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ABSTRACT

Sarmadi Doost, M., Erfani, F., Hashemi, H., Sokooti, M. and Sadig-Arabani, M., 2013. Gas
hydrate detection in the Iranian sector of the Oman Sea: application of AVO and seismic pattern
recognition methods. Journal of Seismic Exploration, 22: 339-351.

Gas hydrates attracted worldwide attention because of their potential as a new energy reserve
in recent years. Therefore their exploration is essential for the strategic future of the world as a new
form of energy. In this research we use pre-stack seismic attributes to identify elastic properties of
the host sediments in the vicinity of the gas hydrate zone. AVO analysis of pre-stack seismic data
is used as a powerful interpretation technique. Moreover, attributes derived in the post-stack seismic
domain are used successfully to make a separation between hydrate and non-hydrate sediments by
applying pattern recognition and classification methods. It is found that both AVO analysis and
seismic pattern recognition techniques are meaningful on a gas hydrate potential zone in the Oman
Sea. An integrated scheme is presented for studying similar areas based on joint use of AVO and
post-stack attribute analysis.
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INTRODUCTION

Gas Hydrates are known as an unconventional energy source formed in
the polar zones and deeper parts of the sea. It is a crystalline material composed
of water and light hydrocarbons (mainly methane) in which the gas molecules
are entrapped in the cage of water molecules (Kvenvolden, 1993).
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The exploration importance of gas hydrates was discussed by Davy
(1811). Observation of gas hydrate in pipelines and their blocking effect
attracted the attention of scientists in the oil industry (Hammerschmidt, 1934).
Their evidence is reported in marine areas of Mexico (Shipley, 1984) and in the
Pacific and Atlantic Oceans (Kvenvolden, 1993).

The normal ratio of stored methane in gas hydrate is 1/164 of its total
volume at standard pressure and temperature (Kvenvolden, 1998). Gas hydrates
contain more than half of the organic carbon of the earth. Therefore, it is
assumed that gas hydrates are considered as an enormous source of natural gas
and as one of the main future energy resources. Changes in the thermal-pressure
regime result in hydrate instability and may cause the release of large amounts
of gas in the atmosphere. It also can cause slope failure in the seabed (Thakur,
2011).

Gas hydrates change the seismic properties of their host sediments.
Therefore, seismic methods are useful for their identification. Attributes are one
of the appropriate seismic tools in the interpretation phase that can be used to
characterize gas hydrates. In a seismic attribute specific information from the
whole seismic wave field is extracted based on a physical, geometric or
analytical measure.

In this research, two categories of attributes will be used. These attributes
relate to pre-stack and post-stack seismic data. Pre-stack seismic data can be
obtained from one or more common depth points (CDP) and depends on
azimuth and offset. In the stacking process a kind of averaging is applied on
offset and azimuth direction while the time relations are preserved.

In pre-stack studies, AVO (amplitude variation with offset) attributes have
been used to extract seismic properties of gas hydrate sediments. Post-stack
attributes are used for the separation of gas hydrate sediments from non-hydrate
ones. For this purpose, some attributes combined with a feature selection
algorithm named LFDA (local Fisher discriminant analysis).

PRE-STACK STUDY

The most important seismic marker is the bottom simulating reflector
(BSR) that is representative of the gas hydrate underlain by either the brine or
free-gas saturated sediments. BSR marks the base of the high-pressure and
relatively low-temperature zone in which hydrates are stable (Andreassen et al.,
1990; Kvenvolden et al., 1998).

BSR shows specific characteristics that make it detectable on seismic
sections. Its morphology obeys approximately the seabed reflector topography.
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It shows reversed polarity compared to the seabed reflection. BSR cuts across
the dipping strata which are not parallel with the water bottom. Because of high
acoustic impedance differences between the hydrated sediment and the free gas
saturated sediment, BSR is regarded as a strong reflector with high amplitude
(Max et al., 2006). There are more attributes related to gas hydrate such as the
flat spot and the bright spot.

Geochemists and geologists proved that the deep part of the Oman Sea is
a favorable region for the presence and the stability of gas hydrate. BSR and
other gas-hydrate related attributes are clearly observed in most of the seismic
sections of Oman (Hosseini Shoar et al., 2009). BSR as a gas hydrate indicator
on seismic sections is shown with its strong and obvious reflection amplitude
(Fig. 1).

The AVO method is a kind of analysis which applies to the seismic
sections before stacking. This approach can be used to predict the lithological
characteristics and the fluid properties based on the relationship between
amplitude versus offset (Huaishan et al., 2009).

AVO is a useful technique for detecting the free-gas below the BSR.
Various AVO attributes such as intercept (A) and gradient (B) and their various
combinations were computed for the BSR and the free gas below it on seismic
sections of the Oman Sea.
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Fig. 1. Signature of gas hydrate on the seismic lines of Oman Sea. High reflection amplitudes
following the trend of sea bottom reflection is the BSR.
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Theory of AVO

The variation of the P-wave amplitude with offset can be used as a direct
hydrocarbon indicator (Ostrander, 1984). The basis of AVO analysis is
described by the Zoeppritz equations. The reflection and transmission amplitude
changes with the incident angle (offset) is formulated in these equations. As the
direct solution of the Zoeppritz equations is not possible, there are many
approximations for solving these equations.

The Aki-Richards (1980) approximation linearizes the Zoeppritz AVO
equation as below:

R(@) = A + Bsin?(0) , (6]

where R(0) is the reflection coefficient, 6 is the incident angle, A is the P-wave
reflection coefficient at normal incidence, and B is the gradient. AVO inversion
is done based on eq. (1).

The input data were the NMO-corrected CDP gathers and the seismic
velocity model data. The processing sequence was: geometry assignment, true
amplitude recovery, static correction, linear noise attenuation, predictive
deconvolution, first step velocity analysis, residual static correction, second pass
velocity analysis, radon demultiple attenuation, final velocity analysis, NMO,
stacking and pre-stack migration.
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Fig. 2. AVO attributes for a part of a seismic line in Oman. (a) Intercept section. (b) Gradient
section.
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In Fig. 2, the A-attribute section is shown. "A" implies the P-wave
zero-offset reflection coefficient, which indicates the variation of P-wave
impedance. The BSR shows negative values in the A profile [Fig. 2(a)] which
reveals that the impedance is smaller below the BSR than above the BSR.
Acoustic impedance increases in hydrated sediment and decreases in the gaseous
ZOne.

The B-attribute reveals the P-wave reflection coefficient variations with
incident angle. In Fig. 2(b), the "B" section shows positive values along the
BSR. It indicates that the absolute value of the BSR amplitude decreases with
the incident angle. Pre-stack analysis was carried out by the Hampson-Russel
software and A, B, A+B, A*B and the fluid factor attribute sections are
obtained.

The A+B section [Fig. 3(a)] is an identifier of the Poisson’s ratio
reflectivity. It shows negative values for the BSR implying that the values of the
Poisson’s ratio below the BSR are far smaller than theirs above. This coincides
with the nature of the BSR and suggests the concentration of the shallower
hydrated sediment overlaying the free-gas. Gas hydrate increases the Poisson’s
ratio by cementing the sediments and hence show a high amplitude reflection.
On the other hand in the free gas zone the Poisson’s ratio decreases as a result
of P-wave velocity reduction. As is seen in Fig. 3(b), the fluid factor also shows
negative values for the BSR. According to Fatti (1994), nonzero values of AF
at the top and the base of the gas zone is expected.
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Fig. 3. AVO attributes for a part of a seismic line in Oman. (a) Poisson ratio reflectivity. (b) Fluid
factor section.
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As is evident in Fig. 4, the absolute value of the amplitude decreases with
offset for a selected CDP gather. From a cross plot of intercept versus gradient
and amplitude versus offset curves for different CDP gathers type IV of
Williams’s classification is identified for the BSR. For hydrate saturation above
50%, "A" is highly negative and "B" is positive, which can be classified as an
indicator of type IV gas sands (Castagna et al., 1998).
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Fig. 4. Cross plot of Amplitude values versus offsets for a selected CDP location. A nonlinear trend
fitted to observed data point shows AVO type IV. ‘

Other attribute sections such as P-wave impedance reflectivity, S-wave
impedance reflectivity, pseudo Poisson reflectivity, P-wave and S-wave velocity
and Lame’s constant are obtained as well. Based on these various attribute
sections and AVO analysis derived from the angle gathers, the presence of gas
hydrate and the free-gas sediment in this area is proven.

POST-STACK STUDY

Identification of BSR in a seismic section together with logical conditions
for its formation and stability ensures reporting the presence of gas hydrate with
higher confidence. However, in some areas such as the Gulf of Mexico, gas
hydrates were explored while there is not any observed BSR (Zhang, 2010). In
these cases, it is necessary to investigate other integrated methods to identify gas
hydrates precisely.
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In this study, seismic attributes have been selected as complementary
information for separating hydrate sediments from non-hydrate ones. The
process of seismic attributes selection is based on their original classification
concept, e.g., physical versus geometric ones. BSR as a continuous reflector is
well represented by attributes like instantaneous phase, event and low pass
filters. Moreover, the frequency distortion caused by the hydrate sediments is
another evidence that frequency-dependent attributes are also relevant in this
study. For this purpose, a multi attribute analysis method has been utilized and
pattern recognition algorithms - PCA and LFDA - are used in combination with
initial attributes. Meta-attributes are then produced with higher efficiency
together with accumulated knowledge of the focused seismic pattern (BSR).

Seismic pattern recognition in practice

In multi attribute analysis, two data sets are needed, i.e., test and training
(Fig. 5). Training data is used to find an appropriate pattern for the
classification. Test data is appropriate to investigate the performance of the
obtained pattern. To provide these two sets, a set of labeled data is chosen. In
the labeled set the class of each object is determined by the user. A basic
assumption in the process of picking is that BSR acts as the boundary of the gas
hydrate and non-hydrate sediments.

The training data must be labelled. So, 45 points above the BSR and 45
ones below the BSR are selected. The selection is pretty subjective, i.e., highly
dependent on the initial guess of the seismic interpreter. Then bins with
dimensions of 11 traces and 12 ms are chosen around each point that form the
training dataset. '
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Fig. 5. Process of labeling input data. Dataset in two classes of hydrate and non-hydrate that are
picked above and below the BSR respectively.
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To study the gas hydrates of the Oman Sea, 27 different seismic attributes
related to basic seismic characters - like frequency, phase, amplitude and
attenuation - are selected (Table 1). All of these attributes are generated in the
OpendTect software.

The value of the initial attributes in each point of the training and test data
has been extracted. These values formed a data space with 27 dimensions. More
attributes ensure more information about the recorded wave field and thus result
in higher accuracy. On the other hand, there are some constraints in the pattern

Table 1. Initial attributes set with their parametrization.

Symbol Initial attributes with their characters
0y lowpass-20 : FreqFilter type=LowPass maxfreq=20 isfftfilter=yes window=Hamming fwindow=CosTaper
oy energy-48 : Energy gate=[-48,48]
0z energy-28 : Energy gate=[-28,28]
Qe Event : Event issingleevent=yes tonext=yes output=2"6'
03 average frq @ Frequency gate=[-20,20] lize=yes window=F g
0y Q : Freguency gate=[-10,10] lize=yes window=H
oy Max spectral amplitude : Frequency gate=[-20,20] lize=yes window=I g
Oz Average freq y squared : Freq y gate=[-20,20] nor lize=y dow=F g
Oy spectral decomposition Mexican Hat 30 : SpecDecomp fi pe=CWT cwt let="Mexican Hat"
Oy spectral decomposition Mexican Hat 40 : SpecDecomp formtype=CWT ¢ let="Mexican Hat"
Oy spectral decomposition Mexican Hat 50 : SpecDecomp fi pe=CWT ¢ let="Mexican Hat"
Ouz spectral decomposition Mexican Hat 60 : SpecDecomp fi pe=CWT cwt let="Mexican Hat"
Lot spectral decomposition Gaussian 30 : SpecDecomp fi pe=CWT cwt
Oz spectral decomposition Gaussian 40 : SpecDecomp ype=CWT cw
Oy Variance : VolumeStatistics stepout=0,2 shape=Ellipse gate=[-20,20] nrurcs=1
O spectral decomposition G ian 50 : SpecDecomp fi pe=CWT cwt
04> spectral decomposition Gaussian 60 : SpecDecomp ype=CWT c let=G
O3 lowpass-30 : FreqFilter type=LowPass maxfreq=30 isfftfilter=yes window=Hamming fwindow=CosTaper
O30 P
Oz instantaneous frequency : Instantaneous
on instantaneous cos phase : Instantaneous
Oz spectral decomposition Morlet 30 : SpecDecomp tran formtype=CWT cwt let=Morlet
On spectral decomposition Morlet 40 : SpecDecomp transformtype=CWT o let=Morlet
Oz spectral decomposition Morlet 50 ;: SpecDecomp ransformtype=CWT cwiwavelet=Morlet
Oas spectral decomposition Morlet 60 : SpecDecomp transformtype=CWT cwiwavelet=Morlet
Oz Norm Variance : VolumeStatistics stepout=0,2 shape=Ellipse gate=[-20,20] nrircs=1
Oy Seismic
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recognition discipline. A higher number of input attributes create a more
complex space whereas some attributes are redundant and not informative. So
it is needed to identify these significant similarities before classification and
reduce the dimension of data (Hashemi, 2010). Principal Component Analysis
(Jolliffe, 2002) and Local Fisher Discriminant Analysis (Sugiyama, 2007)
algorithms are used to achieve this goal. Based on the chosen training set, these
algorithms highlight the importance of each attribute in classification with their
coefficients. The higher the coefficient the more dominant direction in data
spread. With this method a linear combination is made from the initial
attributes, called new attributes, which are more efficient for classification.
After making new attributes, a neural network is designed and applied to
classify the data.

The role of the dimensional reduction method

There are many factors that affect the results of the gas hydrates
classification. The choice of the dimensionality reduction method is essential.
A proper method can produce some appropriate attributes and results in a
reasonable pattern identifying gas hydrate sediments.

In this research, two methods have been applied. The first one is PCA
which is an unsupervised method hence no labeling of input data is needed. In
PCA the number of new attributes is the same of the initial ones. The new
attributes are sorted according to the scattering of the data. The first new
attribute is in the direction of lower variance of the scatter plot and so on for
the second and the third. '

The other method is the LFDA. LFDA is a supervised method (unlike
PCA) and hence the training data should have labels. In this method, the user
can choose the number of the new attributes. LFDA is the combination of FDA
(Fukunagaand, 1990) and LPP( He et al., 2004) methods. It is a proper way for
classification of a multi-modal data - that has some clusters - (Sugiyama, 2007).

To compare these methods, training data has been extracted and imported
into MATLAB and two different dimensional reduction algorithms (PCA and
LFDA) were applied. The plots of the second new attribute in terms of the first
new attribute of each method are represented in Fig. 6. LFDA attributes can
separate the gas hydrate points from non-hydrate points much better than PCA
that shows an overlapping class problem. The first five attributes of PCA,
LFDA and all of the 27 initial attributes entered into a neural network
architecture separately in three experiments. The neural network had 5 neurons

repeated 15 times in the cross validation procedure to achieve better results (Fig.
7.
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Fig. 6. The cross plot of the first new attribute vs. the second new one for the blue points (
hydrates) and the green ones (non-hydrate), (a) LFDA method. L1 and L2 represent the first and
the second output attributes of the LFDA (b) PCA method. N1 and N2 represent the first and the

second output attributes of the PCA.
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Fig. 7. Scheme of the neural network designed for the pattern recognition. Inputs nodes (left) are
either the output attributes of LFDA or PCA. The nodes also can be original 27 attributes. Outputs
nodes (right) are the classified patterns of the hydrate and non-hydrate points. This neural network
has 5 neurons and repeated 15 times to find more exact results.
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The mean network errors in the produced pattern of LFDA, PCA and
initial attributes are 19.73, 27.93 and 28.11 %, respectively. As can be seen, the
error of LFDA attributes pattern is less than the others while the errors of the
PCA and initial attribute pattern are close. The next step is the derivation of the
value of the new attributes in every point of the unlabeled data. The map of the
neural network that is calculated on the training set, now applies to the whole
seismic section. The result is a labeled section with the hydrate and the
non-hydrate probability map (Fig. 8). It is clear that the LFDA attributes
separate the gas hydrate zones from the non-hydrate ones better and the ability
of this method in the identification of gas hydrates of the Oman Sea is proven.

Fig. 8. The results of classification with neural network of Fig. 7 on different input attributes.
(a) Seismic section of the input line. (b) Classification on 5 good attributes of LFDA.

(c) Classification on 5 good attributes of PCA. (d) Classification on initial attributes without any
feature extraction. LFDA attributes have separated the gas hydrates and non-hydrates zones better
than the other methods.

DISCUSSION

Lithology and fluid content changes dramatically in the deep water area.
AVO crossplotting as a standard quantitative interpretation technique is used to
find the type of anomaly. Change of amplitudes with offset on BSR of Oman
shows type IV of AVO. On the other hand, the mentioned changes affect the
data in post-stack domain. Seismic data is not homogeneous and has many
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clusters which give rise to the concept of multi-modality. For a classification of
multimodal data, it is important to have a method that recognizes the desired
property in different parts of data. Using the initial set of attributes in
classification, all the attributes are considered as relevant ones with the same
coefficient in calculations, although they do not have the same role in the
classification eventually. Also, seismic data are influenced by many factors
whereby some attributes may have similar values in gas hydrate and non-hydrate
sediments. Two feature reduction methods (PCA and LFDA) are used to select
the relevant seismic attributes for classification.

The PCA attributes are found based on the scattering of data in each
direction. This implies that the more important PCA attribute is made in the
direction of the greater eigenvalue. Most often relying on scattering, which
underlies PCA, is not an appropriate way to recognize the gas hydrate sediments
as it can not treat class overlap.

Using the LFDA method instead training data with a label is entered in
the calculation. The algorithm derives the characteristics of desired classification
from this data and can find the main attributes that are effective. Furthermore,
LFDA is a specific method for the sorting of multimodal data by decreasing
within-class scattering while increasing the between-class one. This guarantees
the closer samples in each class and more apart classes in feature space. It is
found that LFDA is successful in proper identification of the relevant attributes
for this classification experiment.

Application of a standard 5 neurons neural network structure on three sets
(initial 27 attributes, 5 PCA good attribute, 5 LFDA good attributes) results in
the lower classification error and the higher confidence for the five LFDA input
attributes (Fig. 8).

CONCLUSIONS

AVO analysis is helpful to identify the hydrate, and the free gas above
and below the BSR. Using this method, the hydrate above the BSR zone is
proven the in the Iranian sector of the Oman Sea. On the other hand, post-stack
attributes are proper tools to identify gas hydrates. The linear combinations of
these attributes are more useful for this purpose. To make these combinations,
application of LFDA criterion dimensionality reduction methods is successful.
Because of the multimodal characteristics of the seismic data, unsupervised
methods like PCA are not appropriate for the identification of gas hydrate
sediments. On the other hand, LFDA is an effective tool for dimensionality
reduction in terms of the classification error and interpretability of meta-attribute
section. Results of feature reduction are then used as input to a neural network
to classify seismic data as hydrate or non-hydrate bearing.
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