JOURNAL OF SEISMIC EXPLORATION 21, 377-394 (2012) 377

MULTI-GPU BASED TWO-LEVEL ACCELERATION OF
FULL WAVEFORM INVERSION

JINGRUI LUO, JINGHUAI GAO and BAOLI WANG

School of Electronic and Information Engineering, Xi’an Jiaotong University, 710049 Xi’an, P.R.
China. bluebirdjr@126.com

(Received March 12, 2012; revised version accepted October 15, 2012)

ABSTRACT

Luo, J., Gao, J. and Wang, B., 2012. Multi-GPU based two-level acceleration of full waveform
inversion. Journal of Seismic Exploration, 21: 377-394.

Full waveform inversion (FWI) of seismic data is very computationally expensive. In this
paper, we have developed a two-level parallel scheme to speed up FWI with multiple graphics
processing units (multiple GPUs). The first level parallelism is the coarse-grained parallelism among
multiple GPUs, which is used to reduce the number of shots; the second level parallelism is the
fine-grained parallelism within each individual GPU grid, which is used to speed up the wavefield
propagation procedures. The PML boundary condition is used, and the efficient boundary storage
strategy is used to avoid the tremendous storage requirement needed on the disk and the data transfer
between the disk and memory. We tested the scheme on the INSPUR TS10000 system with 10 Tesla
C2050 GPUs by reconstructing the Marmousi velocity model using FWI in the time domain and
compared the computation time with that on CPUs and on single GPU, the result showed that the
two-level based FWI is about 500 times faster than the CPU-based implementation, and the speedup
of the two-level scheme is a product of those of the two levels individually. With this scheme, the
turnaround time of FWI has been reduced significantly.

KEY WORDS: full waveform inversion, GPU, acceleration.

INTRODUCTION

Seismic full waveform inversion is a powerful tool for retrieving
information of the subsurface, and was introduced by Lailly (1983) and
Tarantola (1984,1987). In their work, the gradient of the objective function was
calculated using the back-propagation algorithm, and the difficult and
time-consuming directly calculating of the gradient was avoided, however, FWI

0963-0651/12/$5.00 © 2012 Geophysical Press Ltd.



378 LUO, GAO & WANG

is still very computationally expensive. Later, the FWI and the back-propagation
method were extended to the frequency domain (Pratt et al., 1998; Pratt, 1999,
Pratt and Shipp, 1999), and the implementations can be solved for many shots
using LU decomposition of a large sparse matrix, besides, only a few select
frequencies are needed for the implementation. However, the implementation of
FWI in the frequency domain requires large memory requirements which makes
the method unsuitable for large 3D problems (Operto et al., 2007), and because
most subsalt targets are deep and many current acquisitions have a some what
small finite offset, so often dozens of frequencies are required, these render the
time domain implementation more attractive.

FWI in the time domain is very computational expensive, because a large
number of shots are needed to be simulated and several propagation procedures
are needed in each iteration step. This always causes inconvenience for the
research work, so many researchers have hammered away at reducing the
computational cost of FWI.

Contracting the number of shots seems to be an intuitional way to reduce
the computational cost. Vigh and Starr (2008) implemented FWI using
plane-wave gathers other than shot gathers. Mora (1987) generated some
super-shots to speed up FWI. Wang and Gao (2010) suggested to randomly
regenerate the super-shots between iterations. In recent years, many researchers
have proposed to use the encoded source sums technology, for example, Krebs
(2009) and Krebs et al. (2009) presented the phase encoding algorithm for two
dimensional FWI in the time domain, and Ben-Hadj-Ali et al. (2009) extended
the phase encoding technology to three dimensional FWI in the frequency
domain.

This super-shots method and encoded source sums technology reduce the
number of shots, and can get a speedup which is proportional to the number of
shots, however, the thousands upon thousands propagation procedures in the
implementation still make FWI very computationally expensive. Owing to the
hardware advance such as the graphics processing unit (GPU) (Sanders and
Kandrot, 2010; Kirk and Hwu, 2010), the propagation procedures can also be
speeded up.

The graphics processing unit (GPU) is the most pervasive parallel
processor to date with multicore and multithread, and was first invented by
NVIDIA in 1999. Fueled by the insatiable desire for life-life real-time graphics,
the GPU has evolved into a processor with unprecedented floating-point
performance and programmability, as far as the single-precision floating-point
is concerned, the computing capacity of GPUs can reach greater than 1T flops.
GPUs greatly outpace CPUs in the arithmetic throughput and memory
bandwidth, which make them the ideal processor to accelerate a variety of data
parallel applications. Nowadays, the fermi CUDA architecture introduced by



MULTI-GPU BASED ACCELERATION 379

NVIDIA enables programmers to use a variety of high level programming
languages, and makes the GPU have wider applications.

In recent years, there have been some researchers using GPU in
geophysics applications (Li et al., 2009; Zhang et al., 2009; Kadlec and Dorn,
2010). Wang and Gao (2011) presented the scheme for the acceleration of FWI
on single GPU, which reduces the computational cost of the propagation
procedures in each inversion step. This scheme, however, only speed up the
propagation procedures and put the multi-shot problem unresolved.

In recent years, the computing capacity of GPU has been improved
enormously, and multi-GPU systems have been developed, which can be used
to solve the multi-shot problem in FWI. In this paper, we present a two-level
multi-GPU based parallel scheme to accelerate the 2D FWI in the time domain.
The first level parallelism is the coarse-grained parallelism among multiple
GPUs via MPI, which is used to reduce the number of shots; the second level
parallelism is the fine-grained parallelism within each individual GPU grid via
fermi CUDA, which is used to speed up the wave field propagation procedures.
By this, the computational cost of FWI is reduced further more.

REVIEW OF FWI IN THE TIME DOMAIN

FWI can retrieve information of the subsurface by measuring the
difference between the simulated data and the recorded data, the classical least
squares misfit function is given by:

N, T N,
Sam) = Y, | dt Y [deuxotix) — dayx tx)P 1)
s=1 0 1 :

where d, (X,,t;X,) is the observed wavefield at receiver x, from the source x,,
dea(X,,t;xy) is the synthetic data at receiver x, from the source x,, N; is the
number of sources, N is the number of receivers, and T is the recording time,

m is the model parameter, S(m) is the misfit between the observed data and the
synthetic data.

Our goal is to obtain the model m for which the misfit S(m) is a
minimum. As we all know, this problem is highly nonlinear, and a gradient
method, such as the conjugate-gradient method (Moro, 1987, 1988;

Freudenreich and Shipp, 2000) can be used, and the model is updated as
follows:

mn+1 = mn + an'Yn s (2)



380 LUO, GAO & WANG

where o, is the step length in the n-th iteration, v, corresponds to the updating
direction which can be obtained from the gradient of the misfit function, so the
gradient of the misfit function with respect to the model m must be calculated
first.

We consider a finite difference acoustic simulator in 2D media with
constant density. The space coordinate vector x can de specified as (x,z), and
the wavefields satisfy the acoustic wave equation:

[1/v2(x)][02d(x,t;x,)/0t2]
= [02d(x,t;x,)/0x?] + [32d(x,t;x,)/0z?] + f(x,,t) , 3)

where v(x) is the velocity and f(x,t) is the source function. The wavefield
d(x,t;x,) must also satisfy the initial condition.

The gradient of the misfit function with respect to the velocity can be
calculated by zero-lag correlation of the forward propagated source wavefield
and the backward propagated residual wavefields:

T

N,
0S/0v(x) = [2/0v(x)] Z S dt[a2d(x,t;x,)/t2 N, t;X,) )]
s=1

0

where d(x,t;x,) is the forward propagated source wavefields defined in eq. (3),
and A(x,t;X,) is the backward propagated wavefields, which satisfies the wave
equation with the residual wavefields as the source:

[1/v2(x)][02N(x,t;X,)/0t?]

= [PAXEX)/%] + [PNKEX)022] + (g — dadKX) - ()

The wavefield A(x,t;x,) must also satisfy the final condition.

FERMI CUDA PROGRAMMING MODEL

GPU is the ideal processor to accelerate a variety of data parallel
applications. In recent years, the computing capacity of GPU has been improved
enormously and systems containing multiple GPUs have become more and more
common, which can serve us better.

CUDA (an acronym for Compute Unified Device Architecture) is a
bran-new parallel computing architecture developed by NVIDIA, which makes



MULTI-GPU BASED ACCELERATION 381

GPUs available for other computations besides image processing. It contains the
instruction set architecture (ISA) and the parallel computing engine for GPUs,
and provides the access interfaces for GPUs, so developers can interact with
GPUs without knowing any graphic language such as DirectX, OpenGL and Cg,
and can develop their own applications with C/C+ + Program Language or with
Fortran Language.

In CUDA programming model, CPU is the host, while GPUs are
co-processors or devices, one host can have several devices. Serial sections and
more logical sections are dealt with on CPU, while highly threaded parallel
tasks are coded as kernels running on GPUs (Fig. 1). Both CPU and GPUs
maintain their own memory, which allows running these two separate sections
of codes simultaneously without the concern for memory collisions.

Host Device

Serial code Grid 1

Serial code

7
7

Thread || Thread
(0,0) (1,0)

Thread | | Thread
0,1) (1,1)

Fig. 1. Schematic of the GPU architecture. The left is the CPU host, which is used to deal with
serial sections and more logical sections; the right is the GPU devices, which are used to deal with
highly parallel tasks coded as kernels. The three-level parallel hierarchy in GPU architecture are
thread, block and grid.Several threads are organized into a one dimension or two dimension block,
and several blocks are organized into a one dimension or two dimension grid.



382 LUO, GAO & WANG

Fermi architecture is the newest and the most advanced CUDA
architecture. In Fermi architecture, CUDA programming model has three-level
parallel hierarchy: thread, block and grid, which is also shown in Fig. 1.
Thread is the smallest unit, several threads are organized into a one dimension
or two dimension block, and several blocks are organized into a one dimension
or two dimension grid.

CUDA program calls parallel kernels, a kernel executes in parallel across
a set of parallel threads. The programmer or compiler organizes these threads
in thread blocks and grids of thread blocks. The GPU instantiates a kernel
program on a grid of parallel thread blocks. Each thread within a thread block
executes an instance of the kernel, and has a thread ID within its thread block,
program counter, registers, per-thread local memory, inputs, and outputs.

A thread block is set of concurrently executing threads that can cooperate
among themselves through barrier synchronization and shared memory. A thread
block has a block ID within its grid.

A grid is an array of thread blocks that execute the same kernel, read
inputs from global memory, write results to global memory and synchronize
between dependent kernel call. In the CUDA parallel programming model, each
thread has a per-thread local memory space used for register spills, function
calls, and C automatic array variables. Each thread block has a per-block shared
memory space used for inter-thread communication, data sharing, and result
sharing in parallel algorithms. Grids of thread blocks share results in global
memory space after kernel-wide global synchronization. Besides, all the thread
blocks share constant memory and texture memory. Fig. 2 illustrates these
different kinds of memory and their subordination. Each kind of memory has
its own characteristic, and can be used for program optimization.

There are some limits to the number of threads per block and the number
of blocks per grid. To most of GPUs, threads within a block should be less than
1024, and blocks within a grid should be less than 65535.

ACCELERATING WITH MULTI-GPU

FWI in the time domain is very computationally expensive because of two
aspects reasons. The first is the large number of shots needed to be simulated.
In FWI, we always need to simulate tens of, even hundreds of shots to get a
better inversion result. The second reason is the thousands upon thousands
propagating procedures needed to be done. For each shot gather, in each
iteration step, at least three propagation simulations must be done: one for the
calculation of the forward wavefields, one for the backward wavefields, and at
least one for the calculation of the step length. Our goal is to accelerate the



MULTI-GPU BASED ACCELERATION 383

implementation of FWI in the time domain with multiple GPUs, and we will
consider the two aspects at the same time, that is, we will accelerate the forward
modeling procedures and, meanwhile, reduce the number of shots.

(Device) Grid

Block (0,0) Block (1,0)

Thread(0,0)| |Thread(1,0) Thread(0,0) |Thread(1,0)

Il
i il il /Il

Host

Fig. 2. Different kinds of memory in a GPU grid. Each thread has its own register memory and
local memory, threads within a block can cooperate by sharing data through shared memory, and
all the blocks share global memory, constant memory and texture memory.



384 LUO, GAO & WANG

Accelerating the forward modeling procedure
Forward modeling implementation

We implement eq. (3) using staggered-grid finite difference, and the wave
equation in formula (3) can be organized as:

[0d(x,t)/at] = vA(x){[dp(x,t)/dx] + [dq(x,t)/0z]}
[Op(x,t)/0t] = [ad(x,t)/0x] R (6)
[0q(x,t)/at] = [ad(x,t)/0z]

where p(x,t) and q(x,t) are introduced for the implementation of the
staggered-grid finite difference. The formula above can be discretized as:

ditj = di; + Avvi{[(iti; — piT)/AX] + (@i — qit)/Az]

pitl = pi; + At[(d; — di_,))/Ax]

i-1j

, (D
q* =q; + At-[(di; — di_,))/Az]

where Ax and Az represent the space sampling intervals, At represents the time
sampling interval, the subscripts i and j and represent the location of the grid
points in space, and the superscript t represent the time step.

Accelerating the forward modeling using GPU

From eq. (7) we can see that the calculations of the wavefield cells at
each time step are actually independent, the calculation of the wavefield for one
cell at a time step needs only the wavefields of the last time step of its
neighboring cells. So all these cells can be calculated simultaneously as long as
we have enough concurrent execution units. From previous sections we know
that the threads within several blocks can execute parallelly, so we can assign
these calculations to the 2D threads of several 2D blocks, and the wavefield
propagation can be implemented parallelly.

Fig. 3 shows the schematic of the forward modeling implementation in a
GPU grid. The 2D threads of many 2D blocks in a GPU grid form a grid of 2D
threads, which correspond to the 2D space in the earth, and each thread
corresponds to a wavefield cell in the 2D space. When implementing, every
thread does the same operation as shown in the right side of Fig. 3 which is the
same as shown in eq. (7). Because these threads can execute parallelly and
correspond to different wavefield cells, so the whole wavefields can be



MULTI-GPU BASED ACCELERATION 385

calculated parallelly, while using the CPU, these wavefield cells must be
calculated one by one in sequence. Owning to the parallelism of these threads,
the calculational cost of the forward modeling can be reduced.

Gnd

i=threadldx.x+blockldx.x * blockDim.x;
BlOCk(O 0) BlOCk(l 0) j=th.readldx.x+blockldx.x - blockDim.X:

for t=t_start: t end

do
I| Block(0,1) || “Block(1.,0)
:I . [ o b
d - il
) : \\ \\ pl_] —pi._] tAt-
Block (0,1) - d' -d,:, .
19 Zq”+At —i
Thread Thread
ety tH_t4 tH ]
0,0 1,0 ) A o
( ) ( ) dlt+1:dl';+Atv2 pl Lj pl._] +qx.1+l-q1_]
s Ax Az

w

Thread Thread
(0.1) (1,1) end

Fig. 3. Schematic of the forward modeling implemented in a GPU grid. The 2D threads correspond
to the 2D space in the earth, and each thread corresponds to a wavefield cell in the 2D space. When
implementing, every thread does the same operation as shown in the right, and all the wavefields
can be calculated parallelly.

Boundary conditions and the storage strategy

In FWI, The gradient of the misfit function with respect to the velocity
can be calculated by zero-lag correlation of the forward propagated source
wavefields and the backward propagated residual wavefields. To do this
correlation, we need the forward propagated wavefields in each time step while
calculating the backpropagated wavefields. These forward propagated wavefields
are always beyond the memory capacity so we can only first store them on the
disk and then transfer them to the memory, which always takes some extra time.
From eq. (7) we can see that the wavefield of each time step can be
re-calculated by its next time step:



386 LUO, GAO & WANG

d:_jl = d: - At Vl]{[(p1+l_| p:,])/AX] + [(qg,j-H - q:,J)/AZ]
pi.j = pi; — At[(di7] — diZ})/Ax] , ®)
q7) = i — At[dT] — diTj_p/Az]

and we see that if we know the wavefield of the last time step and the boundary
values of each time step, we can re-calculate the wavefields of all the other time
steps. This re-calculation can be accelerated using GPU just as the forward
modeling.

In this test, we used the PML boundary conditions (Komatitsch and
Martin, 2007), and to avoid the tremendous storage requirement and the data

transfer, we used the efficient boundary storage strategy proposed by Wang et
al. (2012).

Reducing the number of shots: The two-level scheme

In FWI, we always need to simulate tens of, even hundreds of shot
gathers, fortunately, the simulations of these different shot gathers are
independent. When we implement the FWI on single-GPU system, these
different shot gathers must be derived sequentially. But based on multi-GPU
system, we can assign these many shots to multiple GPUs which can also
parallelly executed, so the number of shots is reduced and the cost of FWI can
be reduced further more.

So we present this two-level parallel scheme to speed up FWI with
multiple GPUs. The first level parallelism is among multiple GPUs via MPI,
this is the coarse-grained parallelism of the shot gathers, and the speedup is
proportion to the number of shots; the second level parallelism is the parallelism
of threads within each GPU grid via fermi CUDA, this is the fine-grained
parallelism of the forward modeling procedures, the speedup is related to the
GPU specifications and the design of the program, and can usually up to a
magnitude of several tens. The flow chart of this scheme is shown in Fig. 4.
From this two-level parallelism, we can get a speedup which is the product of
those of the two levels 1nd1v1dually, and the calculational cost can be reduced
significantly.

Program optimization

In the implementation of this scheme, we optimize our program in all
directions and try to get higher performance.



MULTI-GPU BASED ACCELERATION

387

1 Forward propagation
of Shot-1

Back-propagation and
recalculation the forward
wavefield of shot-1

Observed data
of Shot-n

MPI parallism (_ starting velocity )
A
Observed data Observed data
of Shot-1 of Shot-2
Y L A 4
GPUO1 GPUO1 GPUO1
CUDA parallism CUDA parallism CUDA parallism

GPUD1
CUDA parallism

Forward propagation
of Shot-1 for the
Step length calculation

yes

Output velocity

*| Forward p il m Forward propagation
of Shot-2 eee of Shot-n
- - -
Back-propagation and Back-propagation and
recalculation the forward recalculation the forward
wavefield of shot-2 wavefield of shot-n
! ; }
A
Gradient
GPUO1 GPUO1
CUDA parallism CUDA parallism
L N N ]
Forward propagation Forward propagation
of Shot-2 for the of Shot-n for the
Step length calculation| Step length calculation
> 4 -+
Velocity updating
no

Fig. 4. Schematic of the two-level scheme. The first level parallelism is among multiple GPUs via
MPI, this is the coarse-grained parallelism of the shot gathers; the second level parallelism is the
parallelism of threads within each GPU grid via fermi CUDA, this is the fine-grained parallelism
of the forward modeling procedures.






MULTI-GPU BASED ACCELERATION 389

Occupancy is a very important parameter in the use of GPUs, we can get
a higher performance if the occupancy is high. GPU occupancy is related to
some other parameters such as the threads used per block, the registers used per
thread and the shared memory used per block, and we can calculate the
occupancy value using CUDA Occupancy Calculator provided by NVIDIA. The
CPU and GPU model we used in this study are listed in Table 1 and Table 2.
The compute capability of our GPU model is 2.0, and the shared memory size
is 48 Kb, that is 49152 bytes. We used 32 X 16, that is 512 threads per block,
and 6 registers per thread, and the shared memory we used per block is 2048
bytes. With this, we can get a occupancy of 100 percent.

Table 1. CPU specifications.

CPU Intel (R) Core (TM)2 Quad CPU Q9500
2.83 GHz

Memory 4 GB

Table 2. GPU specifications.

System inspur TS10000
GPU Model NVIDIA Tesla C2050
GPU Device Count 10

Global Memory 3GB GDDRS5
Multiprocessors 14

Threads Per Block 1024

Shared Memory Per mp 48 Kb

Constant Memory 65 Kb
Registers Per mp 32768
Single-precision Float 1.03 Tflops
Double-precision Float 515 Gflops
Compute Capability 2.0




390 LUO, GAO & WANG

NUMERICAL EXAMPLE

We tested our parallel program implemented on GPUs, and compared the
computational cost with that on CPU. We also compared the computational cost
of the two-level scheme with schemes containing only one level (containing only
the MPI parallelism or only the CUDA parallelism). The specifications of the
CPU and GPUs used in this study are listed in Table 1 and Table 2.

We employ the Marmousi model as illustrated in Fig. 5 (a). This model
has a grid size of 751 X 2301, the space sampling intervals are 4 m for Ax and
Az. In the following tests, we use a 10 Hz Ricker wavelet as the source
signature and generate 3 s records with time sampling interval of 0.4 ms, that
is 7500 time steps.

Distance(km)
2.0 4.0 5.0 8.0

Distanceikm) Distanceikm)
20 4.0 5.0 8.0 2.0 4.0 6.0 8.0

Fig. 5. The Marmousi velocity model. (a) The true velocity model; (b) the starting velocity model;
(c) the inverted velocity model after 200 iterations.



MULTI-GPU BASED ACCELERATION 391

Table 3. Comparison of computational cost of forward modeling (the speedup in this table are in
respect to the cost on single CPU).

Model Marmousi
Grid size 751 x 2301
Number of shots 10

Number of time steps 7500

Cost on single 16261.7 (s)
CPU Cost on 10 CPUs (MPI parallel) 1626.3 (s)
Cost on single GPU (CUDA parallel) 325.8 (s)

Cost on 10 GPUs (MPI+CUDA parallel) 32.6 (s)

Speedup of MPI parallel 9.9
Speedup of CUDA parallel 49.9
Speedup of two-level parallel 498.9

Propagating procedure testing

We first test the computational cost for the propagating procedure. We
simulated a forward modeling with 10 shots using the Marmousi velocity model,
we implement the simulating on CPU (no parallelism), multi-CPUs (MPI
parallelism only), single-GPU (CUDA parallelism only) and multi-GPUs
(two-level parallelism). The processing time and the speedup with respect to
single CPU are listed in Table 3. From the result we can see that, the MPI
parallelism only scheme can get a speedup of 9.9, and the CUDA parallelism
only scheme can get a speedup of 49.9, while using the two-level scheme, we
can get a speedup of 498.9, which is almost the product of those of the two
levels individually.

FWI implementation testing

To examine the multi-GPU based FWI method, we put 20 shots in space
and 380 receivers in space located on the surface of the Marmousi model. Fig.
5(b) shows the initial velocity model which is derived by smoothing the
Marmousi velocity model using a Gaussian filter.



392 LUO, GAO & WANG

We implement the FWI on the Inspur TS10000 system which has 10
GPUs, so each GPU grid need to simulate 2 shot gathers, that is 1/10 of the
initial number of shot gathers. We also implement the FWI using 5 GPU grids
and 2 GPU grids, respectively, in these cases, each GPU grid is used to
simulate 4 shot gathers and 10 shot gathers respectively (because the
computation time on CPU is extremely large, so we did not implement the FWI
on CPU platform). The computation time is listed in Table 4.

Table 4. Computational cost of FWI using the two-level scheme.

Model Marmousi
Grid size 751 x 2301
Number of shots 20

Number of time steps 7500

Cost of one iteration on 2 GPUs 1404.1 (s)
Cost of one iteration on 5 GPUs 561.2 (s)
Cost of one iteration on 10 GPUs 280.8 (s)
Total cost on 2 GPUs 78.0 (hours)
Total cost on 5 GPUs 31.2 (hours)
Total cost on 10 GPUs 15.5 (hours)

The computation time for one iteration on 2 GPUs is 1404.1 s, on 5
GPUs is 561.2 s, and on 10 GPUs is 280.8 s. We get the final result shown in
Fig. 5(c) after 200 iterations, and it costs 78 hours for 2 GPUs, 31.2 hours for
5 GPUs, and 15.5 hours for 10 GPUs. We can imagine that if we have more
GPU grids, then the computation time can be further reduced.

CONCLUSION

In this study, we have presented a fast two-stage parallel scheme based
on multi-GPU system to speed up FWI in the time domain. In this scheme, the
PML boundary condition and the efficient boundary storage strategy are used
to avoid the tremendous storage requirement needed on the disk and the data



MULTI-GPU BASED ACCELERATION 393

transfer between disk and memory. In our program, all the calculations,
including the forward propagating, backward propagating and boundary storage
are coded as kernels executed on GPUs to avoid the low-bandwidth data transfer
between host and devices, we also utilized the higher bandwidth of the shared
memory, constant memory and texture memory.

The proposed two-level multi-GPU based scheme can speed up FWI over
the CPU-based implementation by 498.9 times, which is a product of the
CUDA-based only scheme and the MPI-based only scheme. So the turnaround
time for inverting the velocity model is reduced significantly and researchers can
do their work with a much shortened research cycle.

ACKNOWLEDGEMENTS

This work was supported by the National Engineering Laboratory On
Offshore Exploration, the National Natural Science Foundation of China
(40730424), and the National Science & Technology Major Project
(2011ZX05023-005).

REFERENCES

Ben-Hadj-Ali, H., Operto, S. and Virieux, J., 2009. Three-dimensional frequency-domain full
waveform inversion with phase encoding. Expanded Abstr., 79th Ann. Internat. SEG Mtg.,
Houston: 2288-2290.

Freudenreich, Y. and Shipp, T., 2000. Full waveform inversion of seismic data. frequency versus
time domain. Lithos Science Rep., 2: 25-30.

Kadlec, B.J. and Dorn, G.A., 2010. Leveraging graphics processing units (GPUs) for real-time
seismic interpretation. High-performance computing. The Leading Edge, 29: 60-66.

Kirk, D.B. and Hwu, W.W., 2010. Programming Massively Parallel Processors: a Hands-on
Approach. Elsevier Science Publishers, Amsterdam.

Komatitsch, D. and Martin, T., 2007. An unsplit convolutional perfectly matched layer improved
at grazing incidence for the seismic wave equation. Geophysics, 72: SM155-SM167.

Krebs, J.R., Anderson, J.E., Hinkley, D., Neelamani, R., Lee, S., Baumstein, A. and Lacasse, M.-
D., 2009. Fast full-wavefield seismic inversion using encoded sources. Geophysics, 74:
WCC177-WCC188.

Lailly, P., 1983. The seismic inverse problem as a sequence of before stack migrations. In: Bednar,
J., Robinson, E. and Weglein, A., (Eds.), Inverse Scattering Theory and Application. Soc.
Industr. Appl. Mathemat. (SIAM), Philadelphia: 206-220.

Li, B., Liu, G.F. and Liu, H., 2009. A method of using GPU to accelerate seismic pre-stack time
migration. Chin. J. Geophys. [in Chinese], 52: 245-252.

Mora, P., 1987. Nonlinear two-dimensional elastic inversion of multi-offset seismic data.
Geophysics, 52: 1211-1228.

Mora, P., 1998. Elastic wave-field inversion of reflection and transmission data. Geophysics, 53:
750-759.

Operto, S., Virieux, A.J., I’Excellent, J., Giraud, L. and Ali, H.B.H., 2007. 3D finite-difference
frequency-domain modeling of viscoacoustic wave propagation using a massively parallel
direct solver: A feasibility study. Geophysics, 72: SM195-SM211.



394 LUO, GAO & WANG

Pratt, R.G., 1999. Seismic waveform inversion in the frequency domain, Part 1: Theory and
verification in a physical scale model. Geophysics, 64: 888-901. Pratt, R.G., Shin, C.S. and

Hicks, G.J., 1998. Gauss-Newton and full Newton methods in frequency- space seismic waveform
inversion. Geophys. J. Internat., 133: 341-362.

Pratt, R.G. and Shipp, R.M., 1999. Seismic waveform inversion in the frequency domain, Part 2:
Fault delineation in sediments using crosshole data. Geophysics, 64: 902-914.

Sanders, J. and Kandrot, E., 2010. Cuda by example: an introduction to general-purpose GPU
program- ng. Addison-Wesley, Boston, MA.

Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics,
49: 1259-1266.

Tarantola, A., 1987. Inverse Problem Theory: Methods for data fitting and model parameter
estimation. Elsevier Science Publishers, Inc., New York

Vigh, D. and Starr, E.W., 2008. 3D prestack plane-wave, full-waveform inversion. Geophysics, 73:
VE135-VE144.

Wang, B. and Gao, J., 2010. Fast full waveform inversion of multi-shot seismic data. Expanded
Abstr., 80th Ann. Internat. SEG Mtg., Denver: 1055-1058.

Wang, B. and Gao, J., 2011. Cuda-based acceleration of full waveform inversion on GPU.
Expanded Abstr., 81st Ann. Internat. SEG Mtg., San Antonio: 2528-2533.

Wang, B., Gao, J., Chen, W. and Zhang, H., 2012. Efficient boundary storage strategies for
seismic reverse time migration. Submitted to Chin. J. Geophys. [in Chinese].

Zhang, J.-H., Wang, S.-Q. and Yao, Z.-X., 2009. Accelerating 3D Fourier migration with graphics
processing units. Geophysics, 74: WCA129-WCA139.





