and the tilt
coherent power spectrum difference interpolation, etc. (Zhang, 2010). Normally
these methods can get a satisfactory result when the missing data has high

quality (with high signal to noise ratio , with small gap, etc.), otherwise these
methods does not work well.

Seismic data interpolation with Curvelet sparsity-promotion inversion

The Curvelet transform has the feature of the multi-scale, multi-direction
and locality. It has significant advantages compared with the wavelet transform
and the Ridgelet transform in missing traces interpolation. The Curvelet
transform is a kind of anisotropic wavelet, with multi-scale and multi-angle
properties. Differing from wavelet transform, the Curvelet transform also
includes direction parameters. By taking the advantage of these properties it can
produce a more sparse representation of the seismic reflection events than
traditional Fourier and wavelet transform.

The Curvelet transform possesses the special capacity that it can focus the
seismic data energy on the fraction of the Curvelet coefficient. Generally, more
signal energy concentrates on the area with the larger Curvelet coefficient, while
the noise spreads into the area with the smaller one instead. Consequently, we
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can remove the noise by thresholding the original data with a small value in the
Curvelet domain, and take an inverse Curvelet transform. The Curvelet
transform has the feature of the sparse representation for the seismic data,
therefore, we can indicate the noise attenuation problem of seismic data under

the sparse constrained condition using the following constrained optimal problem
(Wang et al., 2010):

N
i=argminx||X|11=ZlX1| st.  Jax -yl < e

Po:q o )
f = AX

where y represents the initial seismic data, x is the Curvelet coefficient, and A
= CT, C is the forward Curvelet transform and CT is the inverse Curvelet
transform, ¢ is the value that can be infinitely small, and f is the final output
result. The solution of this optimization problem is to invert the Curvelet
coefficient with the smallest /; norm.

The Curvelet threshold method combined with the /;, norm optimization
problem can enhance the signal and suppress random noise, which is its major
advantage for the interpolation by using the coherence of the seismic signal
between the data and the missing gap. As a result, we can achieve basic
principle of the iterative Curvelet thresholding algorithm for missing trace
interpolation. We combine the Curvelet transform with the threshold iteration
method and add a missing operator in the optimization problem discussed above.
This approach of missing trace interpolation can be represented as solving the
optimization problem of /; norm as the following (Tong et al., 2009):

N
% = argmin x|, =) |x| st JAx-y|,<e¢
P, )
= C'x
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In eq. (4), y is the original missing seismic data, A = RCT, CT is the inverse
Curvelet transformation, R is the missing operator, which function is to take out
the traces according to original missing data. Where x represent the Curvelet
coefficient, ¢ is an arbitrarily small positive quantity, and f is the interpolated
seismic data.

The /; norm optimization problem of P, described above can be substituted
with a series of some simple optimization problems:

% = argmin|y — Ax[[} + M x|,

f, = C'x,
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The solution of P, is reached by solving P, by descending A starting from
N = sup,{\:||ly — A%,|,} < e, and where sup{} denotes the upper limit
function (Wang et al., 2010).

The optimization problem of the /; norm as given in eq. (5) can be solved
by the threshold iteration method. To solve this problem, we need to depend on
the inversion process on the smallest /;, morn of the Curvelet coefficient, which
satisfies the condition that close to the primary data for the interpolation under
the circumstance of the 2-norm restraint, by removing the missing data with the
R operator after the inverse Curvelet transform. f,, given in eq. (5) is the final
output, which represents the interpolated data.

Interpolation with the precondition of NMO correction

The Curvelet transform has a better directional characteristic due to the
multi-scale principle, in addition to the scale and location. The structural
element is consisted of directional parameter. Since the Curvelet function has
better property of direction selection and anisotropy, it has a preferable sparsity.
The reconstruction error in the Curvelet domain will decrease if the data has a
better sparsity. In this paper we apply NMO correction to get a better sparsity
for the data to be interpolated. Fig. 1 shows the comparison of the
reconstruction error with and without NMO correction for original data, and
with 25%, 50% and 75% missing traces, respectively.

(a) Reconstruction error for the original no missing traces data
(b) Reconstruction error with 25% missing traces
(¢) Reconstruction error with 50% missing traces
(d) Reconstruction error with 75% missing traces

Basically, NMO correction can make a hyperbolic travel time curve
become a straight line. That means in Curvelet domain we can use smaller
number of Curvelet coefficients to represent a straight event than that of a
hyperbolic event. After the NMO correction, the CMP gather’s sparsity has
been enhanced in Curvelet domain as shown in Fig. 1.

In practice, we use a larger NMO velocity to avoid the effect of NMO
stretch in shallow and large offset area, the NMO velocity used is usually larger
than the real NMO velocity for each even, that means a deficient NMO
correction is applied.
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Fig. 1. The comparison of reconstruction error in Curvelet domain with and without NMO
correction for (a) original data, (b) with 25%, (c) with 50%, (d) with 75% missing traces. The

horizontal axis represents the percentage of preserved coefficients and the vertical axis represents
the normalized coefficients reconstruction error.
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NUMERICAL EXAMPLES

In Fig. 2, (a) is a shot record, Fig. 2 (b), (¢) (d), is the data with 25%,
50% and 75% missing traces, respectively. We apply the Curvelet threshold
iterative method to the interpolation of these three missing record, the results are
shown in Fig. 3.
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Fig. 2. (a) the original model; (b), (c), (d) data with 25%, 50%, 75% of the traces missing.
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Fig. 3 shows that the interpolation result of the data with 25% missing
traces is ideal,almost the same as the original model. When the percentage of
the missing traces is increased to 50%, the interpolation results are still
acceptable. But for the data with 75 missing traces, the missing seismic data in
the fan-shaped region cannot be reconstructed completely.

For a homogeneous reflector in isotropic media, the reflection travel time
is hyperbolic. Here we interpolate the data after NMO correction and then apply
an inverse NMO correction. The comparison results of interpolation with and
without NMO correction are shown in Fig. 4, Fig. 5 and Fig. 6. Fig. 7 shows
the difference between the model and interpolated results with and without
NMO correction for 25%, 50% and 75% missing traces respectively.

Actually, from the comparisons of the interpolation results and the
differences, we can find the interpolation results have been significantly
improved with NMO correction precondition. A better result can be gained
when applying the Curvelet threshold iteration method after NMO correction
compared with those without NMO correction according to the differences
(shown in Fig. 7), especially in the fan-shaped region where the missing is
serious. We apply the proposed method to the field data,the results are shown
in Fig. 8, Fig. 9. For the field data we also reconstruct better results by
applying the Curvelet iterative thresholding method after NMO correction. The

interpolated data is more accurate after NMO correction and is more close to
the original data.
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Fig. 3. The interpolation results with Curvelet threshold iterative method for the data with (a) 25%,
(b) 50%, (c) 75% missing traces.
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Fig. 4. (a) data with 25% missing traces after NMO correction; (b) data with Curvelet interpolation
of (a); (c) the interpolation results after inverse NMO correction of (b).
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Fig. 5. (a) data with 50% missing traces after NMO correction; (b) data with Curvelet interpolation
of (a); (c) the interpolation results after inverse NMO correction of (b).
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Fig. 6. (a) data with 75% missing traces after NMO correction; (b) data with Curvelet interpolation
of (a); (c) the interpolation results after inverse NMO correction of (b).

CONCLUSION

Compared with the wavelet transform and the Fourier transform, the
advantages of the Curvelet transform lies in the property of its multi-direction,
which can get a better result in solving the feature of the high dimensional
function and the Curve singularity. The iterative thresholding method is derived
from the sparse constraint optimization inversion, and the interpolation results
will be improved as the enhancement of the sparsity of the data to be
interpolated. A better result of interpolation can be obtained by combining the
Curvelet transform with the threshold iteration method. NMO correction, before
the interpolation, can make the missing data sparser in Curvelet domain, and we
can get better interpolation results after NMO correction, it can effectively

reconstruct the part of the fan-shaped area and the region with large missing
traces.
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Fig. 7. Difference between the interpolated results and the model. (a), (b), (c) are data with 25%,

50%, 75% missing traces and without NMO correction. (d), (e), (f) are data with 25%, 50%, 75%
missing traces and with NMO correction.
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Fig. 8. Field data interpolation results. (a) the original seismic shot data; (b), (c), (d) are interpolated
data with 25%, 50%, 75% missing traces and with NMO correction.
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Fig. 9. Difference between the interpolated results and the original field shot. (a), (b), (c) are data
with 25%, 50%, 75% missing traces and without NMO correction. (d), (e), (f) are data with 25%,
50%, 75% missing traces and with NMO correction.
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