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ABSTRACT

Wang, P. and Gao, J., 2013. Wavelet frame based seismic attributes extraction using a filtering
scheme. Journal of Seismic Exploration, 22: 353-372.

Extraction of instantaneous attributes is important for seismic data processing and
interpretation. However, the instantaneous attributes extracted by the conventional Hilbert transform
method are sensitive to noise that inevitably lies in field seismic data. We propose a robust approach
to extract instantaneous attributes in wavelet domain. In the proposed approach, we apply a
superfamily of analytic wavelets with some desirable properties-the generalized Morse wavelets-in
the proposed approach. Based on the proposed discretization, the wavelet family can constitute a
tight frame. For signal in noise, we implement a filtering scheme to determine the distribution of
the effective signal in the transformed domain before calculating the instantaneous attributes. In this
filtering scheme, a percentage thresholding strategy is manipulated. Compared with the conventional
method based on Hilbert transform, the synthetic trace and real data examples show higher precision
and anti-noise performance of the proposed approach, even for signals contaminated by strong noise.

KEY WORDS: instantaneous attributes, anti-noise, Hilbert transform, tight frame,
generalized Morse wavelet, filtering scheme, soft-thresholding.

INTRODUCTION

Geological interpretation of seismic data is commonly done by analyzing
patterns of seismic attributes across a prospect area. Although many seismic
attributes have been utilized to emphasize geologic targets and to define critical
rock and fluid properties, these three simple attributes-instantaneous amplitude,
instantaneous phase and instantaneous frequency-remain the mainstay of
geological interpretation of seismic data (Hardage, 2010).
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Instantaneous amplitude is often associated with lithological changes
between adjacent rock layers and hydrocarbon accumulation. Instantaneous
phase are effective in showing discontinuities, faults, pinch outs, angularities
and seismic sequence boundaries. Instantaneous frequency provides a useful
correlation tool to delineate the thickness or lithology changes of the layers. The
changes of instantaneous frequency can be used to indicate the distribution of
hydrocarbon (Taner et al., 1979). The instantaneous attributes have successful
applications in subsurface structure analysis (Chopra and Marfurt, 2005) and
seismic parameter inversion such as quality (Q) factor (Yang and Gao, 2010;
Gao et al., 2011).

After the work of Gabor (1946) and Ville (1948), a great number of
papers have been published on instantaneous attributes (Vakman, 1996;
Picinbono, 1997) and a review was given by Boashash (1992). Taner et al.
(1979) introduced complex trace analysis, in which the Hilbert transform (HT)
is used to calculate seismic amplitude, phase and frequency instantaneously -
meaning a value for each parameter is calculated at each time sample of a
seismic trace. The HT method has been applied widely in seismic exploration
(Barnes, 1992; Barnes, 1996; Taner, 2001; Fomel, 2007; Zhou et al., 2012).
Estimating instantaneous attributes of seismic trace based on time-frequency
representations has also been studied by several authors (Steeghs and Guy,
2001; Hardy et al., 2003; Huang and Milkereit, 2009; Han and van der Baan,
2011; Fomel, 2012; Wang and Gao, 2013).

The conventional Hilbert transform (HT) method now forms the basis by
which almost all instantaneous attributes are calculated by today’s seismic
interpretation software. In the HT method, a seismic trace x(t) is converted into
a complex seismic trace z(t), which consists of the real seismic trace x(t) and
an imaginary seismic trace h(t) that is the Hilbert transform of x(t). However,
this method is sensitive to noise, thus it brings difficulty for seismic attributes
analysis, especially in a noisy environment.

In this paper, we present a wavelet-based approach using continuous
wavelet transform (CWT) for the calculation of the analytic counterpart of a
real-valued signal and its instantaneous attributes. A new class of analytic
wavelets - the Generalized Morse wavelet (GMW) (Olhede and Walden, 2002;
Lilly and Olhede, 2012), which substantially outperform the popular Morlet
wavelet - is applied as the basic wavelet.

For numerical purposes, the scaling factor and the shifting factor of the
CWT should be discretized in the scale-shift plane, thus a wavelet family can
be obtained. Frames were first proposed by Duffin and Schaeffer (1952) which
are now used in a wide range of applications. The frame is said to be tight if the
upper and lower bounds are equal. The GMW family based on the proposed
discretization scheme can constitute a tight frame. Furthermore, the GMW
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family can constitute a tighter frame than the Morlet wavelet family based on
the same discretization scheme (Wang and Gao, 2013). This provides a simple
process of recovering the signal from its frame coefficients and the filtering
scheme can be utilized in the following procedure.

When a signal in noise is transformed into time-scale domain using CWT,
the energy distribution of the effective signal will be confined in a small close
subspace of the time-scale domain, while the energy distribution of the noise
may disperse in a larger close subspace, even in the whole time-scale space
(Wang and Gao, 2013). To determine the distribution of the effective signal, we
employ a filtering scheme. We first determine the range of the scaling factor
and the shifting factor. Then, we apply a percentage thresholding strategy to
obtain the coefficients corresponding to the effective signal in time-scale
domain. Thus, the analytic counterpart of the effective signal can be calculated
and the instantaneous attributes can also be estimated.

The paper starts with reviewing the conventional instantaneous attributes
estimation method based on the Hilbert transform. Then, we propose the robust
estimation approach. We introduce the method of calculating the analytic
counterpart and instantaneous attributes of a real-valued signal by wavelet
transform. We focus on the choice of wavelet and the discretization scheme.
Owing to the desirable properties, the GMW is used in the proposed approach.
In the following, we determine the distribution of the effective signal by the
proposed filtering scheme and calculate the instantaneous attributes. Finally, the
comparisons between the proposed approach and HT method, the performances
of different thresholding strategy in the filtering scheme, also with the
comparisons between the proposed approach using GMW and the Morlet
wavelet, are presented by calculating instantaneous fréquencies (IFs) of the
signals. Experimental results on synthetic signals and real seismic data
demonstrate the excellent performance of the proposed approach.

THE CONVENTIONAL HILBERT TRANSFORM METHOD

For a real-valued signal x(t), the corresponding analytic signal, denoted
as z(t) can be defined as follows:

z(t) = x(t) + ih(t) , 1)

where the imaginary part h(t) is the Hilbert transform of x(t). Then, the
instantaneous attributes can be defined as

e(t) = /{x2(t) + h(t)} , 0 = arctan[h(t)/x(t)] ,

2
f() = (1/27)d/d){arctan[h(®)/x (O]} ,



356 WANG & GAO

where e(t), 0(t) and f(t) represent the instantaneous amplitude (IA), instantaneous
phase (IP), and instantaneous frequency (IF) of x(t), respectively. Note that the
definition of instantaneous frequency calls for division of two signals:

f(t) = (1/2m)(d/dt){arctan[h(t)/x(t)]}

= (12m{[x(®Oh'(®) — x'Oh®OV[x2®) + h2(D)} . 3)
In a linear algebra notion (Fomel, 2007)
f=D , Q)

where f represents the vector of instantaneous frequencies f(t), v represents the
numerator in eq. (3), and D is a diagonal operator made from the denominator
of eq. (3). A recipe for avoiding division by zero is adding a small constant ¢
to the denominator (Matheney and Nowack, 1995). Consequently, eq. (4)
becomes

fins[ = (D + EI)—IV ’ (5)
where I stands for the identity operator. Stabilization by ¢ does not, however,

prevent instantaneous frequency from being susceptible by noise.

PROPOSED ESTIMATION APPROACH

We get the analytic counterpart of a real-valued signal using wavelet
transform instead of Hilbert transform. We use the genéralized Morse wavelet
(GMW) as a superior alternative to the popular Morlet wavelet. With the
proposed discretization, the GMW family can constitute a tighter frame. For
signals in noise, the distribution of effective signals in time-scale domain can be
determined by the proposed filtering scheme.

Instantaneous attributes extraction by CWT

The continuous wavelet transform (CWT) of a signal x(t) € L*(R) is
defined as

W,(t,a) = (1/a) f x(MY*[(r — t)/a]ldT ©6)

where Y*(t) corresponds to the complex conjugate of y(t). Note the
normalization factor is chosen to be 1/a instead of the more common 1/4/a, as
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the former is more convenient for oscillatory signals (Lilly and Olhede, 2010).
The wavelet function y/(t) is zero-mean and satisfies the admissibility condition
(Holschneider and Kon, 1996): K, = [ *Z|¥(w)|*|w|dw < oo, where ¥(w)
= [ *2y(t)e “'dt is the Fourier transform of the wavelet.

The wavelet function is said to be analytic if ¥(w) = 0 for w < 0. The
following theorem was proved by Gao et al. (1999):

Theorem 1. If y(t) is an analytic wavelet function with its real part being even
and satisfies the admissibility condition, for an arbitrary signal x(t) € L*(R), we
have

o) = (1K) | W, ta)da/a) = x@®) +ih) | )
0

where h(t) is the Hilbert transform of x(t). Thus c(t) is the analytic counterpart
of the real-valued signal x(t). Then, we compute instantaneous attributes:

&) = V{Re?[c(t)] + Im?[c(t)]} ,
0(t) = arctan[Im[c(t)]/Re[c()]] , 8)
fty = (1/2m)(d/dt){arctan[Im[c(t)]/Re[c(D)]]}

where Re[c(t)] and Im[c(t)] are the real part and imaginary part of c(t), while
&), 0(t) and f(t) represent the instantaneous amplitude (IA), instantaneous
phase (IP), and instantaneous frequency (IF) calculated by the proposed
approach, respectively. To avoid division by zero, the linear algebra form of IF,
which is similar to eq. (5), can be given by

mst - (D, + 81) . (9)

Note the instantaneous attributes calculated direct using egs. (6)-(9) are
identical with that obtained by the conventional HT method. However, for noisy
signal, when it is transformed into time-scale domain via eq. (6), we should
determine the distribution of the effective signal before calculating the analytic
counterpart using eq. (7).

Choice of wavelet

A commonly used complex-valued wavelet is the Morlet wavelet
(Holschneider and Kon, 1996), which was first introduced by Morlet, and given
by
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\b,,(t) — aae—(llz)tz[eiat — e—(llZ)a‘] , (10)
¥, (w) = a,e” =] — o] | (11)

where o is the carrier wave frequency. The second term in egs. (10) and (11)
is a correction necessary to enforce zero mean, while a, normalizes the wavelet
amplitude. For sufficiently large o, e.g., 0 > 5.33, the values of the second
term are so small that they can be neglected. Meanwhile, the values of ¥ (w)
for w < 0 are so small that v, can be considered as an analytic wavelet.

The generalized Morse wavelets (GMWs) are a two-parameter family of
wavelets, defined, in the frequency domain, by Olhede and Walden (2002)

—_—yY
¥, (@) = Ulwog,o’e™ (12)
Morlet Wavelet with 6=5.5, P?=30 GMW with =10 and =3, ijfao
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Fig. 1. (a) Morlet wavelet. (b) Generalized Morse wavelet. (c), (d) The wavelets in
frequency-domain. In (a) and (b), the thick solid, thin solid, and dashed lines correspond to the
magnitude, real part, and imaginary part of the time-domain wavelet, respectively.
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where U(w) is the Heaviside step function and o, = 2(e7y/B)*" is a normalizing
constant. To be a valid wavelet, one must have 3 > 0 and v > 0. The role of
8 and v in controlling wavelet properties were investigated by Lilly and Olhede
(2012).

Despite its usefulness, the Morlet wavelet suffers from some limits. On
top of that, the Morlet wavelet is not, however, exactly analytic - it is only
approximately analytic for sufficiently large o. As an example, a generalized
Morse wavelet and a Morlet wavelet, both in time-domain and frequency-
domain, are shown in Fig. 1. Parameter settings have been chosen such that the
time-domain length defined by Lilly and Olhede (2009) is the same for both
wavelets. These two wavelets appear indistinguishable, and both of them are
supported on the positive real-axis only in frequency-domain, i.e., are analytic.
However, if we narrow the time window of both wavelets in order to increase
time resolution, we obtain the wavelets shown in Fig. 2. The Morlet wavelet
exhibits leakage to negative frequencies while the generalized Morse wavelets

Morlet Wavelet with 6=1.3, P?=3 GMW with p=1 and y=3, Pﬁ =3
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Fig. 2. As with Fig. 1, but for different parameter settings.
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remain analytic even for highly time-localized parameter settings. The advantage
of using precisely, as opposed to approximately analytic wavelets was
demonstrated by Olhede and Walden (2003) and Lilly and Olhede (2009), who
showed that even small amounts of leakage to negative frequencies can result
in spurious variation of the transform phase. Besides, it is also important to
point out that c(t) in eq. (7) is the analytic counterpart of the real-valued signal
only if the wavelet is analytic, as stated in Theorem 1. The precision of
instantaneous attribute obtained by using the Morlet wavelet is degraded because
of its departure from analyticity.

Furthermore, the Morlet wavelet depends on just one parameter, implying
that it is not versatile. By varying two parameters, the GMWs can be given a
broad range of characteristics while remaining exactly analytic. Based on the
proposed discretization scheme, the GMW family can constitute a tighter frame,
which will be discussed in next section. Besides, the more similar is the basic
wavelet and data to each other, the more concentrated the energy distribution
in the time-scale domain. Comparing with Morlet wavelets, the GMWs allow
for more flexibility by varying two parameters and can be selected to best match
the data to be analyzed. The GMWs are used to calculate the analytic
counterpart of a real-valued signal and its instantaneous attributes in the
proposed approach.

The discretization scheme

In eq. (6), a wavelet atom is a translation by t and a dilation by a of a
mother wavelet :

Vi) = (MaWl(r — v/a] . (13)

For numerical purposes, the scale factor a and the translation factor t must
be discretized. In our discretization scheme, a is sampled along an exponential

sequence {aJ} with scale step a, > 1, t is sampled uniformly with intervals tys
then the wavelet family can be obtained:

Yma(X) = ag™[ag™(x — nt)] . (14)

In our implementation, t, is set equal to the sampling interval of the
observed signal, thus the wavelet family is translation-invariant, obtained by
translating a family of generators (Mallat, 2009): {¢,(X) = a;™¥(a;™x)}. For
translation-invariant dictionary, the following theorem was given (Mallat, 2009),
which proves that the frame condition is equivalent to a condition on the Fourier
transform ¢, (w) of the generators ¢, (x).
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coefficients determined by the following filtering scheme are corresponding to
the effective signal. Another important consideration for using frame is the

redundancy, which is particularly useful in noise suppression (Zhang and
Ulrych, 2003).

Table 1. Frame bounds and snugness of the wavelet family.

a, Morlet Wavelet Family GMW Family
A B 8 A B )

2 0.019386 0.564259 0.933569 6.389432 6.903057 0.038640
22 0.382460 0.592806 0.215680 13.291070 13.301088 0.000377
23 0.717034 0.746598 0.020199 19.944049 19.944188 0.000004
21 0.974665 0.976844 0.001117 26.592157 26.592159 0.000000
215 1.219642 1.219744 0.000042 33.240198 33.240198 0.000000
216 1.463630 1.463634 0.000001 39.888237 39.888237 0.000000
21 1.707570 1.707570 0.000000 46.536277 46.536277 0.000000

218 1.951509 1.951509 0.000000 53.184316 53.184316 0.000000

The distribution of effective signal

When a noisy signal is projected to the time-scale domain spanned by a
proper wavelet frame atom v, ,, the energy distribution of the effective signal
will be confined in a small close subspace V of the time-scale domain, while the
energy distribution of the noise will disperse in a larger close subspace V', even
in the whole time-scale space. In other words, the effective signal maps to a
relatively small number of significant coefficients, while the energy of the noise
spreads more or less evenly among all coefficients. If the subspace V is
determined, i.e., the coefficients corresponding to the effective signal are
obtained, and the rest of coefficients corresponding to the noise are set to be
zero, the noise will be suppressed in the time-scale domain and the
signal-to-noise ratio (SNR) will be improved (Wang and Gao, 2013).

To determine the distribution of the effective signal, we introduce a
filtering scheme as follows:

1. Project the data contaminated with noise onto the wavelet frame. We
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determine the scope of m and n in eq. (18). The range of n corresponding
to the translation factor t is determined according to the time coverage of
data. Following the method of Meyers et al. (1993), we map the wavelet
scale a to the equivalent frequency (see Appendix). According to the
frequency coverage of the data, we get the range of m corresponding to
the scale factor a.

2. Manipulate a percentage thresholding strategy to the coefficients in
time-scale domain. The soft and hard thresholding operators are defined

as
u — AW/|ul) if |[u] =\
S\() ={ : (20)
0 if [u] <\
and
u if J[ul = A
H,(w) =1 , @1

0 if |u] < A
where A is a positive threshold parameter, given by

N = pmax{|Cp,l} - @)

In eq. (22), the parameter p is a user defined percentage.

Through the filtering scheme, the coefficients corresponding to the
"cleaned" scalogram is obtained, which leads to a scalogram with reduced noise.
Fig. 3 (top) shows the wavelet scalogram of the noise-free signal, a 50-Hz
Ricker wavelet. The scalogram of the noisy signal with an SNR of 5 dB is given
in Fig. 3 (middle). Notice the effective signal is obscured by the noise. Fig. 3
(bottom) shows the cleaned scalogram calculated after the filtering process,
which reveals the signal clearly.

With the coefficients corresponding to the "cleaned" scalogram, we can
calculate the analytic counterpart of the "cleaned" signal using eq. (7) and the
instantaneous frequency can be calculated from egs. (8) and (9).

EXAMPLES AND DISCUSSIONS

To illustrate the different methods, we take a piece of a synthetic seismic
trace obtained by convolving a 50-Hz Ricker wavelet with synthetic reflectivity.
The noisy-free signal, signal plus Gaussian noise with the SNR of 5 dB are
shown in Figs. 4a and 4b. Figs. 4c and 4e give the IF of the noise-free signal
calculated by conventional HT method and the proposed approach, respectively.
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Fig. 3. (a) The noise-free wavelet scalogram (top) and the noisy wavelet scalogram (middle).
Through the filtering scheme, the corresponding cleaned scalogram is obtained (bottom).

In the proposed approach, we use the GMW with 8 = 1, and v = 3. For noise-
free signals, the IF is calculated direct using egs. (6)-(9). The resulting IFs are
identical. Both the two methods can give high precision of the IF estimate when
it is noise free.

However, when the observed signal is noisy, the IF obtained using the
conventional method is inaccurate. Figs. 4d and 4f shows the IFs calculated by
conventional HT method and the proposed approach, respectively. In the
proposed approach, we project the test signal onto the wavelet frame by eq.(18),
using the GMW with 8 = 1, and v = 3. The range of n is determined
according to the time coverage of the record. The range of m is determined by
the frequency coverage 1-150 Hz. The user defined percentage p is chosen to
be 10%. Through the filtering scheme, we determine the distribution of the
effective signal and calculate the analytic counterpart corresponding to the
"cleaned" signal using eq. (7). Finally, we get the IF using eq. (9). As can be
seen in Fig. 4d, using the conventional HT method, the IF of the effective
signal is completely hidden visually due to the noise. However, the result
obtained by the proposed approach shown in Fig. 4f reveals the IF of effective
signal very well.

To evaluate the robustness against noise of the IFs obtained by different
approaches, the signal-to-noise ratio of IF (Wang and Gao, 2013) is defined by
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Fig. 4. Test signals and the IFs obtained by different methods. (a) The noise-free synthetic seismic
trace. (b) The synthetic seismic trace with noise (SNR = 5 dB). The IFs of the test signal shown
in (a) and (b), calculated by conventional HT method, are depicted in (c) and (d). Finally, () and
(f) show the IFs of test signals calculated by the proposed approach.

FSNR = 10log,o(||f, |/ || f, — f|»@B) , (23)
where f is the IF of noisy-free signal and f, is the IF of the noisy signal.

Next, we add Gaussian noise to the noisy-free signal in Fig. 4a with
SNRs of 10 dB, 5 dB, and 1 dB. Three noisy synthetic data is presented in Fig.
5. We calculate the IFs of the noisy signal by the proposed approach with hard
and soft thresholding in our filtering scheme, respectively. The parameters of
the GMW, the range of m and n, and the user defined percentage are the same
as in Fig. 4. The resulting IFs are illustrated in Fig. 6, together with the IFs
extracted by the conventional HT method. Besides, the FSNRs are listed in
Table 2. Comparing with the conventional HT method, the proposed approach
significantly improves the FSNRs, even for data contaminated by strong noise.
Furthermore, better estimates are obtained using the soft-thresholding than that
using the hard-thresholding.
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Fig. 5. The noisy test signals at SNRs of (a) 10 dB, (b) 5 dB and (c) 1 dB.

Table 2. The FSNRs of different methods (dB).

SNR(dB) HT method Proposed approach using Proposed approach using
hard-thresholding soft-thresholding

10 5.4000 18.9076 23.4937

5 —1.8547 15.6165 18.2455

1 —4.4549 9.4562 15.5099

Subsequently, Figs. 7a and 7b present the IFs of noisy signal at 10 dB
SNR obtained by the proposed approach with GMW and Morlet wavelet,
respectively. To ensure its analyticity, the carrier wave frequency of Morlet
wavelet is set to be 6. The other parameters are the same as in Fig. 4. In the
filtering process, the soft-thresholding is employed. The FSNRs are 23.4937 and
13.8837, which shows the better performance of the GMW.
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To further demonstrate the effectiveness of the proposed approach, we
apply it to a stacked real 3D seismic data. Fig. 8a shows a profile of the 3D
data, Fig. 8b illustrates the IF obtained by conventional HT method, and Fig.
8c presents the IF obtained using the proposed approach. Parameters of the
GMW are the same as mentioned above. In the filtering scheme, the range of
are determined according to the frequency coverage of the data, which is 1-60
Hz. The percentage of the soft-thresholding strategy is 5%. We can observe
high frequencies caused by thin bed reflectivity interferences at 1.75 s, 2 s and
2.25 s. The low-frequency anomaly is shown at 1.90-1.95 s (indicated by
arrows). Such anomalous low-frequency shadows are caused by abnormally high
attenuation of high-frequency energy in the gas reservoir and can be used as
indicators of hydrocarbon (Chopra and Marfurt, 2005). The presence of such
a gas reservoir is confirmed by well A - a prolific gas well drilled through the
anomaly. It can be noted clearly that the abnormal region is more distinct in
Fig. 8c due to the better anti-noise performance of the proposed approach.

86 (a) (b) ©

B
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(=]

(e) ®
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(h) 0]
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0 03 06 09 0 03 06 09 0 0.3 06 09
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Fig. 6. The IFs of test signals obtained by different methods. The SNRs of the test signal decrease
from top to bottom, which take on the values 10 dB, 5 dB and 1 dB. The red line corresponds to
the IFs of noisy-free signals from Fig. 4. From left to right, the blue line corresponds to the IFs of
noisy signals obtained by conventional HT method, the proposed approach with soft-thresholding and
the proposed approach with hard-thresholding.
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The filtering scheme in this paper is based on the Gaussian distribution
hypothesis of the noise. According to the central limit theorem, the sum of a
sufficient number of independent random variables tends to the Gaussian
distribution. Therefore, the signal and noise are assumed to satisfy the central
limit theorem in most cases in the practical application, especially for the
stacked seismic data.

Clearly, this is work in progress. Although the Gaussian noise model can
be a good description of most of the system models, there are often
non-Gaussian noises in practice. For example, pre-stack seismic data may
contain a variety of non-Gaussian noise due to various clutters and man-made
noise in seismic data acquisition, and the limited seismic data acquisition is
difficult to satisfy the central limit theorem. So the scheme based on Gaussian
assumption is difficult to reflect the stratigraphic anomalies accurately.
Therefore, directions for future work include exploring the actual noise to
design an efficient algorithm for non-Gaussian noise.

(@)

'S
o
T

1

20

Frequency (Hz)

(b)

20 —-

Frequency (Hz)

Time (s)

Fig. 7. The IFs of test signals at an SNR of 10 dB. The red line corresponds to the IFs of noisy-free
signals from Fig. 4. The blue line corresponds to the IFs of the noisy signals obtained by the
proposed approach using (a) GMW and (b) Morlet wavelet.
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Fig. 8. Example on real data. (a) A profile of the data set which through a prolific gas well A. IF
calculated by (b) conventional HT method, and (c) the proposed approach. The arrows indicate the
location of the low-frequency anomaly due to the gas reservoirs.

CONCLUSIONS

We have proposed a wavelet frame based approach for the instantaneous
attributes estimation. The GMWs have been used as the atom of wavelet frame
in the procedure. Owing to the desirable properties, the GMWs exhibit better
behaviors than the popular Morlet wavelet. To determine the distribution of the
effective signal, we have introduced a filtering scheme. In the filtering process,
we have employed a percentage thresholding strategy. The soft-thresholding
provides better performance than hard-thresholding. The IFs estimated by the
proposed approach are robust for noisy data, even for data at low SNR. The
results from both synthetic record and filed data show that the proposed
approach outperforms the conventional HT method.
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APPENDIX
WAVELET SCALES AND FREQUENCY OF THE GMW
The relationship between the equivalent frequency and the wavelet scale

is derived as follows. We choose a signal s(t) = e“* of a known frequency w,

and compute the scale a at which the wavelet power spectrum reaches its
maximum.

We take the CWT using eq. (6)

W (t,a)

(1/2) § s(w*(r — tyaldr

oo

= (2m | S¥*@Eweds

= V*(awpe“t . (A-1)
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The wavelet power spectrum is

[Wy(t,a)|* = | ¥(aw)|* . (A-2)
For the GMW,
¥V, (@) = Ulw)og,o’e™ . (A-3)

Substituting into eq. (A-2), we obtain
|Wy(t,2) |2 = a3, (aw)Pe 20
= ap xFe 2 | (Ad)
where X = aw,. Let
Fy (x) = x¥e > | as

To find the scale a of maximum correlation, we set the derivative of
InF;  (x) equal to zero and obtain

dlnFs (X)/0x = (2B/x) — 2yx™1 = 0 . (A-6)
The solution is
Xo = @M . (A-7)

Using X, = ayw, and w, = 2xf,, the relation between wavelet scale and
frequency is obtained:

ay = (Bly)"12xf, . (A-8)





