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ABSTRACT

Weglein, A.B., Liang, H., Wu, J., Mayhan, J.D., Tang, L. and Amundsen, L., 2013. A new
Green’s theorem deghosting method that simultaneously: (1) avoids a finite-difference approximation
for the normal derivative of the pressure and, (2) avoids the need for replacing the normal derivative
of pressure with the vertical component of particle velocity, thereby avoiding issues that can arise
within each of those two assumptions/approaches: Theory and analytic and numeric examples.
Journal of Seismic Exploration, 22: 413-426.

Green’s theorem deghosting requires the pressure and its normal derivative on a cable.
Current marine dual measurement deghosting approaches can have issues caused by: (1) using
over-under cable pressure measurements to provide a finite-difference approximation to the normal
derivative; or (2) using the pressure, P, and the vertical component of particle velocity, V,; V, also
can have issues at low frequency, and with instrument response differences. The deghosting method
provided in this paper avoids both of those issues. Analytic and numerical tests show encouraging
results, in comparison with current approaches.
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INTRODUCTION

Deghosting is a longstanding seismic objective and problem (Robinson and
Treitel, 2008; Amundsen, 1993) that has received considerable renewed
attention due to: (1) an interest in so-called "broadband seismology" and the low
frequency/low vertical wave-number requirements of linear iterative model
matching and updating for velocity analysis, and (2) the requirements for
deghosted data in, for example, inverse scattering series multiple removal
algorithms for amplitude and phase fidelity. Green’s theorem methods for
deghosting were first introduced in Weglein et al. (2002); Zhang and Weglein
(2005, 2006) and were developed and tested in Zhang (2007) and further tested
and evaluated on complex synthetic (SEAM) and Gulf of Mexico field data by
Mayhan et al. (2011); Mayhan et al. (2012); Mayhan and Weglein (2013).
There were different realizations of this Green’s theorem deghosting
methodology, with different data requirements and different benefits and
deficits. For receiver deghosting, one fundamental and general formulation,
required, for each shot record, measurements of the pressure and the normal
derivative of pressure (with respect to hydrophone location) on the cable
(actually, on the measurement surface). A second formulation, for receiver
deghosting, assumed a known and isotropic source signature, and measurements
of the pressure on the measurement surface. The latter method employed a
Green’s function that vanished on the measurement surface and the free surface.

For the source side deghosting the general Green’s theorem formulation
required the pressure measurements and the normal derivative of pressure with
respect to source location, for the entire collection of shot records, where each
shot record actually has two separate experiments with over-under sources. An
alternative Green’s theorem source side deghosting version once again employed
a Green’s function that vanished on the measurement surface and the free
surface, and avoided the need for dual source experiments, and without a need
for a source signature. The versions that avoided the need for dual
measurements were shown to be effective, except in the vicinity of notches
where the dual cable and dual sources for receiver and source deghosting,
respectively, could provide a stable and useful result. The results can be
summarized as two measurements at one depth, which can at times be preferable
and more stable than one measurement at two depths, where the sensitivity to
depth enters through the Green’s function (in these Green’s theorem methods)
that vanishes at the cable and the free surface. In Weglein et al. (2013) the
Green’s theorem deghosting methods derived in the space and temporal
frequency domain was shown to derive (as a special case) the P-V, spatial
wave-number and temporal frequency industry standard deghosting approach.
Strengths and limitations of the Green’s theorem formulations in each domain
were described and exemplified, with implications for 3D marine, and on-shore
and ocean bottom acquisition and application. The focus then became how best
to realize a two measurement at one depth formulation, and the need to
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recognize and address issues of: (1) a finite-difference approximation for a
normal derivative with over-under pressure measurement cables and (2) the low
frequency and instrument response differences that can arise with methods that
depend on measurements of the pressure and vertical component of particle
velocity. The method presented and evaluated in this paper avoids both of those
two sets of shortcomings, and tests show encouraging results compared to
current approaches.

Green’s theorem deghosting has been demonstrated using several
acquisitions: (1) a single streamer with hydrophones, an estimate of the wavelet,
a "double Dirichlet" Green’s function, GBP, constructed to vanish on the
air/water boundary and the measurement surface, and a causal Green’s function,
G§*, representing direct propagation from the source to the receivers, (2) an
over-under streamer, a finite-difference approximation to the normal derivative,
dP/dz, G$*, and GJP, and (3) a dual-sensor streamer, G3*, and G5P (Weglein
et al., 2002; Zhang and Weglein, 2005, 2006; Zhang, 2007; Mayhan et al.,
2011, 2012; Mayhan and Weglein, 2013). These approaches illustrate some of
the different ways of satisfying the Green’s theorem requirement for two
measurements on the measurement surface. (i) A single streamer with
hydrophones and the air-water boundary can be used to capture one
measurement (the pressure wavefield, P) at two different depths. (ii) Similarly,
an over-under streamer captures one measurement, P, at two different depths.
(iii) A dual-sensor streamer measures P using hydrophones and the vertical
component of particle velocity, V,, using geophones; V, can be converted into
the normal derivative, dP/dz.

This paper proposes the use of an over-under streamer; however, instead
of using the two measurements of P to compute a finite-difference
approximation to dP/dz, they would be combined with a new Green’s function
constructed to vanish on both streamers.

THEORY

We show in Weglein et al. (2013) that a two-way wavefield in a
homogeneous medium can be written

P = Ael® + Be @ | 1

where q = ++/{(w/cp? — K2} (2D) or q = ++/{(w/cy)? — k2 — k2} (3D). If an
over-under cable at depths a,b is used directly, the upwave (deghosted wave) is

P, = Be

r

Il

{[P(b)e"™ — P(a)e®]/2isin[q(a—b)]}e ™ . )
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Eq. (2) is found by using the cable measurements to solve for B in eq. (1):

eiqa P(a) eiqa e—iqa

/

eiqb P(b) eiqb e-—iqb
— [P(b)eiqa _ P(a)eiqb]/[eiq(a—b) — e—iq(a—-b)]
= [P(b)e'® — P(a)e'®]/2isin[q(a—b)]
Eq. (2) assumes sufficient inline and crossline sampling for a Fourier
transform from r,w to k,w. Eq. (2) has ghost notches when q(a — b) = nm,
where special care must be taken. On the other hand, a — b may be (and

typically will be) smaller than the depth of a single cable, which means the
ghost notches move out (to higher frequencies).

ANALYTIC EXAMPLE
Analytic data including one primary and one receiver ghost

For a 1D normal incidence case, as shown in Fig. 1, assume the recorded
data at z’ is

P(z',z,w) = R[e*®#~% 1ik] — RlekCa+2'-2) /2ik]
— R[eik(zzw_z*) /2ik](e—ikz’ _ eikz') , (3)

where z', z; and z, are the depths of receiver, source and water bottom,
respectively, and k = w/c,.

Or—Y O;Y

ik(2z,-2'-z,) ik(2z,+z'-z
R e R e k(2z,+ s)
2ik i .
2ik
A - - I -
(a) Primary (b) Receiver ghost

Fig. 1. 1D normal incidence analytic data including one primary and one receiver ghost.
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Therefore, the exact derivative of the wavefield at z’ is
P'(z',z,,w) = R[e*@==%) /2iK](—ike ™" — ike**)

—(R/2)ekCz-2) (g7 4 glkz) | @

Up-down separation using two measurements at two depths

Consider a simple 1D normal incidence example, where in the vicinity of
the (towed streamer) cable the pressure field P satisfies:

[(0*/0z*) — (1/c)(@*/athH]P = 0 , )
where c; is the wave speed in water, and

[(d*/dz?) + (w*/c3)IP =0 , ©)

is the temporal Fourier transform of eq. (5).

The solution of eq. (6) is

P = Ae®? 4 Betkd | @)
N—— N——
down up

Using two measurements at two depths

P(a) = Ae*® + Be * | (8a)

P(b) = Ae*® + Be ™ | (8b)
By multiplying eq. (8a) with e*®~® and subtracting eq. (8b), we get

ek®~9P(@) — P(b) = Bek®~2 — Be~ikb

B = [e*®*"9P(a) — P(b)]/[e*C~2 — e~ikb] | )
Therefore, the upgoing wave at z’' = a is

P(a) = Be ™

= [e*®~2P(a) — e kaP(b)]/[e®-2 — e-ikb] | (10)

From eq. (3), we can get the two measurements, i.e., P(z' = a,z,w) and P(z’'
= b,z,,w), as follows:



418 WEGLEIN, LIANG, WU, MAYHAN, TANG & AMUNDSEN
P(a,z,,w) = R[e*®~2 2ik](e™™ — ) | (11a)
P(b,z,,w) = R[ek?%~% 2ik](e~* — elkv) | (11b)

and then substituting eqs. (11a) and (11b) into eq. (10), we get
Pr(a) — Reik(Zzw—zs) [(e-—ika_eika) X eik(b—Za)P(a) _ (e—ikb_eikb) X eika]

/2ik[eik(b—2a) _ e—ikb]
— Reik(Zzw—zs) [eik(b—3a) — eik(b—a) _ e—ik(b+a) + eik(b—a)]
/Zik[eik(b—Za) — e—ikb]
= Reka-2) [eik(b—fa‘a) _ e—ik(b+a)]
/2ik[eik(b—2a) _ e—ikb]
— Re ik(2zw—zs)e—ika[eik(b—2a) — e—ikb]
/2ik[eik(b—23) _ e—ikb]
— Re {k(22w~zs) e—-ika /211(
= R[e*Cnawe-kapik] | (12)

This is exactly the upgoing wave recorded at z’ = a with source at z, (in this

case, the primary).

Up-down separation using wave-field and the exact derivative of wave-field

at one depth

For eq. (7), if we have the wave-field and the exact derivative of the
wave-field at one depth, then

P(a) = Ae** + Be @ | (13a)

P'(a) = ikAe*® — ikBe i | (13b)
By multiplying eq. (13a) with ik, and subtracting eq. (13b), we have

ikP(a) — P'(a) = ikBe ™ + ikBe ik |

B = [ikP(a) — P'(a)le™*/2ik . (14)
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Therefore, the upgoing wave at z' = a is
P(a) = Be ™ = [ikP(a) — P'(a)]/2ik . (15)
Substituting P(a) and P’(a) [using egs. (3) and (4)] into eq. (15), we have

P(a) = [ikP(a) — P'(a)]/2ik

{ikR[e"®~~*) 2ik](e 7™ — &™)
= [—(R/2)e*Cz=m (e7H 4 el 2ik

= [Re*Cn~2) g-ka]/2ik = Re*C®%—27%) ik | (16)
which is the same result as eq. (12).
Up-down separation using wave-field and approximate derivative of
wave-field at one depth

If we have two measurements at two depths, we can also get the
approximate derivative of the wave-field using finite difference, for example,

P'(a) = [P(b) — P@]/(b — a) . a7

Substituting P(b) in eq. (11b) and P(a) in eq. (11a) into eq. (17), we can
have

P'(a,zs,w) — [Re ikQ2z,~z) /211(] X [(e—ikb_eikb) _ (e—ika_eika)]/(b _ a)
= [Re *@%-2) 2ik] X [—2isin(kb) + 2isin(ka)]/(b — a)
= —Re*@n-2) X [sin(kb) — sin(ka)]/k(b — a) . (18)

In comparison, the exact derivative of the wave-field in eq. (4) at z’ = a can
be rewritten as

P’(a,zs,w) — —(R/2)e ik(2z,,—z,) (e—ika + eike\)
= —(R/2)e*@%=2) 2cos(ka)
= —Re *?%~2) cos(ka)

= —Re*®%~2) [dsin(kz')/d(kz")]|, . - (19)
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And, we have

dsin(kz')/d(kz') = lim [sin(kb) — sin(ka)]/k(b — a) = cos(ka) . (20)
(b—a)-0
Hence, if the two depths (b and a) are close enough, eq. (18) will reduce
to eq. (19), and using the wave-field and the approximate derivative of the
wave-field at one depth in eq. (17) can give a reasonable result; otherwise,
using the approximate derivative in eq. (17) can produce an error.

The method developed in this paper can be derived from Green’s
theorem, where the closed surface consists of the over/under cables and the
Green’s function is arranged to vanish at each cable. In the (k,,w) domain the
Green’s theorem method comes closest to the 1D analysis in this paper, and
would allow deghosting on the cable.

NUMERICAL EXAMPLES

In this section, some numerical examples will be presented to compare the
two deghosting methods: (1) one method uses the wave-field at two depths to
compute a finite-difference approximation of the derivative of the wave-field at
one depth, and (2) the second (and new) method uses a single measurement of
the wave-field at two depths.

Air-water boundary

Data generated by Cagniard-
de Hoop method

Source depth: 7m

Receiver depth: 9m &11m
Sampling interval: 3m
Aperture: 2400m

Vel=2250m/s

Velocity model

Fig. 2. Model with receivers at 9 m and 11 m.
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The synthetic data is modeled using the Cagniard-de Hoop method. We
tested two models here, with different depth differences between the over/under
cables. Fig. 2 shows the model of two streamers located at 9 m and 11 m. Fig.
5 shows the model with two streamers located at 11 m and 21 m. Figs. 3 and
6 show the numerical test results in the case of zero offset, while Figs. 4 and
7 are showing far offset traces. We compared the test results using the two
deghosting methods with the exact up-going waves computed by Cagniard-de
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0090 0 02 0.4 0.6 0.8 1.0 12
Timels
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e 0 0.2 0.4 0.6 0.8 1.0 1.2
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Fig. 3. Zero offset traces: (a) Red: Exact data without receiver ghosts, Blue: Data receiver
deghosted using P and dP/dz at the same depth (dP/dz computed using finite-difference), (b) Same

as (a) except Green: Data receiver deghosted using P at two depths. Both deghosting methods give
satisfactory results.
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Hoop modeling without a free surface. Red lines here represent the upgoing
wave generated using the Cagniard-de Hoop method, which can serve as a
standard to evaluate the accuracy of those two deghosting results. Similarly,
blue lines represent the receiver side deghosted results using the wave-field P
and a finite-difference approximation of dP/dz, while the green lines are the
results from using the wave-field at two depths. When the blue lines or the
green lines match well with the red lines, the result is satisfactory.
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Fig. 4. Far offset traces (1200 m): (a) Red: Exact data without receiver ghosts, Blue: Data receiver
deghosted using P and dP/dz at the same depth (dP/dz computed using finite-difference), (b) Same
as (a) except Green: Data receiver deghosted using P at two depths. Both deghosting methods give
satisfactory results.
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Air-water boundary

Data generated by Cagniard-
de Hoop method

Source depth: 7m

Receiver depth: 11m &21m
Sampling interval: 3m
Aperture: 2400m

Vel=2250m/s

Velocity model

Fig. 5. Model with receivers at 11 m and 21 m.

In the first model we tested (Fig. 2), where the two cables are separated
by 2 m, both of the two deghosting methods can give satisfactory results, in
both zero offset and far offset. Since here the two cables are only separated by
2 m, the finite-difference approximation of dP/dz is relatively accurate. In the
second model (Fig. 5), where the two cables are separated by 10 m, it can be
clearly seen that the deghosting result calculated from the two measurements at
two depths is satisfactory, but the method of wusing finite-difference
approximation of dP/dz gives more artifacts, especially at the far offset. Since
in the second model the two cables are further apart, the approximation of the

derivative of P is not accurate enough, and causes artifacts in the deghosting
result.

SUMMARY

A new deghosting method is proposed, for over-under cable
measurements, that addresses shortcomings in current dual measurement and
over-under cable approaches. For over-under cables, a finite-difference
approximation of the pressure can be a source of errors. Also, measurements
of the pressure and the vertical component of particle velocity at one depth can
have issues with different instrument responses, and low frequency issues for
the particle velocity measurement. The method proposed in this paper avoids
these shortcomings of those current approaches. The method depends on
knowing the distance between the cables, which is well known in practice, and
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more reliable than the depth to either cable. In addition, the notches are much
further out in comparison with methods that depend on the depth of the cable.
The proposed method requires over-under cables. We evaluate the effectiveness
of the new approach in comparison with other methods for over-under cables.
Analytic and numerical examples are encouraging, and further tests are planned.

0.010.

(a)

0.005 -

0.005 fl

e 0 0.2 0.4 0.6 0.8 1.0 12

Timels

0.010

(b)

0.005

0.005

g 02 04 0.6 08 1.0 12

Time/s

Fig. 6. Zero offset traces: (a) Red: Exact data without receiver ghosts, Blue: Data receiver
deghosted using P and dP/dz at the samé depth (dP/dz computed using finite-difference), (b) Same
as (a) except Green: Data receiver deghosted using P at two depths. The method in (b) gives a better
result than the method in (a).
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Fig. 7. Far offset traces (1200 m): (a) Red: Exact data without receiver ghosts, Blue: Data receiver
deghosted using P and dP/dz at the samé depth (dP/dz computed using finite-difference), (b) Same

as (a) except Green: Data receiver deghosted using P at two depths. The method in (b) gives a better
result than the method in (a).
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