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ABSTRACT

Alimoradi, A., Moradzadeh, A. and Bakhtiari, M.R., 2012. Reservoir porosity determination from

3D seismic data - application of two machine learning techniques. Journal of Seismic Exploration,
21: 323-345.

This paper proposes a method for solving 3D seismic data inversion problems for prediction
of porosity in hydrocarbon reservoirs. An actual carbonate oil field in the south-western part of Iran
was selected for this study. Taking real geological conditions into account, different synthetic models
of reservoir were constructed for a range of viable porosity values. Seismic surveying was
performed next on these models. From seismic response of the synthetic models, a large number of
seismic attributes were identified as candidates for porosity estimation. Classes of attributes such as
energy, instantaneous, and frequency attributes were included amongst others. Applying sensitivity
analysis, the two most significant attributes were determined as Envelope Weighted Phase and
Envelope Weighted Frequency, which were subsequently used in our machine learning algorithms.
In particular, we used feed-forward artificial neural networks (FNN) and support vector regression
machines (SVR) to develop relationships between the known synthetic attributes and synthetic
porosity values in a given setting. The FNN consists of six neurons in a single hidden layer and the
SVR method uses a Gaussian radial basis function. Compared with real values from the well data,
we observed that SVM outperforms FNN due to its better handling of noise and model complexity.

KEY WORDS: seismic inversion, seismic attributes, synthetic data, feed forward neural network,
support vector machine.
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INTRODUCTION

Reservoir porosity is one of the fundamental rock properties which relates
to the amount of fluid contained in a reservoir and its ability to flow when
subjected to applied pressure gradients. This property has a significant impact
on petroleum fields operations and reservoir management.

Since well logging tools became available, calculating formation porosity
from geophysical well logs has been practiced. In many situations, there may
exist relationships between the value of porosity and acoustic transit time (At);
but such correlations are usually empirically derived for a given formation in a
given area. One of the first relationships to determine porosity from sonic transit
time was proposed in 1958 (Wyllie et al., 1958). This equation is almost used
to quantifying porosity in consolidated sandstones and carbonates with
intergranular porosity. Better results can be found using Cp = Atsh/100, which
was introduced later. Raymer investigated an empirical sonic porosity transform
based on comparison of transit times with core porosities and porosities derived
from other logs (Raymer et al., 1980). Other petrophysicists worked on
equations which relate sonic transit time (At) and porosity (¢) better than the
Wyllie Time Average equation.

These calculations assume a linear or modeled nonlinear relationship
between porosity and density log responses. Log analysis in a large field-scale
study can be quite labor intensive and time consuming and therefore, expensive.
This problem becomes more pronounced when the formation being studied is
known to be a complex system. For more complicated relationships found in
many oil field problems, such simple tools often do not provide adequate
solutions. To solve this problem, scientists have focused on Artificial
Intelligence as a nonlinear and non-parametric tool in well log analysis.
Different types of artificial neural networks (ANN) and fuzzy logic (FL) have
been used for reservoir characterization and also for well log interpretation
(Pezeshk et al., 1996; Jang et al., 1997; Batyrshin et al., 2002; Nikravesh et
al., 2003). One of the best results presented in 1996, obtained porosity in a
sandstone oil field using gamma ray, deep induction and bulk density logs and
the three layer feed forward back propagation artificial neural network
(Mohaghegh et al., 1996). Mohaghegh also introduced a neural network
approach which can find the relationship between neutron logs and the values
of porosity parameter (Mohaghegh et al., 1999). Lim suggested an intelligent
technique using fuzzy logic and neural network to determine porosity from
conventional well logs (Lim, 2005). Batyrshin described a methodology based
on the use of hybrid methods, such as principal component and factor analysis,
fuzzy classification and evolutionary optimizations for analysis of well logs and
for qualitative pore structure classification in carbonate formations (Batyrshin
et al., 2005).
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Although reservoir porosity can be derived reliably from core samples or
well-log measurements, this property varies laterally from one well to another.
Normally, it is very difficult to predict the reservoir properties away from the
wells, especially near the edge of an oil field. Seismic data, particularly 3D
surveys, contain valuable information about the lateral variation of reservoir
properties. When there are wells inside the seismic coverage, it is natural to
infer the reservoir property between the wells by interpreting the seismic data
and using the reservoir property at well locations as spatial control points. In
1998, Lawrence could predict fractures in a carbonate reservoir using the
combination of impedance and coherence attributes (Lawrence, 1998). Leu
found a statistical regression between wave amplitude and velocity with porosity
values from logs (Leu et al., 1999). Others used seismic facies analysis to
investigate the lateral changes of porosity (Edalat and Siahkoohi, 2007).
Assuming that there exists a functional or statistical relationship between the
seismic data and the reservoir property, ANNs can be applied to establish a
model of the relationship using the training sample set. This model can then be
used to predict the reservoir properties away from the wells (An and Moon,
1993; An, 1994). An proposed the ANN method to predict porosity values in
one Canadian oil field using seismic wave amplitude (An et al., 1997). Malvic
and Prskalo (2007) suggested a back propagation artificial neural network to
relate the values of amplitude, phase and frequency attributes to the values of
porosity parameter.

This paper suggests an intelligent technique for reservoir characterization
using artificial neural network and support vector machine to determine
reservoir porosity from seismic attributes. A real example of a reservoir
characterization project in south western part of Iran using these approaches is
given. Since data obtained from the oil field being studied were not adequate for
ANN and SVM modeling process, we decided generating synthetic data, finding

the proper network, and checking the network with the data of abovementioned
oil field.

METHODOLOGY

Site Geology

One of the Iranian carbonate oil field which is located in the south-
western part of Iran was selected. This field consists of all of the necessary data
for this study including 3D seismic data and well data (cores and logs). There
are also two wells drilled in this field. Both of these wells contain hydrocarbon
in Sarvak level (one of the famous hydrocarbon zones in Iranian carbonate oil
fields) at the depth of 2850 meters. The thickness of the reservoir is about 200
meters. Since the data of well 1 are so noisy and incomplete, we decided to
implement well 2 in this study. Geological investigations illustrate that the
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reservoir through this well (well 2) consists of pure limestone. The values of
porosity obtained from well log measurements are shown in Fig. 1.
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Fig. 1. Values of porosity in well 2 through the reservoir zone.

Seismic Data Acquisition

The proposed methodology of this paper will be explained using a realistic
example. A 3D seismic survey has been performed over this field. Fig. 2
illustrates the seismic line which passes both wells. Since OpendTect is one of
the most powerful packages in seismic data interpretation, the application of this
software was considered for seismic attribute extraction. As previously
mentioned, the data of well 1 are not suitable for analysis; therefore it is
inevitable to work on the data of well 2 only. According to limited resolution
of seismic survey which leads to the limited number of data points in discrete
well analysis, it is necessary to generate adequate synthetic data.
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Fig. 2. Seismic line over wells 1 and 2 (dGB Earth Sciences, 2008).

Forward modeling was done to simulate a reservoir level in Sarvak zone

for well 2 using modified Gassmann rock physics equation (Alimoradi et al.,
2011):

PsaVesa = [(1 = oKaary/Ko){(0/Ke) + (1= )/Ky — (aKgar/KD)}

+ oKggy + (4/3)u] . 1)

In this equation:

ps: = density of the saturated rock,

Vi = P-wave saturated rock velocity,

p = rock shear modulus,

Kgary = dry rock effective bulk modulus from the Geertsema equation,
K, = bulk modulus of the mineral material making up the rock,

Ky = effective bulk modulus of the pore fluid,

¢ = porosity,

o = coefficient of pores sizes.
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P-wave saturated rock velocity (Vy,,) data were generated by changing the
values of ¢ and «. Other parameters in the Gassmann equation are considered
to be constant (according to their real values in the reservoir). These parameters
are: Ky = 63 GPa, p = 26 GPA, p = 2479 kg/m*® and Sy, = 0.3279,
respectively. 45 data were generated in this way (Table 1) each called from
model 101 to model 509. The first value in each model name refers to the
values of porosity (0.1 to 0.5) and the third one refers to values of « (0.1 to
0.9). For example model 207 refers to the synthetic model which has a porosity
of 0.2 and « of 0.7.

Table 1. 45 synthetic models generated using the modified Gassmann equation.

D | Keary | O | Karynew Ve Model | @ | Kgary | & | Kgrynew Ve Model
0.1 1.05 | 4573 101 0.1 | 0.573 | 4243 201
0.2 2.1 4598 102 0.2 | 1.146 | 4263 202
0.3 ] 3.15 | 4624 103 0.3 ] 1.719 | 4283 203
0.4 4.2 4649 104 0.4 | 2.292 | 4302 | 204
0.1 | 10.5 | 0.5 | 5.25 | 4675 105 | 0.2|573]|0.5]| 2.865 | 4322 | 205
0.6 6.3 4700 106 0.6 | 3.438 | 4341 206
0.7 7.35 4726 107 0.7 | 4.011 | 4361 207
0.8 8.4 4752 108 0.8 | 4.584 | 4380 | 208
0.9 | 9.45 | 4778 109 0.9 | 5.157 | 4399 | 209
0.1 | 0.394 | 4101 301 0.1 0.3 4021 401
0.2 ] 0.788 | 4116 | 302 0.2 0.6 4034 | 402
0.3 ] 1.182 | 4132 303 0.3 0.9 4047 | 403
0.4 | 1.576 | 4147 304 0.4 1.2 4059 404
0.3 1394 | 0.5]| 1.970 | 4163 305 | 0.4 3 0.5 1.5 4072 | 405
0.6 | 2.364 | 4178 | 306 0.6 1.8 4084 | 406
0.7 | 2.758 | 4193 307 0.7 2.1 4097 | 407
0.8 | 3.152 | 4208 | 308 0.8 2.4 4109 | 408
0.9 | 3.546 | 4224 | 309 0.9 2.7 4122 | 409
0.1 | 0.242 | 3971 501
0.2 | 0.484 | 3981 502
0.3 ] 0.726 | 3992 503
0.4 | 0.968 | 4003 504
0.5|242 0.5] 1.210 | 4013 505
0.6 | 1.452 | 4024 | 506
0.7 | 1.694 | 4034 | 507
0.8 | 1.936 | 4045 508
0.9 | 2.178 | 4056 | 509

By preparing suitable codes in Seismic Unix forward modeling package,
it is possible to construct the synthetic geological model. Fig. 3 shows the
geological model for synthetic data 101. In this figure, "Zone L" illustrates the
reservoir level. To make the model similar to the real reservoir, all levels above
reservoir level exactly are considered with regard to their thickness and velocity.
The objective is to perform seismic survey on the model and determine the
seismic response of the model.
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Fig. 3. Geological model of the reservoir constructed by Seismic Unix.

After constructing a geological model for each synthetic data, a
pre-defined seismic survey (by writing suitable codes in the Seismic Unix
package) is performed over constructed models in order to extract the seismic
response of each model. The output of this step is then processed using ray
tracing technique and stacked thoroughly to obtain the seismic section of the
studied model. Therefore in 45 synthetic seismic sections each, one point to the
specific porosity situation in the reservoir was extracted. Fig. 4 illustrates the
stacked seismic section of model 101. These models can be used to extract
attributes, make attribute analysis and study the effect of the changes in porosity
on different attributes. Therefore it is possible to find related attributes with
porosity parameter and model the relationship between those attributes and the
values of porosity.

Time (ms)

Fig. 4. The stacked seismic section of model 101.
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Table 2. Values of 43 seismic attributes for model 101.
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Energy/Energy
Energy/Sqrt

Energy/Ln

Instantaneous/ Amplitude

Instantaneous/Phase

Instantaneous/Frequency

Instantaneous/Hilbert

Instantaneous/ Amplitude/
1st Derivative

Instantaneous/ Amplitude/
2nd Derivative

Instantaneous/Cosine Phase

Instantaneous/Envelope
Weighted Phase

Instantaneous/Envelope
Weighted Frequency

Instantaneous/Phase
acceleration

Instantaneous/Thin bed
indicator

Instantaneous/Bandwidth

Instantaneous/Q factor

Convolve/Lowpass
Convolve/Laplacian
Convolve/Prewitt

Frequency Filter/LowPass

Frequency Filter/HighPass

Frequency Filter/BandPass

0.001516
0.038938

—6.491552

0.001748

0.250555

101.56539

0.000433462

0.205685

59.849281

0.968775
0.224808

109.31568

—3067.375

—7.75029

18.724953

—2.712033

0.001834
—0.000703483
0.002109
0.003497

—0.009834
—0.007492

Velocity Fan Filter

Frequency/
Dominant Frequency

Frequency/
Average Frequency

Frequency/
Median Frequency

Frequency/Average
Frequency Squared

Frequency/Maximum
Spectral Amplitude

Frequency/Spectral
Area Beyond
Dominant Frequency

Frequency/Frequency
Slope Fall

Frequency/Absorption
Quality Factor

Spectral Decomp

Event/Peakedness
Event/Steepness
Event/Assymetry
Volume

Statistics Average

Volume
Statistics/Median

Volume
Statistics/Variance

Volume Statistics/Min
Volume Statistics/Max
Volume Statistics/Sum

Volume Statistics/
Norm Variance

Volume Statistics/RMS

0.000213274
13.989712

45.645275

38.888885

3006.6557

0.03902

0.258528

0.202982

14.671811

3.73E-09
0.000132157

0.004993

0.597961

—0.013966

0.001047

0.001308

—0.119581
0.004804
—0.628459
4.014766

0.038396
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Attribute Extraction and Analysis

To investigate the effect of porosity changes on attribute values, the
synthetic models classified into specific groups. Different values in each state
were considered as a group (according to Table 1). Seismic attributes should be
extracted in each group and attribute analysis performed over them. According
to the proper capabilities of OpendTect software in seismic attribute analyzing
and interpretation, this package was considered to extract attributes in our study.

OpendTect is an open source system for seismic data interpretation that
interprets the huge volume of seismic data using attributes and new techniques
of imaging. In this study, 43 different seismic attributes were extracted for all
porosity models. Table 2 illustrates the values of these attributes for model 101.

In the next step, attributes were analyzed forming a correlation matrix.
Using this matrix for all groups indicated that two attributes of Envelope
Weighted Phase (EWP) and Envelope Weighted Frequency (EWF) have the
highest correlation values with the values of porosity. EWP and EWF are an
instantaneous phase and frequency which have been weighted with envelope
over the specific time window. Instantaneous phase and frequency are two
attributes which can be indicators of porous and fractured zones. Table 3 shows
the values of correlation coefficient for these two attributes in all groups of
porosity.

Table 3. Values of correlation coefficient for EWP and EWF.

Group R (EWP) R (EWF)
1 (Models 101 - 501) —0.849 —0.859
2 (Models 102 - 502) —0.804 —0.899
3 (Models 103 - 503) —0.852 —0.936
4 (Models 104 - 504) —0.874 -0.959
5 (Models 105 - 505) —0.866 —0.949
6 (Models 106 - 506) -0.864 —0.937
7 (Models 107 - 507) —0.862 —0.924
8 (Models 108 - 508) —0.812 —0.928

9 (Models 109 - 509) —0.800 —0.925
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Back-propagating Artificial Neural Networks (BANN)

Artificial neural networks (ANNs) are computational models based on
human’s understanding of cortical structure of the brain and cognition.
Algorithmically, ANNs are parallel adaptive systems and therefore require
training. Back-propagation is a powerful method of supervised learning that is
developed after the seminal work by Paul Werbos and David E. Rumelhart in
seventies and eighties (Demuth and Beale, 2002). Details of various methods of
ANN design and training are beyond the scope of this paper and are explained
elsewhere (see Hagan et al., 1996, for example); nevertheless a brief description
of the terminology is provided here.

The structure of a neural network, in general, consists of an
interconnected group of artificial neurons (simple processors that are connected
to many other neurons). These processing units receive the information, apply
some simple processing on them and pass them to other neurons. The flow of
information creates a computational model for information processing. Each
neuron is assigned a weight that is changed adaptively to improve the
performance of the network based on pairs of external and internal signals
(training information, input-output mapping). Practically, neural networks may
be used in nonlinear statistical data modeling, system identification, extraction
of complex relationships between inputs and outputs of a system, and for pattern
recognition.

In addition to weight, each node (neuron) in the network is equipped with
an activation function (or transfer function) that is part of the information
processing unit of the neuron. The flow of information could be imagined from
left to right, such that each neuron performs the processing on the data in
parallel with other neurons in the layer. The response of the network is
compared at the terminating layer with a set of desired outputs and the weights
of the neurons are thus corrected following a training algorithm to minimize the
output error. Issues with regards to the number of nodes per layer, number of
layers, and the type of activation function that could be used are dealt with in
the design of the architecture of the network. This is explained later on in this
paper.

There are numerous methods of training of a neural network.
Categorically these methods are grouped into three main classes: supervised
learning, unsupervised learning, and reinforcement learning. In a supervised
learning scheme, the network is provided with a set of examples in the
input-output space: (x,y),x € X,y € Y and the goal of the training process is
to find function f in a set of valid functions that could match the input/output
pairs reliably. By doing so, the network becomes capable of making inferences
in mapping that is implied by the training data. This procedure involves
minimizing a cost function. The cost function is often defined as the mismatch
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between the network’s mapping and the actual data.

A commonly used cost function is the mean-squared error between the
average of network’s output, f(x), and the target value y over all example pairs
presented to the network. Minimizing this cost function in a gradient descent
algorithm for a class of neural networks called Multi-Layer Perceptrons
constitutes the basis of back-propagation algorithm (Demuth and Beale, 2002).
In this study, we successfully developed and implemented a network with one
hidden layers of 6 nodes.

Table 4. Dataset used for ANN.

Input Data Cutput Data
Envelope Waighled Phase Envelope Weighted Fragquency i
0.224808 102.31568 0.1
A1 263106 591767853 02
-0.565528 £1.171856 0.3
0670387 S7.455173 0.4
0675632 46.121319 0.5
0.323562 105.51822 0.1
0376417 £3.661959 0.2
-0.56287 70.28%696 0.3
-0.764083 51.647064 0.4
-0.663668 45.542095 05
0 409562 £h 902A05 01
-0.2364 91.413269 0.2
-0.496838 72.640099 0.3
0544330 £4.44709 0.4
-0.785239 46.746336 05
0.455443 94.82753 0.1
0.231116 03.047649 0.2
-0 4378681 79080639 03
0523854 £7.820267 0.4
0.74582 £0.648357 0.5
0574587 G5.BBE144 0.1
0.113229 ©5.605026 0.2
0456916 77254433 0.3
A1 553435 Bb. 380112 4
0.715913 54.492546 0.5
0.51986 101.12841 0.1
-0.224508 96.968225 0.2
0365670 £7.607404 03
1 H154003 bt B971144 14
0675401 52.050041 05
0.727223 £5.135704 0.1
0134636 100.91143 0.2
-0.346796 50.047951 03
-U.546k64 71.153044 0.4
0655258 £5.900169 05
0.732289 ©9.965302 0.1
-0.218339 06.192632 0.2
-0.33866 £2.284752 0.3
0.561999 63.738057 0.4
A1 51633 4k /2pH18 04
06757 10710917 0.1
-0.496571 24.066315 0.3
-0.38343 77968796 0.4

0622469 £9.316097 05
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A dataset of 45 synthetic data points to train and test the neural network
was used (Table 4). From this, 37 points (85% of the total data) were selected
randomly for the network training and the remaining 30% of the data was used
for testing the network. Each data point is a vector of two input values, namely,
EWP and EWF as described earlier. The desired network output is synthetic
porosity value. The input layer of the network receives input data at two nodes
and the network generates an output at the final layer. We used the
Levenberg-Marquardt (LM) method for training because it generally results in
faster and more reliable convergence for our application.

The best and the worst results of 20 iterations for training of the network
are presented in Table 5. In Table 5, RMS,,;, is the root-mean-square of the
training error, and RMS,, is the root-mean-square of error during testing of the
network. Considering the limited amount of data available for network training
the results shown in Table 5 appear to be reasonable for practical applications.
Other training algorithms such as Scaled conjugate gradient, One-Step Secant,
and Fletcher-Powell Conjugate Gradient were also used but were discarded due
to higher tolerance for the test errors and lower reliability in our application
(Demuth and Beale, 2002). The results of the training are presented in Fig. 5.

Table 5. Error values for the best and the worst results.

RMStrain RMS!esl
0.03 0.03
0.05 0.06

In Fig. 5, R is the correlation coefficient between the real and the
predicted porosity values; A being the predicated and T being the real value.
The correlation coefficient is close to 1.0, implying a good network
performance. The gap between values is caused by simulating data in special
porosities (0.1, 0.2, ... , 0.5).

We used the abovementioned neural network for the task of classifying
the test data. The results are shown in Fig. 6. During testing, a correlation
coefficient of greater than 0.95 was generally obtained (as exhibited in Fig. 6).
This shows that the porosity values in the test data were practically
well-correlated with the network predictions. This is evident in Fig. 7 with the
good performance of the trained network remarkably demonstrated for a set of
synthetic test data. The real values of porosity, shown by small circles in Fig.

7 could be easily predicted by the back-propagating neural network, shown by
small inverted triangles.
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Fig. 7. Predicted results for a set of test data.

From Table 5, the reduction in the network error will increase the
reliability of network’s predictions, should additional training data be available
or other method be used. In some cases, artificial neural networks detect the
relative optimum point instead of global optimum point as a solution for the
problem which is the main weak point for ANNs. Recognizing the
computational power of support vector machines in rule generation and function
approximation and their robustness particularly in the area of data classification,
we embarked on development and training of a support vector regression
machine (SVR) for the purpose of classification of porosities in this study.

Support Vector Machines (SVM) and their application for this study

In pattern recognition, the SVM algorithm constructs nonlinear decision
functions by training a classifier to perform a linear separation in some high
dimensional space which is nonlinearly related to input space. To generalize the
SVM algorithm for regression analysis, an analogue of the margin is constructed
in the space of the target values (y) by using Vapnik’s d-insensitive loss
function (Fig. 8) (Quang-Anh et al., 2005).

ly = f)[y = max{0,]y — f(x) — 9|} . @
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Fig. 8. Concept of e-insensitivity. Only the samples out of the + #-margin will have a non-zero
slack variable, so they will be the only ones that will be part of the solution (Liu et al., 2009)

To estimate a linear regression
f(x) = (wx) + b, G)

where w is the weighted matrix, x is the input vector and b is the bias term.
With precision, one minimizes

vlwlz+cC) |y - f®], , @)
i=1

where C is a trade-off parameter to ensure the margin ¢ is maximized and error
of the classification £ is minimized. Considering a set of constraints, one may
write the following relations as a constrained optimization problem:

N
Lw.t£) = w2+ CY ¢ + &), )
i=1
Yi_WT'X"bS-Ei'*‘l?, (6)
subjectto { wi'x +b —y, < £/ + 9 7

Ei’ {,Xi = 0 . (8)
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That according to relations (6) and (7), any error smaller than ¢ does not
require a non-zero £; or £/, and does not enter the objective function (2) (Lia et
al., 2007).

By introducing Lagrange multipliers (o and «') and allowing for C > 0,
¢ > 0 chosen a priori, the equation of an optimum hyper plane is achieved by
maximizing of the following relations:

N N
Lioe) = ¥ 3, ) (0 — a)xixe; — o))
i=1 i=1
N
+ ) [ — )y — (o + @), )
i=1
subjectto 0 < (¢ — af) < C , (10)

where x; only appears inside an inner product. To get a potentially better
representation of the data in non-linear case, the data points can be mapped into
an alternative space, generally called feature space (a pre-Hilbert or inner
product space) through a replacement:

X X = o(X) - o(x) . (11

The functional form of the mapping f(x;) does not need to be known since
it is implicitly defined by the choice of kernel: k(x;,x) = ¢(x;)¢(x;) or inner
product in Hilbert space. With a suitable choice of kernel the data can become
separable in feature space while the original input space is still non-linear. Thus,
whereas data for n-parity or the two spirals problem is non-separable by a hyper
plane in input space, it can be separated in the feature space by the proper
kernels. Table 6 gives some of the common kernels.

Table 6. Polynomial, normalized polynomial and Radial Basis Function (Gaussian) Kernels
(Scholkopf et al., 1998).

Kernel Function Type of Classifier
K(x;,x) = (x]x; + 1y Complete polynomial of degree p
K(x,x) = (Ix + DP/V{XX) — (Yiyp} Normalized polynomial kernel of degree p

K(x,x) = exp[ | (x, — x[|2/207] Gaussian (RBF) with parameters ¢ which
control the half-width of the curve fitting peak
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Then, the nonlinear regression estimate takes the following form:

N N N N
vi = Y Y (e—a)e)Te(x) + b =Y, Y (—ahKx,x) + b ,(12)
i=1 i=1 i=1 i=1

where b is computed using the fact that eq. (6) becomes an equality with &; =
0if 0 < o < C, and relation (7) becomes an equality with £; = 0if 0 < «]
< C (Chih-Hung et al., 2009).

Similar with other multivariate statistical models, the performances of
SVM for regression depend on the combination of several parameters. They are
capacity parameter C, ¢ of J-insensitive loss function, the kernel type K and its
corresponding parameters. C is a regularization parameter that controls the
trade-off between maximizing the margin and minimizing the training error. In
order to make the learning process stable, a large value should be set up for C
(e.g., C = 100). The optimal value for ¢ depends on the type of noise present
in the data, which is usually unknown. Even if enough knowledge of the noise
is available to select an optimal value for ¢, there is the practical consideration
of the number of resulting support vectors. J-insensitivity prevents the entire
training set meeting boundary conditions, and so allows for the possibility of
sparsity in the dual formulations solution. Therefore, choosing the appropriate
value of ¢ is critical from theory.

Since in this study the nonlinear SVM is applied, it would be necessary
to select a suitable kernel function. The obtained results of previous published
researches indicate the Gaussian radial basis function has superior efficiency
than other kernel functions (Wang et al., 2003). As it seen in the Table 6, the
form of the Gaussian kernel is as follows:

K(Xi,Xj) — e_‘xi_"i|z/2‘” ' (13)

In addition, where ¢ is a constant parameter of the kernel and can either
control the amplitude of the Gaussian function and the generalization ability of
SVM, we have to optimize ¢ and find the optimal one. In order to find the
optimum values of two parameters (¢ and ¢) and prohibit the over-fitting of the
model, the synthetic data set was separated into a training set (80% of available
data for each borehole), a test set of 20% and the leave-one-out cross-validation
of the whole training set was performed. The leave-one-out (LOO) procedure
consists of removing one example from the training set, constructing the
decision function on the basis only of the remaining training data and then
testing on the removed example (Liu et al., 2006). In this fashion one tests all
examples of the training data and measures the fraction of errors over the total
number of training examples. The root mean square error (RMS) was used as
an error function to evaluate the quality of model.
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To obtain the optimal value of ¢, the SVM with different ¢ were trained,
the ¢ varying from 0.01 to 0.3, every 0.01. We calculated the RMS on different
o, according to the generalization ability of the model based on the LOO
cross-validation for the training set in order to determine the optimal one. The
optimal ¢ was found as 0.11. In order to find an optimal ¢, the RMS on
different ¢ was calculated. The optimal ¢ was found as 0.07. From the above
discussion, the ¢, ¢ and C were fixed at 0.11, 0.07 and 100, respectively. Fig.
9 is a schematic diagram showing the construction of the SVM.

@v

" Porosiy__
)

Fig. 9. schematic diagram of construction of the SVM.

The best and the worst results of 4 iterations for training of the network
are presented in Table 7.

Table 7. Error values for the best and the worst results.

R:rain R[est RMS(rajn RMstest
0.95 0.93 0.03 0.03
0.97 0.98 0.04 0.05

The results of the training are présented in Fig. 10.

As shown in Fig. 10 the correlation coefficient of training data is 0.96
implying the proper performance of SVM. The abovementioned support vector
machine was used for the task of classifying the test data. The results are shown
in Fig. 11. During testing, a correlation coefficient of greater than 0.95 was
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generally obtained. This implies that the porosity values in the test data were
practically well predicted using SVM. This is evident in Fig. 12 with the
superior performance of the trained SVM remarkably demonstrated for a set of
synthetic test data.

Best Linear Fit: A =(0.969) T +(0.00871)
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Fig. 10. Correlation coefficient for train data.
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Fig. 11. Correlation coefficient for test data.
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Fig. 12. Predicted results for a set of test data.

Application of the proposed ANN and SVM methods for real data of well 2

The results of previous chapters indicate that both BP and SVR methods
could predict the values of porosity reliably for synthetic data. One of the major
preferences of SVMs to ANNs is their superior performance facing little
amounts of training data (Duda et al., 2002). Because of the small number of
synthetic data in training process (37 data) and the differences between synthetic
and real data (intricate and existence of noise in real data), it seems that BP can
not be successfully implemented in predicting values of porosity for real data of
well 2 using the previously trained model. Therefore the authors decided to use
trained SVR for real porosity values prediction in this well.

To test the capability of the proposed methodology, data acquired from
3D seismic measurements in well 2 were used. The measurements were EWP
and EWF (see Table 9).

Table 9. Data of well 2 used in trained SVR.

EWP EWF | Porosity
055724 | 085255 | 0.14818
-1.2054 | 0.820668 | 010003
027508 079895 0D.071772

1 0.80074 | 0.10006
-0.20118 | 07938 | 0.097834
-1.5889 | 0.89329  0.13957
-0.23435 1 0.14095
-1.14258 | 0.89089 @ 0.13348
-1.45874 | 0.8068 | 0.15245
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Fig. 13 shows the porosity values from the well log measurements (3rd
column in Table 9) as real values and those obtained from support vector
regression machine. For this test, the already trained SVR of synthetic data was
used to make the prediction. The values of correlation coefficient and root mean
square error of the prediction are 0.98 and 0.02, respectively. Fig. 13 exhibits
a considerable coincidence between the results of support vector machine
approach and that of well measurements.

0.16 1 | I I
,,,,, e il
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2012F ) _
<] o »
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Fig. 13. Predicted results for a set of data in well 2.

CONCLUDING REMARKS

Measurement noise and nonlinear relationship between seismic data and
porosity quantities exert difficulties in performing seismic data interpretation
reliably. Consequently, other viable methods of prediction, such as the one
proposed in this paper, may be deemed necessary in realistic cases. We
successfully implemented and tested an artificial intelligent computational agent
(a back-propagating neural network) and support vector regression machine
(SVR) to consider the unknown nonlinear relationships between system variables
in our prediction problem (foreseeing the porosity values) for synthetic data.
Our approach uses envelope weighted phase and envelope weighted frequency
as input system variables. The ANN and SVR seek the relationship between
these input variables adaptively and strive to a desirable output which is, in our
case, the values of porosity.

Synthetic data showed that both the ANN and SVR could train themselves
very well with practically complete correlation between real porosity values and
the predicted ones (correlation coefficient R of almost one). These methods also
exhibited a remarkable capability in estimating the unknown zones (test data).
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Since the number of synthetic data in training process is limited and
according to the differences between synthetic and real data (intricate and
existence of noise in real data), BP was not implemented in predicting values
of porosity for real data of well 2 and only SVR was used for this purpose.
Applying the machine to well 2 case while showing acceptable precision in
prediction porosity; proved the performance of the machine. The SVR did
predict the porosity values in well 2 reliably.

In this study, there was only an access to the data of well 2. To generalize
the results of the abovementioned procedure, it is suggested to obtain sufficient
reliable data samples from more wells in specific oil field and augmenting the
training of the support vector machine with the new data. We speculate this
would enhance the capability of the machine to use for the similar reservoirs.
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