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ABSTRACT

Ozsoy, C., Chen, J., Zhang, Q., Zhao, J. and Metin, G., 2013. Nearly perfectly matched layer
boundary condition for second-order anisotropic acoustic wave equations. Journal of Seismic
Exploration, 22: 489-500.

During the numerical simulation of seismic wave propagation, ‘the artificial layers are used
at the computational boundaries to truncate the unbounded media which cause the unwanted
reflections. In this study, the validity of the nearly perfectly matched layer as an absorbing layer,
which has proven to be very efficient for first-order acoustic and elastic wave equations in stress and
velocity, is detailed investigated to suppress those spurious reflections for second-order anisotropic
acoustic wave equations. The numerical test results show that the nearly perfectly matched layer has
a significant performance to absorb the outgoing waves at the model edges.

KEY WORDS: nearly perfectly matched layer, second-order, anisotropic, acoustic equations,
numerical modeling.

INTRODUCTION

Seismic numerical modeling in anisotropic media, which has become an
increasingly important part in the exploration geophysics and seismology,
enables us to better understand the behavior of seismic wave propagation than
numerical modeling in isotropic media (Helbig, 1983; Thomsen, 1986; Tsvankin
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et al., 2010). Due to the large computational cost and complexity in seismic
anisotropic modeling, some authors have derived second-order pseudo-
acousticwave (quasi-P) equations in transverse isotropy with a vertical symmetry
axis (VTI) media (Alkhalifah, 2000; Zhou et al., 2006; Du et al., 2008).

During the seismic numerical simulation for wave propagation, unwanted
artificial reflections will occur at the edges of the computational domain due to
the truncation treatment for the media. The perfectly matched layer (PML)
which was first proposed by Bérenger (1994) in electromagnetic (EM) media
shows better performance to avoid the spurious reflections than other classical
absorbing boundary conditions (Bérenger, 1994; Hastings et al., 1996; Collino
and Tsogka, 2001; Zeng et al., 2001). After then, a modified PML technique
named as the nearly perfectly matched layer (NPML) was presented by Cummer
(2003) in EM media and further applied into seismic modeling in acoustic and
elastic media (Hu et al., 2007; Chen and Zhao, 2011; Chen, 2012). NPML does
not change the form of original differential equations and is easy to implement
in linear media (Cummer, 2003; Hu et al., 2007). However, those applications
of NPML are related to first-order equation formulation in velocity and stress.
As Komatitsch and Tromp (2003) presented the PML formulation for the
second-order wave equations, McGarry and Moghaddam (2009) derived NPML
formulation for the second-order VTI pseudo-acoustic equations in their SEG
extended abstract. Here, we will detailed discuss the absorbing performance of
NPML for second-order VTI pseudo-acoustic equations.

In this paper, we first introduce second-order acoustic wave equations in
VTI media and NPML implementation. Finite difference operators (Kelly et al.
1976; Alkhalifah, 2000) are used to replace spatial and time derivatives in the
equations for the grid-based model. In a homogeneous model test, snapshots of
wave propagation and seismogram are investigated in detail for checking the
absorbing capability of NPML. Finally, we place the source in the upper layer
(isotropic layer) of a two-layer model and present the snapshots of pure quasi-P
wave propagation.

THEORY
Acoustic wave equations for VTT media

Through the assumption of free shear wave velocity along the symmetry
axis, Alkhalifah (2000) presented a pseudo-acoustic wave approximation
formulation in VTI media that reduces the computational cost. Subsequently,
Zhou et al. (2006) and Du et al. (2008) proposed the modified pseudo-acoustic
wave equations to simulate the quasi-P wave propagation. According to the
study from Du et al. (2008) and McGarry and Moghaddam (2009), the 2D VTI
pseudo-acoustic wave equations are expressed as:
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Vi%9,.P = (1 + 2¢)d,,P + 9,Q , (1a)
V;%,Q = (1 + 28)9,,P + 93,,Q , (1b)

where P(x,z,t) is the acoustic pressure wavefield, Q(x,z,t) is an auxiliary field;

V, is the vertical velocity along the symmetry axis, € and 6 are the well-known
Thomsen parameters for anisotropic media (Thomsen, 1986).

NPML formulation

Based on some modification introduced in McGarry and Moghaddom
(2009), the second-order VTI acoustic wave eqs. (la)-(1b) with NPML
implementation are written as:

V;2,P = (1 + 23,0 + 3,Q + (1 + 209,(Pd) + 3,4d) , ()

V320,Q = (1 + 28)3,P* + 3,,Q + (1 + 28)9(Pdy + 9,d,) , (2b)

aP + Pd, = P 3)

9Q + Qd, = 3Q , )

P + Pd, = o P~ | ©)
and

94 + 4d, = —-3,Q , | ©6)

where 13"(x,z,t), Q(x,z,t), P;(x,z,t), and q(x,z,t) are auxiliary functions, d, and
d, are damping factors along x- and z-coordinates. d, is expressed as d, =
—3V,log(R)/(26)-(x4/6)%. R, is the theoretical reflection coefficient (R, =
0.0001). ¢ is the thickness of the NPML layer, x, is the horizontal distances to
the inner boundary within the NPML layer. d, has the similar expression as d,.
The damping factors d, and d, are zero in the interior of computational domain.

Finite difference operator for the grid-based model

In this study, second-order time derivatives and first-order spatial
derivatives in egs. (2)-(6) will be respectively replaced by second-order and
first-order centered-finite difference approximations (Kelly et al. 1976;
Alkhalifah, 2000). In addition, first-order time derivatives are replaced by
forward-finite difference approximations. The finite difference implementation
for the discrete NPML model can be expressed as follows:
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[1/VXEDH[PG,j.k+1) — 2P(i,j,k) + P@,j,k—1)]/At}
= [1 + 2eG,pI{PHG+1,j,k) — 2P*G,j,k) + PX(i—1,j,k)]/Ax*}
+ {IQGj+ 1,k — 2QG,j.K + QGi,j—1,k1/AZ}
+ [+ 2e@DIPLELRIG+1) — dG—1)]1/2Ax
+ [1 + 2eG,j)ld,@O[P+1,j,k) — PAi—1,j,k)]/2Ax
+ 4(1,],0Id,G+1) — d,G—1)]/2Az
+ d,(IaG,j+1,k) — 4G,j—1,K]24z (7a)
[1/ViEDHIQG. . k+1) — 2QG,j,k) + Q(.j,k—1)I/At*}
= [1 + 26G,)H{P*G+1,j,k) — 2P G,j,k) + P*i—1,j,k)]/Ax?}
+ {IQG,j+1,k) ~ 2QG.j.k) + Qi,j—1,K)1/Az%}
+ [1 + 28G,)1P:G.,K)[d,G+1) — di—1)]/2A%
+ [1 + 28G,)1d,D[P+1,j,k) — Pxi—1,j,k)]/2Ax
+ 4G,j,0d,G+1) — d,(—1)1/2Az

+ d,(H[qG,j+1,k) — §G,j—1,k]2Az , ' (7b)

[PXG,j,k) — P*(i,j.k—DV/At + d()IP*G,j.k) + PXG,j.k—1)]/2

= [PG,j,k) — PG,j,k—1)]/At , ®

[QG.j.k) — QG.jk—DIAt + d,()IQG.j.K) + Qli.jk—1)1/2
= [Q(ls.]’k) - Q(I’J7k_1)]/At ) (9)

[PXi,j,k) — PXi,j,k—1)/At + d,)[PXi,j,k) + Px(ij,k—1)1/2

= —[PXi+1,j,k) — PXi—1,j,k]/2Ax |, (10)
and

[4G.5,k) — qG.,j.k—DVAt + d,()[qG,j,k) + 4G.j.k—1)1/2

= —[QG,j+1.,k — QG,j—1,k124z (11)



ANISOTROPIC ACOUSTIC WAVE EQUATIONS 493

where i and j are position increment indexes along x- and z-coordinates,
whereas k is a time increment index; Ax, Az and At are grid spacing and time
sampling.

NUMERICAL TEST
Case 1: Homogenous model

The absorbing ability of NPML is tested using a 2D homogeneous VTI
model named model-1 (Fig. 1). The model size is 6,000 X 6,000 m. The
vertical velocity and Thomsen anisotropy parameters (¢ and §) are 3000 m/s,
0.22 and 0.04, respectively. The model grid spacing is 10 m. Time step is 1 ms
that obeys the Courant-Friedrichs-Lewy stability condition (Courant et al.,
1928). Two receivers marked R, and R, are placed at the grid points (575, 300)
and (575, 50) where close to the inner boundary of right-side NPML layer
(15-grid width). The Ricker wavelet source with dominant frequency 10 Hz is
located at the center of the model. The wavelet peak occurs at 0.12 s.
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Fig. 1. Illustration of a 2D homogeneous VTI model (model-1). The sources (cross) is located at the
center of the model. Two receivers R, and R, (black-filled triangles) are placed close to the inner
boundary of the right-side NPML layers (dashed lines).
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Fig. 2 shows the snapshots of seismic wave propagation at 0.4 s, 1.2 s,
4.0 s and 10.0 s. One can observe that NPML has significant performance to
absorb the outgoing waves at the inner edges of NPML layers. We also observe
that NPML not only effectively absorb the unwanted quasi-P reflection wave
(elliptical shape), but strongly suppress the artificial SV wave (quasi-SV,
diamond shape). Fig. 3 shows the snapshots of seismic wave propagation at 1.2
s, 1.6 s, 4.0 s and 10.0 s. Strong artificial reflections from the edges of the
model severely contaminate the seismic wavefield that will have serious impact
on seismic signals.

0 100 200 300 400 500 600 0 100 200 300 400 500 600

Distance (grid) Distance (grid)
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Depth (grid)

0 100 200 300 400 500 600 0 100 200 300 400 500 600
Distance (grid) Distance (grid)

Fig. 2. Snapshots of quasi-P wave field at 0.4 s, 1.2's, 4.0 s and 10.0 s with NPML application.
NPML is able to absorb both quasi-P and quasi-SV waves.
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The efficiency of NPML can be also checked through comparing with
other absorbing boundary conditions (Chen, 2012) or reference model (Metin
et al., 2013). Here, we choose a 2D reference model with size 15,000 X
15,000 m that is used to simulate seismic wave propagation in unbounded media
(Fig. 4). It has the same model parameters as model-1. The source is set at the
grid points (750, 750) and two receivers are located at the grid points (1025,
750) and (1025, 500). We keep the same source-receiver layout in reference
model as the geometry used in the model-1.
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Fig. 3. Snapshots of quasi-P wave fieldat 1.2's, 1.6 s, 4.0 s and 10.0 s without NPML application.
Strong artificial reflections are observed.
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Fig. 4. The frame of the reference model that is assumed as an unbounded medium. It has the same
source-receiver geometry as model-1 has.

Figs. 5 and 6 show the seismic signals (seismograms) of total 10 s length
recorded at receivers R, and R,. The solid gray lines and dashed black lines
respectively represent seismograms obtained in model-1 and reference model.
The results show that the seismograms received from model-1 with NPML layer
and reference model have great agreement. We also reach a conclusion that the
NPML algorithm has significant stability for long time simulation through
observing Figs. 2, 5 and 6.

Case 2: Two-layer model

As shown in case 1, one can observe the weaker quasi-SV wave (diamond
shape), which is considered as noise, follows quasi-P wave propagation in the
numerical modeling. Alkhalifah (2000) suggests locating the seismic source in
the isotropic media (¢ = 6 = 0) to eliminate the quasi-SV effect. Here, seismic
wave propagation is simulated in a two-layer model with size 6,000 X 6,000 m
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(Fig. 7). The upper and lower layers are respectively assumed as isotropic and
anisotropic media. The thickness of the upper layer is 200 grids. The vertical
velocity and Thomsen anisotropy parameters (¢, 6) for two layers are listed as
parameter groups (2500 m/s, 0, 0) and (4000 m/s, 0.22, 0.04). The grid spacing
is 10 m and time step is 1 ms. Moreover, the width of the NPML is 10 grids.
The exploration source is located at the grid point (300, 25). The same source
parameters are selected as those used in case 1.
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Fig. 5. Seismograms of the quasi-P wave field recorded at receiver R,. NPML has effective
absorbing ability which can simulate seismic wave propagation in unbounded media.
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Fig. 6. Seismograms of quasi-P wave field recorded at receiver R,. The agreement between seismic
signals from model-1 with NPML and reference model is great.
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Fig. 7. Illustration of a 2D two-layer model. The sources (cross) is placed in the isotropic media
(upper layer). :

For simplicity, we only show snapshots of pure quasi-P wave propagation
at0.4s,0.8s, 1.2 s and 1.8 s to check NPML absorbing performance (Fig. 8).
Clearly, NPML works well for suppressing the unwanted reflections.

CONCLUSIONS

In this paper, the absorbing performance of the nearly perfectly matched
layer boundary condition was investigated for second-order anisotropic acoustic
wave equations. We illustrated that NPML is capable of not only suppressing
artificial reflections of quasi-P wave, but also absorbing the weaker quasi-SV
wave at the edges of the model through study of snapshot of wave propagation
and seismogram within the computational domain. Further study is needed to
explore the absorbing ability of the nearly perfectly matched layer for other
second-order wave equations.
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Fig. 8. Snapshots of pure quasi-P wave propagation at 0.4 s, 0.8 s, 1.2 s and 1.8 s using NPML
layer.
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