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ABSTRACT

Weglein, A.B., Mayhan, J.D., Amundsen, L., Liang, H., Wu, J., Tang, L., Luo, Y. and Fu, Q.,
2013. Green’s theorem deghosting algorithms in (k,w) (e.g., P-V, deghosting) as a special case of
(x,w) algorithms (based on Green’s theorem) with: (1) significant practical advantages and
disadvantages of algorithms in each domain, and (2) a new message, implication and opportunity for
marine towed streamer, ocean bottom and on-shore acquisition and applications. Journal of Seismic
Exploration, 22: 389-412.

This paper is examining the implications and differences of Green’s theorem derived methods
for deghosting in (x,w) and (k,w). Substituting for P, a relationship with V, in the (k,w) method, and
benefits and limitations that arise from that substitution (while important) are not within the scope
of this paper. We point out how industry standard P-V, deghosting (in k,w) can be derived from
Green’s theorem deghosting (in X,w). We discuss the advantages and disadvantages of deghosting
methods for each domain. For example, the Green’s theorem deghosting in (x,w) can accommodate
an arbitrary measurement surface, whereas P-V, deghosting requires the source and field locations
to be on a horizontal measurement surface. We discuss the implications of each deghosting/wavefield
separation method for towed-streamer, ocean-bottom and on-shore acquisition.

KEY WORDS: deghosting, offshore processing, on-shore processing, Green’s theorem,
pre-processing.
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INTRODUCTION

We start with the meaning of deghosting, and the simplest up-down
separation idea. Then, we show how those early simple ideas and thinking have
evolved and advanced through methods based on Green’s theorem. We then
show explicitly how these recent advances reduce to the original, and readily
accessible and understandable concepts and algorithms, and the advantages and
disadvantages, and delivery that the original and more recent progress represent.

We will connect Green’s theorem (X,w) deghosting to the industry
standard P-V, method. P and P, are the pressure and the normal derivative of
pressure, respectively, and V, is the vertical component of particle velocity. The
industry standard P-V, deghosting method will be shown to correspond to a
Green’s theorem method in (k,w) where P, is expressed in terms of V,. In this
paper, we will often refer to the Green’s theorem deghosting method in (k,w)
as the P-V, method. We will show a more direct way to derive that connection
relationship than appears in Appendix B of Mayhan and Weglein (2013). We
start with what resides behind the industry standard type of deghosting
algorithm, review the Green’s theorem deghosting method in (X,w), and then
show how the industry standard (k,w)/P-V, method is a special case of the more
general Green’s theorem (x,w) deghosting method. The (x,w) method can derive
the (k,w) method as a special case, but not the other way around, i.e., the (k,w)
method cannot derive the (x,w) method. approach. We point out how the P-V,
form method has advantages over Green’s theorem in (k,w) for on-shore
application where the source is on the receiver measurement surface and the
interest is in deghosting the data you acquired on the cable. The Green’s
theorem (X,w) deghosting method has advantages over P-V, when the
receiver/source acquisition is not on a horizontal surface.

Events that go up (from the source) and/or down (from the free surface)
can destructively interfere with non-ghosted events putting notches in the data,
which are not in the source spectrum. Deghosting removes destructive
interference and boosts low frequencies. Removing the downwave recorded by
the receiver, we want to be left with an upwave, which is up/down separation.
In addition to the traditional interests in deghosting described above, we prefer
to deghost data prior to calling upon the inverse series to remove free surface
multiples. Primaries, free surface multiples, and internal multiples are defined
as events in the deghosted part of the measured wave field.

ELEMENTARY/ESSENTIAL LESSONS FOR DEGHOSTING THAT
RELATE DATA ACQUISITION CHOICES AND STABLE SOLUTIONS

Consider a simple 1D normal incidence example, where in the vicinity of
the (towed streamer) cable the pressure field P satisfies:
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[(0%/0z2) — (1/c3)(3%*/ot?)]P = 0 €))
where c, is the wave speed in water, and
[(d%/dz?) + (w*/cH]P =0 )

is the temporal Fourier transform of eq. (1). The solution of eq. (2) is

P = Aexp(ikz) + Bexp(—ikz) , 3)
[—— S —
down up

where the convention exp(—iwt) is used for going from w to t. For deghosting,
we want to up-down separate P at the assumed measurement location z = a.
That requires two pieces of information about P.

Two measurements at one depth

If we make the required two pieces of information about P measurements
of the field and its derivative at one level, for a cable at z = a,

P(a) = Aexp(ika) + Bexp(—ika)
P’'(a) = ik[Aexp(ika) — Bexp(—ika)] ,
Solve for B,
B = {[ikP(a) — P'(a)]/2ik}exp(ika) ,
and the upgoing wave at z = a is
[ikP(a) — P'(a)]/2ik .
If we extend the above to a multi-D world in the vicinity of the cable,
[V2 — (1/c3)d*1P(x,z,%,,2,t) = O . (€))
In the temporal Fourier domain, eq. (4) becomes
(V2 + KPX,z,X,,Z,0) = 0
and then Fourier transforming over x we have

[(d¥/dz*) + k? — KPK,,z,X,Z,w) = 0 . 5)
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Taking 2 = k2 — k2, eq. (5) looks like eq. (2). The solution of eq. (5) is

P = Aexp(iqz) + Bexp(—iqz) ,
where A, B are functions of k, and w, whereas in eq. (3), A, B are functions
of w. We get B the same way as before except that the role of k will be played
by g, i.e., in the prestack form [eq. (5)] the deghosted data at the cable (at z =
a) is

Pr(a,kx’w) = [iqP(a9kx’w) - P,(a;kx,w)]/Ziq ) (6)
with q = ++/{(w/cy)* — K2}.

When P’ is substituted with iwpV, where p is the local mass density at the
cable and V, is the vertical component of velocity, eq. (6) becomes

P.(ak.,w) = [igP(a,k,,w) — iwpV,(a,k,,w)]/2iq , ™
the receiver deghosted data on the cable at z = a. The latter formula is.the
prototype of industry standard P-V, summation for deghosting.

Two measurements at two depths

Another way to provide two pieces of information about P is to use P on
the cable and P at the free surface (where P = 0). We get

PO)=A+B , (8a)
P(a) = Aexp(ika) + Bexp(—ika) . (8b)
To solve for B, multiply eq. (8a) by exp(ika) and subtract eq. (8b) to get
exp(ika)P(0) — P(a) = Blexp(ika) — exp(—ika)] ,
B = [exp(ika)P(0) — P(a)]/[exp(ika) — exp(—ika)]
= [exp(ika)P(0) — P(a)]/[2isin(ka)] , &)
which in principle is entirely equivalent to eq. (7), but can have stability issues
compared to eq. (7) for small errors in the cable depth, especially in the vicinity
of notches. This was noted in Mayhan and Weglein (2013). To illustrate, let’s

assume that the total wave is upgoing and it doesn’t require deghosting. Then
the measured wave is P(z) = P(0)exp(—ikz). Then put P(a) into eq. (9) to get
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P(a)

B = [exp(ika)P(0) — P(0)exp(—ika)]/[exp(ika) — exp(—ika)] = P(0) ,

the deghosted data at z = O; if the depth is correct, then the exponentials
[exp(ika) — exp(—ika)] in the numerator and denominator cancel for any
frequency and there’s no problems. But, if you have the cable depth wrong (the
cable is at ‘a’ but you think it’s at ‘b’), the exponentials don’t cancel, and you
can get zeros in the denominator.

There is no sensitivity in eq. (7) to division. Eq. (7) is the solution for B
with two measurements at one depth, while eq. (9) is the same formula for B
with two measurements at two depths. In theory egs. (7) and (9) are equivalent,
but in practice eq. (9) can have issues. Zhang (2007) shows that for a small
error in depth eq. (7) is stable. For typical towed streamer data at 6 m, a
receiver notch occurs at 125 Hz. This frequency is usually outside your data
(e.g., with max 70 Hz). But if you’re collecting data to 250 Hz, the notch is in
your data. The zeros are at ka = nm, or k = nw/a, n = 0,1,2,... If you make
the cable deeper, the notches shift to lower frequencies. At the ocean bottom,
the notches can come in at 5 Hz. Deghosting is very serious for ocean bottom
data, because the notches are inside your data. Eq. (7) is two measurements
(field and its derivative) at one level. That’s what Green’s theorem depends on,
(PV'G, — G,V'P)-fi on the measurement surface.

GREEN’S THEOREM

There are many applications of Green’s theorem ‘in seismic processing;
among them are wavefield separation and wavefield prediction methods. Green’s
theorem deghosting is a wavefield separation concept and method. The Green’s
theorem based marine deghosting method begins with a description of (the
waves in) the actual medium in terms of a whole space reference medium of
water plus three sources located on different sides of the measurement surface.
See Fig. 1 and Zhang (2007) and Mayhan and Weglein (2012). One source
converts water to air, p,;,, one source corresponds to the air guns, 0y, and
one source converts water to earth, p... With this homogeneous reference
medium, the causal whole-space Green’s function, G§*, from a source to the
field point is always outgoing and straight away from the source.

The differential equation for the total pressure field, P, in this reference
medium/sources description is

(V2 + kZ)P = Pair + pairguns + Pearth -

Consider the integral, I, defined as
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Ir,w) = § PO r,0)V'GH @1 w)
— G (r,r W)V r,w)] hdS’ . (10)

where S is a closed surface whose lower surface is the measurement surface and
the upper surface is a large radius hemisphere above the measurement surface.
When eq. (10) is evaluated at a point r inside the volume V it gives the
contribution due to the sources outside V on the field at a point inside V. When
the integral, eq. (10), is evaluated at a point r above the cable and below the air
gUNS, W,imuns» the wave due to the ‘earth’ is upgoing, whereas the waves from
the ‘air guns’ and the ‘air’ are downgoing. Hence, at that point the integral in
eq. (10) provides the upgoing portion of the total measured wavefield, and
hence is the receiver deghosted portion of the total wavefield at r. We therefore
call I(r,w) the receiver deghosted data, P(r,w). With the description of three
sources and the whole space reference medium, the integral in eq. (10) gives the
portion of the total wavefield due to the source p.,q . At that point, r, the
portions of the total wave due to the other two sources are downgoing.

— O —
— -‘

-~ ad

- ~
” ~

’, NN
5 air “~
o P air Free surface N

Fig. 1. Configuration for Green’s theorem deghosting. oy, Pairguns> aNd e, OVerlay the reference
medium (whole space of water) to give the actual medium. The closed surface of integration is the
dashed line.
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DERIVING P-V, FROM GREEN’S THEOREM

We now start with eq. (10) and derive eq. (7), the latter being the basis
of P-V, deghosting. We provide the derivation in 2D, and the 3D derivation is
a straightforward generalization. Let (x',z") be the receiver coordinates, i.e., x’
runs along the cable and z’ is the constant depth of the cable, (x,,z,) is the
source location, and (x,z) is the prediction point, where we choose for
deghosting z; < z < z'. The integral [in eq. (10)] produces an upwave at (x,z),
which outputs the receiver deghosted field at the point (x,z).

Eq. (9) depends on measurements at two depths, i.e., the cable depth and
the free surface. The integral [in eq. (10)] relates to eq. (7). Advances in

acquisition have allowed eq. (10) to be realized in practice. Writing eq. (10) in
2D,

P.(x,z,x,,Z,,0) = 5 dx'[P(x’,z’ ,X,Z,,w)(8/02")G{* (X,z,X',2' ,w)
- G{*(x,2,x',2",w)(3/0z")P(X',Z’ X, ,Z,w)] s 11)
where the left hand side is the receiver deghosted portion of P. The next steps
in this derivation benefit from the work of Corrigan et al. (1991), Amundsen

(1993) and Weglein and Amundsen (2003). Fourier transforming eq. (11) with
respect to x gives

s exp(—ik,x)dx P(x,z,X,,z,,w) = s exp(—ik,x)dx S dx’
X [P(X',2',X,,Z,,w)(8/02")G§ ¥ (X,2,X",2’ ,w)
- Gi*(x,z,x',z2' ,w)(8/0z")P(x',2' X, ,Z,, )] , (12)
where G§* is the causal whole space solution of
(V2 + KOG (r,r',w) = 6(r — r') . (13)

Substitute the bilinear form of the Green’s function

Gl @0 = | [1/@m)lexp(—ik't)/(~ [k’ |>+2+ig)lexp(ik'r)dk’ . (14)

This bilinear form is the plane wave decomposition of G,. Eq. (14)
requires all wavenumbers to produce a single temporal frequency wave solution
in a region that includes the source. Why does a single temporal frequency
solution, Gy, require all k’? The driving function, the Dirac delta function [in
eq. (13)], contains all wavenumbers. So the solution with that driving function,
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G,, depends on all wavenumbers, as well. In 2D,

Gy(%,z,x",z2' ,w) = [1/Q27)?] S {exp(ik,[x — x']Dexp(ik.[z — z']
/ (=k'2 + k% + ig)}dkdk, .

Fourier transform G, with | exp(—ik,x)dx,

S dx exp(—ikx)exp(ik;x)exp(—ik,x")exp(ik,x")exp(ik [z — z']) ,

2mé(k,—ky)

and the Dirac delta allows you to carry out | dk;

exp(—ikx") S {exp(ik,[z — z’D/(-k2 — k> + K + ig)}dk, .  (15)
The integral looks like a 1D Green’s function if we define k> — k2 = ¢ The
latter relation between q, k, and k is not due to a dispersion relationship but by
introducing and defining the quantity q.

The 1D causal solution to
' [(d?/dz?) + k%G, = 6 ,
° Gy = [exp(ik|z — z'|)]2ik . (16)
The integral in eq. (15) then results in:

lexp(iq|z — z']))/2iq ,
from eq. (16), and eq. (15) becomes

exp(—ikx")[exp(iq|z — z'|)]/2iq .
Now differentiate eq. (15) with respect to z’,

[igsgn(z’' — z)/2iqlexp(iq|z — z’|)exp(—ikx’) .

The other term [in eq. (11)] will have G, with no derivative. Performing the
integral over x' we then find

P.(k,,z,X;,Z;,w) = P(k,,z';X,,Z,w)[sgn(z’ — z)/2]exp(iq|z — z'|)

— P'(k.,z' X, Zs,w)[exp(iq|z — Zz'|)]/2iq . a7
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It’s a combination of P and P’ at z’ (the measurement depth). Note there
is no sum and no integral. The output point is shallower than the cable, z' >
z,s0osgn(z’ —z) = land |z — z'| = 2’ — z, and we get the form eq. (7).
This is called P-V, deghosting.

The industry standard practice replaces P’, the normal derivative of P,
with displacement in terms of the vertical component of velocity using the idea
sketched here. Start with a 1D Newton’s second law:

F=ma ,
and in the frequency domain
F = miwV, ,
where a = iwV, and V, is the vertical component of velocity. This becomes
F/A = (m/A)iwV, ,
where A is "area".
P" ~ (1/D(F/A) ~ (0/0z)(F/A) = (m/ADiwV, = piwV, , (18)

where p = m/(Al) is the mass density. The Fourier transform turns the integral
into a single product (diagonalizes an integral eq. (10) into an algebra
expression with single products of terms). Eq. (17) with eq. (18) for P’ is the
industry standard and called P-V, summation. Why are we interested in a
Green’s theorem solution [eq. (10)] in (x,w) when eqgs. (17) and (18) are
available?

1. The (k,w) methods, eqgs. (17) and (18), assume that you have adequate
sampling and aperture to perform an effective/accurate Fourier transform.
In practice in the crossline direction, it can be a challenge to perform a
Fourier transform because crossline receivers are further apart than inline
receivers and crossline aperture is limited compared to inline. Green’s
theorem in (x,w) allows you to directly input and integrate the data you
have recorded. Careful attention to implementation [e.g., Nyquist

frequencies, padding to implement in (k,w)] is required for both
methods. :

2. Only Green’s theorem deghosting in (x,w) can perform a curved line (2D)
or non-flat surface integral (3D) on the ocean bottom or onshore and can
directly accommodate a non-horizontal cable. Ghosts are particularly
important at the ocean bottom because the notches arrive at lower
frequencies and typically within the seismic bandwidth.
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We have shown that Green’s theorem deghosting in (X,w) relates to the
industry standard (k,w) method when the measurement surface is horizontal and
the data in the space domain is adequate to perform Fourier transforms. Green’s
theorem in (x,w) and in (k,w) or P-V, are not the same for a curved boundary.
Green’s theorem deghosting in (x,w) is directly applicable to any shape or form
of measurement surface whereas deghosting in (k,w) or P-V, is not. However,
if the stringent requirements of (k,w) are (assumed to be) satisfied then the (k,w)
deghosting method offers (within its assumptions) opportunities for on-shore and
ocean bottom deghosting not available with (x,w) methods. Details to explain
and exemplify this statement are presented in the following section.

In the following two sections, several numerical comparisons will be
given to see the results from the two methods (Green’s theorem in (X,w) and in
(k,w) or P-V,) with different spatial sampling intervals and apertures. In order
to study their isolated effects, for each test we keep one factor unchanged and
only vary the other factor. A simple horizontal model (Fig. 2) is used for the
tests. Since the second reflector is very deep, only the reflections from the first
reflector are in the synthetic record. The acquisition geometry is listed in each
figure. To avoid aliasing, low-pass filtering was applied in each experiment
before de-ghosting. Regarding the trace number on the vertical axis in Figs. 3
to 14, the original synthetic data used for the tests has 1601 traces with a
sampling interval of 3 m; trace 801 is the zero-offset trace. And trace 1000
means the trace with offset of 3 m X 200 = 600 m. Other trace numbers can
be changed to offsets in a similar fashion. The time axes differ in the figures so
as to make events in the figures clearer for purposes of comparison. The red
lines in Figs. 3 through 14 are exact up-going waves without receiver side
ghosts, and they can be used to examine the results of both methods. If the blue
or green lines match well with the red ones, the results are satisfactory. From
Figs. 3 to 8, by increasing the spatial sampling intervals from 3 m to 100 m, it
can be seen that the blue and green lines better match the red one for smaller
intervals. Similarly, from Figs. 9 to 14, the results are improved for wider
apertures.

Numerical examples: Spatial sampling interval

First, we test/compare the results from the two different methods from
changing the spatial sampling interval. To some extent, dense sampling reflects
the situation of acquisition in the in-line direction, while sparse sampling is to
mimic acquisition in the cross-line direction. Here we keep the aperture of 2400
m and increase the spatial sampling interval gradually, from 3 m to 30 m to 100
m. The single traces extracted from the gathers are shown in Figs. 3 through 8.
In each figure, the red line represents the upgoing wave generated by using the
Cagniard-de Hoop method, which can produce analytically accurate receiver
side deghosted data. It can be used as a standard to verify the accuracy of the



GREEN'’S THEOREM DEGHOSTING ALGORITHMS 399

two deghosting methods. In each figure, the blue line represents the
receiver-side deghosted result by using the (k,w) domain method, while the
green line is for the result by using the (x,w) domain method. If the blue line
or the green line matches well with the red line, the result is satisfactory.
Besides single traces, the average spectrums are also used for further
comparisons. The single traces extracted from the gathers and their average
spectra are shown in Figs. 3 to 8.

Numerical examples: Aperture

Second, we test/compare the results from the two different methods when
changing the aperture. Here, we keep the spatial sampling interval of 3 m and
decrease the aperture gradually from 2400 m to 150 m to 45 m. The lines in
Figs. 9 to 14 have the same meanings as the first part (above).

Numerical examples: Conclusions

Given a horizontal measurement surface, with careful attention to
implementation, there is no practical difference between the (X,y,w) and
(ky,k,,w) methods in terms of sampling and aperture requirements. Both methods
represent wave theory processing (and neither is an asymptotic method), and,
hence, both equally benefit from and appreciate wider apertures and denser
sampling.

Air-water boundary

Source: 7Tm
Vel=2250m/s Receiver: 11m
Sampling interval: 3m
Aperture: 2400m

Velocity model

Fig. 2.
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Spatial sampling interval: 30m (low pass filter: 25Hz)
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Spatial sampling interval: 100m (low pass filter: 7Hz)
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Fig. 8.



GREEN'’S THEOREM DEGHOSTING ALGORITHMS

Aperture: 2400m
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Aperture: 150m
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Aperture: 45m
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ON-SHORE GREEN’S THEOREM WAVE FIELD SEPARATION:
NEAR-SURFACE PROPERTIES

On-shore multiple attenuation can be an outstanding issue and significant
challenge. Among issues that contribute to this pressing and high priority
challenge are: (1) complex and ill-defined near-surface properties, (2) numerous
and hard to identify multiple generators, and (3) interfering primaries and
multiples. To address the latter issue, you need surgical removal of multiples so
you don’t damage the primaries, and that in turn requires capable delivery of the
prerequisites required by inverse scattering series (ISS) multiple removal
methods. To satisfy these prerequisites a set of Green’s theorem procedures have
been developed in, e.g., Weglein et al. (2002), Zhang and Weglein (2005, 2006),
Zhang (2007), Mayhan et al. (2011, 2012), Mayhan and Weglein (2013), Tang
et al. (2013), and others to separate the reference wave and scattered wave and
to deghost. These procedures have shown value in synthetic data, SEAM data and
marine field data (Zhang, 2007, Zhang and Weglein, 2005, 2006; Mayhan et al.,
2012; Mayhan and Weglein, 2013). The biggest challenge is on land; how do we
satisfy the prerequisites on land?

On land, the measurement surface is right on the perturbation, and the
actual/energy source is on the same level/line as the measurements. We want to
identify and remove the reference wave along with its surface waves. For
on-shore application, the reference wave has surface waves, and Green’s theorem
can be a way to identify/use/remove surface waves. Today the petroleum industry
often employs a combination of filter methods and intervention by capable
processors. Surface wave identification/removal remains an open and important
practical problem.

In the marine application of Green’s theorem wavefield separation methods,
we assume the air-gun source is above the cable and the output/prediction point
is either above or below the measurement surface. For on-shore application the
source can be on (or below) the measurement surface, and we might want the
wave separation of the measured data itself. In Zhang (2007), Zhang and Weglein
(2005), and Mayhan and Weglein (2013) it was shown that using the Green’s
theorem form [eq. (10)] that the output point must be more than 2Ax above the
measurement surface, i.e., that Az = |z — z;| = %Ax, where z is the output
depth, z, is the cable depth, and Ax is the sampling interval. If it gets closer, the
calculation becomes unstable, with empirically observed numerical issues. That
numerical issue in the (x,w) Green’s theorem method precludes the output point
being too close to the cable, and it cannot be on the cable itself. The requirement
Az = 'AAx holds for both Green’s theorem (x,w) deghosting and wavefield
separation (P = P, + P,) for Pyand P,. However, since the (k,w) Green’s theorem
deghosting methods, implicitly assume, in principle (in their derivations), perfect
spatial sampling, Ax = 0, they provide algorithms/methods that allow the seismic
source and/or the output/prediction point to be on the measurement surface.
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Fig. 15. The Green’s function (top) and its normal derivative (bottom) as a function of the inline
coordinate, X, and the depth, z, of the predicted wavefield below the air/water boundary.
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Tang (2013) plotted the Green’s function and its normal derivative as a
function of the inline coordinate, x, and the depth, z, of the predicted wavefield
below the air/water boundary. In Fig. 15, the left panel is Gy(x,z,x, = 0, z, =
30, w = 25) and the right panel is dGy/0z(x,z,x; = 0, z; = 30, w = 25). x is
the horizontal axis, and z is indicated by different colors. As z approaches z,,
i.e., as the color changes from light blue to green to yellow to red to blue to
black, 0G,/dz becomes more narrow. Unless we have a small sampling interval
Ax, the value of dGy/dz may not be picked up by the finite sum used to
numerically approximate the integral, and the quality of deghosting falls off.

However, in the P-V,, (or k,,w) domain, methods for wave field
separation, when you Fourier transform, it assumes you have sampling sufficient
to do the integral correctly without error. If you assume Ax = 0 as in P-V,
forms, you can accommodate proximal to and on the cable for both the seismic
source and output point.

The consequences of this difference between Green’s theorem in (x,w) and
in (k,w) or (P-V,) approaches are more significant than just wanting to deghost
marine data on the cable. The difference between these two will assist us to
deghost and wave separate on land. We will illustrate this using a simple
example separating P, and P, in a 1D earth with a normal incidence wave. In
our example, we will further assume there is no earth, that P is P, and the
scattered wave is zero. What if we want the source on the cable and the
prediction point on the cable? Don’t use eq. (10) directly; instead put eq. (10)
(Weglein et al., 2002) in the Fourier domain. We will examine this issue in a
1D normal incidence example which is the same as being in the (k,w) domain,
since there is no x and no integral over x. Another question is how do we get
P’ on land? There are several ways we could imagine that requirement being
satisfied. For example, if you are in the Middle East, one typically uses
Vibroseis. The base plate has a phone and you can estimate something like a
wavelet. From the wavelet and the field you get the derivative. A(w), P, and P’
are called the triangle; given two, the triangle will give you the third (Weglein
and Amundsen, 2003, Corrigan et al., 1991).

FOR ON-SHORE APPLICATION: PLACING THE SOURCE AND THE
OUTPUT POINT ON THE MEASUREMENT SURFACE

In Weglein and Secrest (1990) the Green’s theorem reference wave, Py,
and scattered wave, P, separation analogous to eq. (10) becomes

—P,
|2{P(dGi*/dz") — (dG§*/dz")} = ovez=a | 19
Py

below z=a
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where the reference medium is chosen (in this example) as a whole space of
water G§ = GU*. The 1D normal incidence case in eq. (19) is the (k,,w) form
when there is no x coordinate in the problem statement.

In the example, ‘a’ is chosen on the measurement surface on the surface
of the earth, ‘b’ is below ‘a’, and z, is above ‘a’. The output point can be
chosen to be above ‘a’ or below ‘a’. Later in this example, we will make z; on
the surface of the earth, and our output point will be on ‘a’, as well. In the
example, where the actual medium is a whole space of water, the output point
above ‘a’ gives P, and below ‘a’ gives P;. And in this simple world, separating
P, and P, is also deghosting, because it is the same G§ = G{*. (For deghosting
pick G{ = G§*. In general, deghosting and wavefield separation are not the
same.) There is no P, because there is no upgoing wave anywhere, including
above z = a. The source wave is moving down so deghosting gives zero.

How to proceed when we want to apply Green’s theorem wavefield
separation methods where: (1) the source is on the measurement surface, and
(2) we want to calculate P, and P, in the data/on the cable. We know that we
can not arrange that in the (x,w) domain. Eq. (10) in (x,w) forces you to stay
above the cable (by an amount that depends on sampling), whereas in (k,w) or
P-V, eq. (10) has in principle perfect sampling (Ax is zero) and hence the
source and output points can be located on the measurement surface.

For transparency we consider the 1D normal incidence example. In eq. (19)
P = exp(ik|z’' — z,|)/2ik ,
dP/dz’ = ik[exp(ik|z' — z|)/2ik]sgn(z’ — z,) ,
G, = exp(ik|z — z'|)/2ik ,
dGy/dz' = [ik sgn(z’' — z)/2iklexp(ik|z — z']|) ,
|2{[exp(ik|z’ — z,|)/2iKI{[sgn(z’ — z)/2lexp(ik|z — z'|)}
— [exp(ik|z — z'|)/2iklexp(ik|z' — z]|)sgn(z’' — zs)/2} .
Evaluate at a < z < b. ‘a’ will contribute and ‘b’ won’t contribute. This is

shown below. .
r——
{exp[ik(b — z)]/2ik}{sgn(b — z)/2}exp[ik(b — z)]
z—i\——\

— {explik(b — z)]/2ik}exp[ik(b — z)]sgn(b — z)/2
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~1
Y N

— {{exp[ik(a — z,)]/2ik}{sgn(a — z)/2}exp[ik(z — a)]

1
[I— —

— {explik(z — a)]/2ik}exp[ik(a — zy)]sgn(a — zs)/2}

= {exp[ik(b—z,)]/2ik}exp[ik(b—2)]/2 — {explik(b—z)]/2ik}exp[ik(b—z/)]/2

~

~~

=0

— { {explik(a—z,)]/2ik}exp[ik(z—a)]/(—2) — {explik(z—a)]/2ik}exp[ik(a—zJ)] /2}
= (1/2ik)explik(z—z)] = P = P, . (20)

There is no contribution from b. The terms with b’s cancel, and P = P,
because the reference wave is the total wavefield. If we evaluate at z, < z <a,
the total contribution is zero because P, = P and P, = 0.

What do you do when you put the source on the cable? Fourier
transforming into a k,w form avoids the Az = 4 Ax restriction because it
begins with P(k,,z',x,,Z,,w). No integral is left for x. The only question is where
do you choose the output point, z? If you want to deghost on the cable, Fourier
transform over x and use the P-V, forms. The Dirac delta function properties

are:
fr) rinV
S o — r)H)f@r)dr’ =
M 0 r outside of V

The application of Green’s theorem methods to either the source or output
point on the surface (the measurement surface) boils down to the question of
what is jva(r — r’)f(r")dr’ when r is on the surface enclosing V. You can
choose whether it’s in or out of V (Morse and Feshbach, 1981, page 805). In
our example above, evaluate at z, = ‘a’, when the source is on the cable
[sgn(z’' —z) = sgn(0)], and if you want the source on the cable to be treated as
the source above the cable, then choose sgn(a — z) = 1 with z, = a. For the
output point, when z = a (predict at the cable), if we want the same sign as
when z > a, choose sgn(a — z) = —1 when z = a. If you want the output
point when it is on the surface (measurement surface) to be included with points
above the cable choose sgn(a — z) = +1 when z = a.

So our choice of sign will give P, or P, on the cable, depending on
whether you choose the cable to be included with the region below or above the
cable, respectively. You’'re deciding whether the boundary is inside or outside
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the volume. You can’t arrange this in eq. (10) because you can’t get to the
boundary, at least not while keeping the algorithm stable.

The bottom line here is for land you can’t get close enough (to the
boundary) to make a decision in eq. (10). This is not true if you go to the
Fourier k,,w domain. But there is no free lunch. If Ax gets too big, P(k,,z,w)
becomes inaccurate, and P — V, can have issues.

SUMMARY

Green’s theorem (x,w) deghosting methods for wave separation have
advantages compared to Green’s theorem deghosting in (k,w) for non-horizontal
measurement surfaces (ocean bottom, dipping cable). For applications where the
interest is in wave separation on the cable itself and where the source is on the
measurement surface (on-shore) (k,w) would accommodate that interest whereas
(x,w) (Green’s theorem) will not. This paper is examining the
implication/differences of Green’s theorem deghosting methods that operate in
two domains: (X,w) and (k,w). Substituting the normal derivative of P in terms
of the vertical component of velocity, V,, in the (k,w) domain, and
benefits/limitations that arise from that substitution (while important) are not
within the scope of this paper. There is work by Robertsson et al. (2008) and
Amundsen et al. (2010) on the use of multicomponent streamer recordings for
reconstruction of pressure wavefields in the crossline direction. Among open
issues and challenges in Green’s theorem wave separation preprocessing, for
on-shore application, is the development of a new method and algorithm that can
incorporate/combine the measurement surface shape flexibility of (x,w) methods
and the ability of (k,w) methods to allow both the seismic¢ source and the output
point to be located on the receiver measurement surface.
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