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ABSTRACT

Yoo, J., Ha, W., Shin, C. and Min, D.-J., 2013. Scattered energy inversion of seismic data.
Journal of Seismic Exploration, 22: 183-208.

We propose a new algorithm to build a macro-velocity model-using scattered energy from
a seismic signal. This method does not require an iterative procedure or an estimation of the source
wavelet. Consequently, it is an inexpensive and efficient method to delineate a macro-velocity model.
We acquire information concerning the velocity differences similar to a gravity or magnetic field and
build a macro-velocity model. Thus, subsequent inversion in the time or frequency domains can
recover structures with sharp velocity variations from the constructed velocity model as an initial
velocity model.

KEY WORDS: scattering energy, velocity anomaly, Born theory, gravity inversion.

INTRODUCTION

Geophysicists study subsurface structures using information recorded at
the surface in various ways, one of which is a full waveform inversion.
However, recovering an accurate velocity model from field data or even
synthetic data can be difficult due to local minima in the objective functions and
the absence of low-frequency components in the data.
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These difficulties lead to the use of a two-step inversion process. In the
first step, a large-scale velocity model is recovered, and in the second step,
inversion is performed to improve the resolution of the velocity model. There
are several methods that can be used to obtain a reliable macro-velocity model,
such as traveltime tomography (Luo and Schuster, 1991; Chapman and Pratt,
1992) and inversion algorithms in the Laplace domain (Shin and Cha, 2008).
Traveltime tomography reconstructs the subsurface velocity model by
minimizing the residuals between the modeled and observed traveltimes (Luo
and Schuster, 1991; Chapman and Pratt, 1992). However, its penetration depth
can be prohibitively shallow, and the method relies on the arrival times chosen.
The macro-velocity model can also be estimated by an inversion in the Laplace
domain. The Laplace-domain inversion scheme has been shown to be successful
in recovering reliable macro-velocity models from field data containing a small
amount of low-frequency components (Shin and Cha, 2008; Shin and Ha, 2008).
However, the Laplace-domain inversion suffers from noise appearing before the
first arrival. Muting is therefore mandatory in Laplace-domain inversion.

In this study, we propose a new algorithm to recover macro-velocity
models of the subsurface. Our study begins with the simple idea that the
reflected waves from high-velocity structures have large amplitudes. We
assumed a medium with a homogeneous density. Thus, we surmise that the
energy computed from recorded data can be used to reveal high-velocity
structures in the subsurface. This method is analogous to the gravity inversion
method (Last and Kubik, 1983; Guspi, 1993). Furthermore, we assume that the
energy of the observed seismogram is similar to a gravity anomaly in gravity
inversion. Gravity anomalies from each subsurface structure are similar to the
energy of perturbed signals from each scatterer.

In this study, we convert wavefield data to energy data to recover
high-velocity anomalies. We assume that the wavefield data are the sum of
scattered signals by point scatterers in the subsurface following the Born theory
(Ikelle and Amundsen, 2005), and we build a system of equations by relating
the energy of the observed data to that of the scattered signals.

We will present our algorithm, develop the solution strategy, illustrate
performances with numerical examples for both synthetic and real data, and
discuss the limitations and advantages of this technique.

ENERGY OF THE WAVEFIELD AND THE BORN APPROXIMATION

We can recover long-wavelength velocity models by solving a system of
equations. To derive the equations, we will first review the energy of the
wavefield and scattered signals. In signal processing, the energy of a signal x(t)
is defined as the zero-lag autocorrelation as (Mitra, 2005; Geldart and Sheriff,
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E = S?(t)dt , M

0

where u(t) is the observed wavefield, and t,,, is the total recording time.

The Born scattering series is derived from the Lippmann-Schwinger
integral solution (Ikelle and Amundsen, 2005). This solution requires that we
decompose an actual medium into two parts. One part is the background
velocity model, and the other is the perturbed model, which is the scattered
model. The waves propagating directly from a source to a receiver are called
the direct waves or unperturbed waves, and the waves that propagate through
scatterers are known as scattered waves or perturbed waves. For a model
containing point scatterers, the Lippmann-Schwinger equation enables us to
separate the wavefield data as

u®) = u(t) + u@® , @

where u(t) is the acquired wavefield using a source-receiver pair, u,(t) is the
unperturbed components of the wavefield u(t), and uy(t) is the wavefield
components containing the scattered signals.

The scattering can occur at any point in the subsurface, and u,(t) is
approximated by the total sum of the single-point scattered wave signals using
the concept of the Born approximation; thus, u,(t) can be described as

t,

() = fns(x,t)dsz : 3)

where s(x,t) is the Ist-order point-scattered signal, and x is the position of a
scatterer in the subsurface domain €. In this study, we assume that u,(t) contains
signals appearing prior to the seafloor reflection, such as a head wave as well
as a direct arrival, and does not have the scattered signals from beneath the
seafloor. Thus, we can remove it from the data sets.

THE RESPONSES OF POINT SCATTERERS IN A CONSTANT VELOCITY
BACKGROUND MODEL

In this study, we cannot use the definition of s(x,t) in eq. (3) for our
method due to the computational burden. Our method requires scattered signals
from every point in the domain. Computing u,(t) for a shot demands modeling
with the background velocity model and n, X n, modeling procedures, where
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n, and n, are the numbers of grid points in the x- and z-directions, respectively.
Moreover, these modeling procedures must be performed for each source.
Therefore, computing s(x,t) is a huge computational burden. Therefore, we
designed an approximation of s(x,t) and s(x,t).

To define an appropriate function, we empirically investigated the
sensitivity of the amplitude of the wavefield to a velocity perturbation using a
point scatterer. Fig. 1 shows the signal obtained using a 4th-order finite
difference algorithm as a function of velocity perturbation, Av. The magnitude
of the velocity perturbation does not affect the shape of the scattered signal;
only its amplitude is affected (Fig. 1b). Fig. 2a shows the value of the peak
amplitude of the scattered wavefield as a function of the velocity perturbation,
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Fig. 1. (a) The domain of a point-scatter test. The units of the coordinates are in km. (b) Examples
of s(x,t) with three different magnitudes of velocity perturbations at the point scatter x.
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Fig. 2. (a) The result of the test regarding the peak amplitude of the scattered signal versus the
perturbed amount of velocity for the five scatters with a different source and receiver position: Datal
[x, (12.5 km, 0.05 km), x, (3.5 km, 0.05 km), x (6.25 km, 2.5 km)]; Data2 [x, (12.5 km, 0.05 km),
X, (5.75 km, 0.05 km), x (12.5 km, 2.5 km)]; Data3 [x, (2.5 km, 0.05 km), x, (7.75 km, 0.05 km),
X (6.25 km, 7.5 km)]; Data4 [x, (6.25 km, 0.05 km), x, (12.75 km, 0.05 km), x (11.25 km, 7.5
km)] and Data5 [x, (2.5 km, 0.05 km), x, (2.75 km, 0.05 km), x (2.5 km, 8.75 km)]. (b) The peak
amplitude after removing the effect of geometrical spreading. We used this graph as R[Av].
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Fig. 3. (a) Delta-function approximation of s(x,t). (b) Box-shape approximation of s (x,t). (c) The
square of the amplitudes of the two data sets are shown in Figs. 1b and 3b with the same
perturbation amount, and (d) shows the accumulated square of the amplitudes with time; the value
at the maximum time indicates the energy.

Av, for five scatterers with different source and receiver positions. Then, we
normalized each data set to remove the effect of geometrical spreading (Fig.
2b). The resulting peak amplitude, R[Av], is only a function of Av. From these
simple two analyses, we concluded that the amplitude variation of a single point-
scattered signal can be decoupled into geometric spreading and a velocity
perturbation component, where the effect of geometrical spreading can be
calculated analytically (Kuvshinov and Mulder, 2006).

We express s(x,t) using this observation as
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s(x,t) = ANX;XINX;X)R[AVX)]6(t — t) “)
t, = Tx,xy) + T(x,x,) .

where X, x; and x, are the positions of a point scatterer, source, and receiver,
respectively. A(xX,;X,) is the ratio of the amplitude decay during wave
propagation from X, to X, due to geometrical spreading, and Av(x) is the
difference between the true velocity and the background velocity model at
scattering position X. R[Av(x)] is a function relating the energy scattering ratio
and the velocity difference. A(x,;X,) is calculated by the analytic solution, which
will be defined later. 6(t — t,) is a delta function. T(x,x,) and T(x,x,) are the
traveltimes of the scattered signal from point x to source x, and receiver x,,
respectively. A, is the initial amplitude of the source. However, the
delta-function signal approximation is not appropriate to express the energy of
the scattered signal. We can easily determine that even if the amplitude of the
delta function is identical to the perturbed signal’s maximum amplitude, the
energy of the scattered signal [eq. (1)] cannot be described by the delta-function
assumption. Therefore, we change the approximation of the 1st-order point-
scattered signal from the delta function to the box-shape signal shown in Fig.
3b and rewrite eq. (4) as

S(X,t) = ANKXINKX)R[AV(X)] , (t, —e <t <t + &) . ®)

The signal is in the interval between t, — ¢ and t, + ¢ only. Whenever we find
the appropriate value of €, s(x,t) can be assumed to have the same energy as
s(x,t) for a single point-scattered signal (Figs. 3c and 3d). The selection of the
appropriate value of ¢ will be discussed later.

We redefine eq. (3) using the pseudo 1st-order point-scattered signal
s(x,t) as

u® =~ | sxode . ©)

Q

THE RESPONSE OF POINT SCATTERERS IN A LINEARLY INCREASING
BACKGROUND MODEL

During propagation, the amplitude of the signal decreases proportionally
to the distance travelled. We selected a linearly increasing velocity model as the
background and calculated N\ using the amplitude of the analytic solution
(Kuvshinov and Mulder, 2006). Additionally, the solution is not a half-space

solution, but we use it as an approximation. The analytic solution can be
expressed as
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Amplitude = N(xy;x,) = 1//[dvva (@ — 1)] , )
where
i=1+ 2R3 ,

o = (Vmax - VO)/Zmax >

N>

=z + va , 8)
2y =z, + Vola
r = ‘\/[(X - Xs)2 + (Z - 25)2] >

where v, denotes the velocity at the surface, z,, is the maximum depth, v, is
the velocity at the bottom of the linearly increasing velocity model, x,(x;,z,) and
X,(X,z) are the position vectors of the source and receiver, respectively, and r
is the distance between the source and receiver.

EQUILIBRIUM EQUATION OF SCATTERING ENERGY

Eq. (6) shows that uy(t) can be approximated with the total sum of
single-scattered wavefields. By the definition of the pseudo 1st-order
point-scattered signal and the definition of energy in eq. (1), we can derive the
equilibrium equations of the scattering energy at each source and receiver.

{1 saoderd = e )
0 Q

where e*" is the energy of the signal recorded at r with source s. However, it
is difficult to compute the system matrix equation of equation (9), and the exact
traveltime is required. To overcome this problem, we assume that the total
energy can be approximated by the sum of the energy of each scattered signal.
The interference among each scattering signal must not influence the energy
distribution of the data to satisfy this assumption. We used a sparse
parameterization and the high-frequency approximation, which was shown as a
box-shaped signal with a short duration (Fig. 3b), to minimize the interference
among the scattered signals. Then, eq. (9) can be rewritten as eq. (10):

S 5 {s(x,0)}*dtdQ = esr . (10)
Q 0



Journal_SEISMIC_No22-2:JOURNAL SEISMIC 11-06 13/95@46:20 Page191

SCATTERED ENERGY INVERSION 191
On the right-hand side of eq. (10), the energy is calculated at each receiver

position with respect to a shot, which can be calculated from observed wavefield
data as

e = | {uropd . (11)
0

We changed the notation u(t) to u;"(t) with respect to each source and
receiver. Then, we can compute n, X n, scattering energy data. The left-hand
side of eq. (10) is derived as follows. First, we consider scattering energy. The
energy from a scattering signal is expressed using the definition of energy as

| Gaord
0

t,+e

= | (AN R[AVG] Yt
= 2eAJ{NxONX;X)R[AV(X)]} (12)

where time t, is located at the center of the box signal. We assumed that the
amplitude depends on both the distance travelled and R[Av(x)] from eq. (4). The
sum of the scattering energy can be expressed as

ff “xoydde
Q 0

I

| 2eA20x;x )N x)RIAVE)T AR
Q

Il

26A2 | (MxxONEx)RIAVEO1AD . (13)
Q
Finally, we build the equilibrium equation of the scattering energy as follows,

262 | (MxxOANEX)RIAVE)]PAQ = e | (14)
Q N

If we divide eq. (14) by 2eAj, then we find an interesting characteristic:

s AN )R[AV(X)]}2AQ = e7/2eAl . (15)
Q
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As we mentioned before, adequate selection of ¢ is important for the
validity of our box signal assumption. The value of ¢ depends on the source
signature. If the source signature is invariable for every shot, the value of ¢
becomes a constant. Therefore, we can ignore ¢ in this algorithm, which
determines the relative ratio of the velocity difference.

Now, we can construct a system of eq. (15) as follows:

Kr =e , (16)
where K is an (n;Xn,) X (n,Xn,) matrix, r is a vector with (n,Xn,) elements,

e is a vector with (n;Xn,) elements, and n, and n, are the numbers of sources
and receivers, respectively. The system can be solved using the normal equation

as follows:
Kr = e
= K'Kr = K'e

= diag[K'K]r = K'e
=r = K'e/diag[K'K] . (17

We calculate r using diagonal components only because of the limitation
of computational resources. By only using diagonal components, our algorithm
becomes extremely fast and inexpensive. Then, we can compute the anomaly r,
which is a relative ratio, and can show where the velocity anomaly is located.
However, we cannot obtain a negative value of r because only the diagonal of
the matrix is used.

THE SCALING AND UPDATING METHOD

We test our algorithm with the Pluto model (Stoughton et al., 2001), as
shown in Fig. 4a. We can calculate the velocity anomaly ratio, Av(x), using r(x)
= R[Av(x)]* and the graph shown in Fig. 2b. The computed anomaly r(x) is
shown in Fig. 7b, which shows where the high-velocity structure is. However,
the result is very smooth and has a wide spread. The position of the maximum
value in our result may be an accurate position of the structure, but the
surrounding region that contains high-velocity structures also has large values.
By inspection, we believe that it is more suitable to curtail the range of the
result with a scaling method. We can control the size of anomalous bodies with
the following scheme:

AVafler =N l (Avbefore)ql ’ (18)
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where N|-| is the normalized value of -, and q is a scaling constant. In this
scheme, as the value of q becomes larger, the size of the anomalous bodies
becomes smaller. In this study, we used q = 2. From this procedure, we can
obtain more reasonable results for velocity updating, as shown in Fig. 7c.
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In this algorithm, we compute the velocity model by updating the initial
velocity with a scaled anomaly as follows:

Vi(X) = vo(x) + yAV(X) , 19)

where v(x) is the computed velocity by our algorithm, vy(x) is the initial
velocity, and v is a step length for the update. To determine a proper q and v,
we performed several line searches that calculated the error between the
seismograms obtained using the actual and computed velocity models.

SYNTHETIC DATA EXAMPLES
Pluto model

We tested our algorithm with seismograms from the Pluto 1.5 dataset
shown in Fig. 4, which has been generated by the SMAART Joint Venture
Consortium (Stoughton et al., 2001). Its seismograms were computed using a
4th-order finite difference modeling program in the time domain. There were
1,387 shots and 540 receivers for each shot, and the maximum recording time
was 9 s with a sampling interval of 8 ms. The maximum offset was 8.229 km
(27,000 ft) behind a shot and 3.962 km (13,000 ft) ahead of a shot. The Ricker
wavelet was used as the source wavelet. Good results are difficult to obtain with
the Pluto dataset using a conventional full waveform inversion or migration
without a proper initial velocity model. The existence of multiples and the
absence of low-frequency components hinder the construction of a reliable
velocity model. Fig. 5 shows a frequency-domain full waveform inversion and
a migration result that began with a linearly increasing starting velocity model
(Fig. 7a). The result of the inversion does not show the high-velocity structures
(Fig. 5a). Furthermore, the migration image shows only the top of the
high-velocity structures, as shown in Fig. 5b.

Fig. 6 shows the split shot gather and the scattering energy for the new
algorithm. For our test, we used a linearly increasing velocity model, from 1.5
km/s to 4.0 km/s, as the initial model (Fig. 7a). We fixed the velocity of the
water layer and calculated the velocity below a sea bottom by dividing the
model by 23 X 23 m blocks. Fig. 7b and c shows the velocity anomaly ratio
and the scaled anomaly data for updating. Compared with the Pluto model, we
know that the positions of the anomalies are in good agreement with the actual
model (Fig. 7d). We updated the initial velocity using the velocity differences
(Fig. 7c), and then we recovered a macro-velocity model using the scaling
scheme (Fig. 7e).

We also performed a full waveform inversion and migration with the
computed velocity model as an initial velocity model for a comparison with the
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case of the linearly increasing initial velocity model. In contrast to the previous
result that began with the linearly increasing velocity model, the inversion that
began from our computed velocity model yielded a reliable result (Fig. 8a) that
shows the shape of the high-velocity structure. The migration image (Fig. 8b)
shows not only the top boundaries but also the bottom boundaries of the
high-velocity structures.
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Fig. 5. (a) The inverted velocity model at the 100-th iteration using a linearly increasing velocity
model whose velocity increased from 1.5 km/s to 4.0 km/s as an initial model by a frequency

domain full waveform inversion. (b) Migration images obtained using the inverted velocity model
shown in Fig. 5a.
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Fig. 6. A common shot gather from the model shown in Fig. 4a decomposed into the (a) incident
wavefield u; and (b) the scattered wavefield u,. (c) The energy of each trace of u,.
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Fig. 7. Velocity models. (a) The initial velocity model, (b) the computed anomaly, r(x), (c) the
scaled velocity anomaly, (d) the Pluto velocity model superimposed on the contour of the velocity
anomaly, and (e) the computed velocity model from our algorithm.
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Fig. 8. (a) The inverted velocity models at the 100-th iteration using the computed velocity model
(Fig. 7e) as an initial model by a frequency-domain full waveform inversion. (b) Migration images
obtained using the inverted velocity model shown in Fig. 8a.

BP model

We also tested the algorithm with the BP data set (Billette and
Brandsberg-Dahl, 2005). The BP velocity model is 67 km long and 12 km deep
(Fig. 9a). The data were generated with a streamer configuration using a 15-km
streamer with 12.5-m group intervals and 50-m shot intervals. The number of
sources was 1,340, and each source had 1,201 receivers. Fig. 9b shows a shot
gather. The data were recorded for 12 s with a 6 ms sampling interval. The
dominant frequency of the data is 25 Hz, and there are a small amount of
low-frequency components in the data, as shown in Fig. 9c.
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Fig. 9. (a) The BP velocity model, (b) a shot gather, and (c) the frequency spectrum of the shot
gather.
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Fig. 10. A common shot gather from the model shown in Fig. 9a decomposed into (a) the incident
wavefield u; and (b) the scattered wavefield u,. (c) The energy of each trace of u,.
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Fig. 10 shows the u; and u, parts of the data for a shot gather and its
scattering energy. The test began with a linearly increasing velocity model; the
velocity of this model varied from 1.5 km/s to 4.5 km/s (Fig. 11a). We calculated
the relative velocity anomalies using the energy of the data set and the energy of
the pseudo-scattered signals from the initial model. Fig. 11b shows the result of
this calculation. The relative anomalies show the location of the high-velocity
structures. Fig. 11c shows the computed velocity anomaly for the velocity update.
We displayed the contour image with the BP model to verify the location of the
anomalies, as shown in Fig. 11d. Finally, we obtained a macro-velocity model
(Fig. 11e). In the update process, we constrained the maximum velocity to 4.5
km/s.

FIELD DATA TEST

We tested our algorithm using field data from TGS-NOPEC (Fig. 12). The
data were acquired in an ultra-deep water environment where the average sea
depth is approximately 2 km. There were 1,334 shots, and each shot had 320
receivers. The minimum offset distance was 147 m, and the maximum offset
distance was 8,122 m. The total recording time was 14.3 s with a sampling rate
of 4 ms. We used a linearly increasing velocity model, whose velocity varied from
1.5 km/s to 3.0 km/s, as the background velocity model.

Fig. 13a shows the result of our algorithm using the data set, and Fig. 13b
shows the result of the full waveform inversion in the frequency domain using the
computed velocity model as an initial velocity model. With the full waveform
inversion in the frequency domain, the resolution of the. coarse-scaled velocity
model improved. The inverted velocity model (Fig. 13b) shows high-velocity
structures in the subsurface with improved resolution. To verify the inverted
velocity model, we obtained a reverse time migration from this model, as shown
in Fig. 13c. The image clearly shows the subsurface layers and structures.

DISCUSSION

To examine the effect of the lack of low frequencies in the proposed
algorithm, we applied a bandpass filter, as shown in Fig. 14a, to the Pluto data
(Fig. 4b). Fig. 14b shows the scattering energy distribution of the original data
and the filtered data. The energy distribution of the filtered data shows more
high-wavenumber features compared with the original distribution. Although we
removed the low-frequency information, the general trend of the energy
distribution of the filtered data is similar to the original distribution. Fig. 15 shows
the inversion results of both the original data and the filtered data. Note that the
results of both data sets are very similar to each other, which shows the robustness
of the algorithm with respect to the lack of low-frequency content in the data.

e
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Fig. 11. Velocity models. (a) The initial velocity model, (b) the computed anomaly, , (c) the scaled
velocity anomaly, r(x), (d) the BP velocity model with the contour of the scaled velocity anomaly,
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and (e) the computed velocity model from our algorithm.
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Fig. 12. (a) A shot gather of the TGS-NOPEC data set, (b) the frequency spectrum of the shot
gather and (c) the converted energy.
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Fig. 13. (a) The computed velocity model using the TGS-NOPEC data set, (b) the inverted velocity
model at the 100-th iteration using the computed velocity model as an initial velocity model with the
frequency domain FWI, and (c) the migration images using the inverted velocity model shown in
Fig. 13b.
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Fig. 14. (a) The illustration of the band-pass filter. (b) The energy distributions of the original data
and the filtered data.
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filtered data (Fig. 14).
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While deriving the matrix equation [eq. (17)], we ignored interferences
among the scattered signals. Although we used box-shaped signals and sparse
parameterizations to minimize the interferences, this approximation introduces
errors in the energy distribution calculation. Moreover, the pseudo-scattered
signal approximation is also a source of error. Accordingly, the proposed
method does not recover all the anomalies in the subsurface. For example, the
computed model (Fig. 11e) does not show the inclined high velocity at the
bottom right of the BP model. We found that our method only recovers
structures generating large energy. We believe that this recovery was also
related to the R[Av] obtained by the empirical method. Furthermore, using
positive diagonal components of the matrix ensures that our method recovers
only the high-velocity anomalies compared with an initial velocity model.
Although many approximations were introduced, the proposed method resulted
in accurate macro-velocity models. These models can serve as an accurate initial
velocity model for subsequent processes, as shown in the numerical examples.

Using this energy data, the total amount of data was reduced from
n,Xn,Xn, to ngXn,, which means that the resolution of an inversion result is
reduced when compared with other schemes using all the data. In contrast, we
efficiently obtained macro-velocities using the pseudo-scattered signal. For
example, the computation for the Pluto model shown in Fig. 7 required 194.2
s using five 2.26-GHz CPUs.

CONCLUSION

We proposed a new method to find a macro-velocity model inspired by
the idea of gravity inversion, the Born approximation, and the energy of seismic
data. We excluded the direct wave and the head wave to compute the energy of
the scattered data. The energy profiles appear similar to a gravity anomaly, and
the inverted velocity appears similar to the results of the gravity inversion in
many respects.

The robustness of this method was shown by numerical examples,
including examples with field data. We showed that this algorithm yields
macro-velocity models. The macro-velocity model using our algorithm is
acceptable as an initial velocity model for a subsequent full waveform inversion.
The new scheme can be used with real data that does not contain low-frequency
contents to build a macro-velocity model for full waveform inversion or
migration. The proposed method requires further studies that investigate the
reliable scaling factor, the step-length constant and a technique to delineate
low-velocity regions below a high-velocity area.
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