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ABSTRACT

Lee, J., Kim, Y. and Shin, C., 2012. Frequency-domain reverse time migration using the L,-norm.
Journal of Seismic Exploration, 21: 281-300.

Waveform inversion algorithms generally use the L,-norm. However, previous work
indicates that the L;-norm objective function can produce better results than the L,-norm objective
function because the L;-norm is more robust against outliers. Moreover, because field data always
contain some outliers, adopting the L,-norm objective function for waveform inversion would
therefore be beneficial. Thus, we consider adopting the L,-norm for reverse time migration, since
the algorithm structure of reverse time migration is identical to that of waveform inversion. Thus,
we propose introducing the L,-norm into frequency domain reverse time migration for 2D acoustic
media. To verify the effectiveness of our algorithm, we compare the results with those from the
conventional algorithm. First, we apply both algorithms to synthetic data drawn from the Marmousi
model. We also apply both algorithms to synthetic data on which we add artificial random outliers.
Considering the data without outliers, both algorithms yield similar results regardless of the norm
used. However, when we consider the data containing outliers, our algorithm using the L,-norm
yields better results. We then apply the same algorithm to field data obtained from an area in the
Gulf of Mexico. As expected from the synthetic test, our algorithm yields superior results. Through
these experiments, we conclude that the newly proposed algorithm would be useful for performing
reverse time migration on data containing considerable outliers, thus eliminating some preprocessing
steps through the use of the L,-norm.
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INTRODUCTION

Before migration, processed seismic data are often distorted because of
rapid velocity variations, complex structure, steep reflectors, and so on. A
migration algorithm is needed to produce a subsurface image under these
difficult conditions. Since Whitmore (1983) introduced reverse time migration
using the wave equation, reverse time migration technique has been widely
studied. Baysal (1983), Loewenthal and Mufti (1983), and other authors studied
reverse time migration contemporaneously with Whitmore. However, whereas
reverse time migration has the great advantage of producing high-resolution
images, it also requires a great deal of computational expenditure. Since modern
computer technology provided the necessary computing power, reverse time
migration is being actively studied.

For waveform inversion, the L,-norm is generally used as an objective
function. However, using the L,-norm objective function may lead to distorted
imaging because of its high sensitivity to outliers and non-Gaussian errors in
field data (Clearbout and Muir, 1973). For this reason, many authors considered
applying the L;-norm objective function. To mitigate the sensitivity of the
traditional waveform inversion to noise, Tarantola (1984) introduced the
L;-norm in time domain full waveform inversion, and Pyun et al. (2009)
proposed using the L;-norm in frequency domain waveform inversion. In
addition, the Huber norm (Ha et al., 2009), sech criteria (Crase et al., 1990;
Monteiller et al., 2005) and the hybrid L,/L,-norm were all considered to
overcome the issue of noise sensitivity. These studies highlighted the robustness
of the L;-norm objective function in the waveform inversion algorithm with
noisy data, particularly data outliers.

The reverse time migration algorithm is the same as the first iteration of
the waveform inversion algorithm (Lailly, 1983; Tarantola, 1984). That is,
reverse time migration has the same algorithm structure as waveform inversion
(Shin et al., 2003; Chavent and Plessix, 1999). Reverse time migration
back-propagates field data for convolving with virtual sources while waveform
inversion back-propagates the residual vectors between field and modeled data
(Pratt et al., 1998). This finding and the findings of earlier studies encourage
us to consider the effectiveness of using the L,-norm in the reverse time

migration algorithm. This scheme is worth examining because most field data
contain problematic outliers.

In this study, we adopt the L;-norm in the frequency domain reverse time
migration algorithm. In the following sections, we describe the theory of reverse
time migration in the frequency domain and how the L,-norm can be applied.
We also depict a scaling method for obtaining clearer migration images, and a
method for the suppression of migration artifacts. Then, we demonstrate our
algorithm on synthetic data drawn from the Marmousi model. Because the
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purpose of this paper is to show robustness of our algorithm against outliers, to
have a comparison, we add outliers on the seismogram and carry out the
identical experiments. We then evaluate our algorithm on field data obtained
from the Gulf of Mexico. All the results from our algorithm are compared with
those from conventional algorithm. Through these experiments, we show the
effectiveness of our algorithm, which is frequency domain reverse time
migration using the L,-norm.

REVERSE TIME MIGRATION USING THE L,-NORM

Reverse time migration

Reverse time migration can be expressed as a zero-lag cross correlation
between the partial derivative wavefield with respect to the earth parameter and
the observed wavefield in the survey:

Tox N

U= Y {[dutyopId0}dt 0
0 s=1

U= U, U s Uy, @

ds = (ds,l’ ds,2s ceey ds,N,) ’ (3)

where Y, is the reverse time migration for the m-th model parameter, s is the
shot number, N, is the total number of shots, T,,, is the maximum record
length, p, is the m-th model parameter, and u, and d, are the vectors of
modeled and observed wavefield, respectively (Shin and Chung, 1999). In this
study, bold lettering stands for a vector, and T represents transpose of the
vector. Thus, duy/dp,, is the vectar of the partial derivative wavefield related to
the m-th parameter by the s-th shot, and it can be interpreted as the sensitivity
of the change of surface wavefield caused by slight fluctuations at the m-th
position (Shin et al., 2003). In other words, eq. (1) shows that reverse time
migration at the m-th position can be depicted as the sensitivity of the measured
wavefield to the parameter at the m-th position (Shin et al., 2001). If we
consider all the values of reverse time migration in the given portion of
subsurface, the image of that portion can be obtained (Shin and Chung, 1999).
We can also obtain reverse time migration in the frequency domain by Fourier
transform of eq. (1):

Drmax Nshm

m=1 L Re{lon@)/opd(w)do , @
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where w is the angular frequency, and ii, and d, are the vectors of the modeled
and observed wavefield in the frequency domain, respectively. * indicates the
complex value, and Re indicates the real part of the complex value.

As we see from eq. (4), we now have to obtain the partial derivative
wavefield. Accordingly, we can start from the wave equation. The 2D acoustic
wave equation can be expressed in matrix form using the finite element method:

Mi, + Cu, + Kuy, = f , 5)
where M is the mass matrix, C is the damping matrix, K is the stiffness matrix,
and f is the source vector (Marfurt, 1984; Zienkiewicz and Taylor, 1991). We
can also represent wave equation in the frequency domain by using the Fourier
transform:

Sia, = f (6)

S =K + ioC + M . @)

Then, the vector of the partial derivative wavefield can be obtained from
the derivative of eq. (6) with respect to the model parameter (Pratt et al., 1998):

S(d1,/dp,) + (3S/dp, )i, = 0 , 8)
d/dp, = S7'f,, , ©)
£, = —(3S/9p, )i, . (10)

By comparing eq. (9) with (6), we see that f,, corresponds to the source
vector of the forward modeling algorithm while dii/dp,, corresponds to i of the

forward modeling algorithm. Thus, f,, is called the virtual source vector by the
s-th shot. ‘

Then, we can substitute eq. (9) into eq. (4):

Winax Nth

Vo= | Y Re{S W @I'd@}do | (11)
s=1

0

Wmax Nsho(

Vo= | ¥ Re{f (@IS w)}do . (12)
s=1

0
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Since the complex impedance matrix, S is symmetric,
S=S". 13)
Thus, eq. (12) gives

Wmax N

Vo= | ¥ Re[fl(0)S ' (@)d}(w)]dw . (14)
0 s=1

Therefore, the m-th reverse time migration can be obtained by convolution of
the back-propagated observed wavefield and virtual source, which can be
established from a forward modeling algorithm. Moreover, we can obtain all the
vectors of virtual sources in the given area of investigation when we consider
all the parameters in that area. Ultimately, we can then obtain the complete set
of values for reverse time migration in the given area.

Application of the L;-norm objective function

First, we contrast the objective function of the L,-norm with that of the
L,-norm in the waveform inversion algorithm to explain our algorithm more
clearly. In the waveform inversion, we iteratively reduce the deviation between
the forward modeled wavefield and the measured wavefield. Through this
process, we iteratively reduce the deviation between the model parameter and
the earth parameter. Thus, we can ultimately establish the earth parameter. In
conventional waveform inversion, the L,-norm is adopted to define the size of
the residual between the modeled wavefield and the measured wavefield and is
assigned as an objective function:

Omax Ngpoc

E=%| Yl - I - 4l . (15)
s=1

0

Through the minimization of this objective function, model parameters
would approach the earth parameters. To minimize the objective function, we
partially differentiate eq. (15) with respect to the model parameter:

Wmax Nsho(

3E/dp, = | Y Re{[ou(w)/dp, i) — d(w)]'}do . (16)
s=1

0
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We see that egs. (16) and (4) have the same structure and compare them
in Table 1. The gradient in the waveform inversion corresponds to reverse time
migration. Moreover, the residual in waveform inversion corresponds to the
observed wavefield in reverse time migration.

Table 1. Comparison between the gradient in waveform inversion and reverse time migration.

The gradient i f N i (o)) R
e gradient in waveform aE _me ZRe{au‘(w)) (ﬁ_‘,(m) 4, (a))) }da)
s=1

inversion apm op

m

- ot (o
Reverse time migration v, =f ZR {{ l;ﬁp( )} d N )}«/

Pyun et al. (2009), however, used the L,-norm objective function to
mitigate the effect of outliers:

Omax Npot

E=1% E{|Re[u (@—d(]| + |Im[i(w)—dw)]|}de , @17

where Im is the imaginary part of the complex value. We also compare both
objective functions in Table 2. To minimize this objective function, we also
need a gradient:

Wmax  Nihot

OE/dpy = § Y. Re{[0u(w)/dp,]"E(w)}dw | (18)
0 s=1

f, = sgn{Re[ii(w) — dy(w)]} + isgn{Im[i(w) — d(W)]} , (19)

Table 2. Comparison between the L,-norm objective function and the L,-norm objective function.

Ns;.m
L, -norm objective function E =% fm > (a) -d (a)):’ [ (w -d, (o) ] do —}
|

N ooy

L, -norm objective function f Z{

Re, (o) -4, (o) |+[im[ @, (0) -4, (o )]|}dwi
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where sgn is the signum function. In Table 3, we compare the gradient of the
L,-norm objective function and that of the L;-norm objective function.

Table 3. Comparison between the gradient of the L,-norm objective function and the gradient of the
L,-norm objective function.

Th dient of L,- Nopog i ! . .
e gradient of L,-norm OE _ f,m ZRe (au_\.(a))J (ﬁx (@), (w)) »
objective function P, s=1 Py
OE  poue (i, (@)Y ..
The gradient of L, -norm E = g Re s r (o) do
objective function . .
F, = sgn(Re[ﬁs (0)-d, (a))])+isgn(lm[ﬁs (0)-d, (a))])

Hence, we adopt the L;-norm in reverse time migration algorithm in the
frequency domain:

Winax Nsmn

Vo= | Y Re{[0i1,()/dp, " (@)}dw | 0)
0 s=1

%, = sgn{Re[d,(@)]} + isgn{Im[d,(w)]} . @1)

Table 4. Comparison between the gradient in waveform inversion and reverse time migration when
using the L,-norm.

OE i |(06.(0)) ..
The gradient in waveform S = f Z Re{( : r (o) do

inversion using L, -norm

e i (@)] .
Reverse time migration Y = _E, Z Re{ ‘ X (0) do

using L, -norm
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In other words, we can obtain the reverse time migration algorithm using
the L,-norm by replacing the vector of the residual in the waveform inversion
using the L,-norm with the vector of measured wavefield.

We can obtain reverse time migration by exploiting the vector of the
observed wavefield instead of the vector of residual in the waveform inversion
using the L,-norm, as we conventionally use the L,-norm. In Table 4, we
compare waveform inversion and the reverse time migration algorithm which
use the L,-norm. Finally, in Table 5, we compare conventional reverse time
migration using the L,-norm and newly proposed reverse time migration using
the L;-norm. In the ‘Numerical Example’ section below, we compare the results
of these two algorithms to verify the effectiveness of our algorithm.

Table 5. Comparison between the conventional algorithm using the L,-norm and our algorithm using
the L,-norm.

- ou. r -
Conventional algorithm W, = f Z Re{{—%}—}w—)} ds(w)}dw

Napor ~ ’
ve=["> Re{[———a"x(”)} i;(a))}dm
. =1 5p
Our algorithm m

Scaling method

When we consider all the given elements, eq. (18) can be rewritten as:

wmﬂx

Nnoe
v={ Y Iz @2)
s=1

0

If we use this equation as written, the seismic image at later times can be faint
because of geometrical spreading. We can enhance the image and mitigate this
effect by dividing by a Hessian matrix. Pratt et al. (1998) proposed applying the
Gauss-Newton method to the waveform inversion:
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Oman Nopot

Y I (@dep = ¢ (23)

0 s=1

where JIJ, refers to the approximate Hessian matrix (Dennis, 1997). The
components of the main diagonal of the approximate Hessian matrix are the
zero-lag autocorrelations of the partial-derivative wavefields, which are always
positive. Numerical correlations of wavefields’ on the off-diagonal, on the other
hand, are far smaller than those on the main diagonal and are negligible
quantities. Thus, we can use only the components on the main diagonal for the
scaling:

Winax Nsh(x

p=/] Y diaglli@Iw)do}
0 s=1

@max N

[ Y nexede/ | Y dagl i@l | @4)
0 s=1

0 =1

Omax Nonot

©»

However, eq. (24) is difficult to compute when the Jacobian matrix is large.
Shin et al. (2001) proposed pseudo-Hessian matrix, F;.F,, , as an alternative.
The virtual source matrix of the s-th shot is expressed in F,,, which considers
the virtual source vector of the s-th shot, f,, at every element. Off-diagonal
components of the virtual matrix are also negligible:

Oy Nopor Omax Nypot

p=[ YIW@de/ | Y diagFT@F(@)do @5)
s=1 s=1

0 0

In addition, we do not need to compute the Jacobian matrix if we use
back-propagation:

Dmax Nypor Onax Nipot

p=| YFS'@iw/ | Y diaglFlFw)lde .Q6)
0 s=1 0 s=1

In this study, we follow Shin et al.’s (2001) proposal and Jang et al.’s
(2009) first scaling method, which minimize the effects of the band-limited
source spectrum by normalizing every frequency:

Winax Nihoe
p={ NRM[Y Re[Fl,(0)S~'(0)X](@)]
0 s=1

N, shot

/'Y Re{diag[F(w)F4(w) + N} do , Q7
s=1
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where NRM stands for the normalization, \ is the damping factor, and I is the
identity matrix.

The suppression of artifacts

Diving waves, head waves, backscattered waves, and so on can be
cross-correlated in the process of migration, thus producing artifacts. To
suppress these artifacts, we use a vertical derivative filter. Filtering the final
image may compromise the integrity of the signal of interest, but it is
convenient to use and can produce good results (Guitton et al., 2007). After we
apply both first-order and second-order derivative filters, we select the better
result from the two.

NUMERICAL EXAMPLES
Marmousi model

To verify the effectiveness of our algorithm using the L,-norm, we
demonstrate it using the Marmousi model (Fig. 1a). We carry out both the
conventional and proposed reverse time migration and compare the results. We
synthesize seismograms through 2D acoustic frequency-domain forward
modeling with the finite element method. To express the wave equation in
matrix form, we use an eclectic mass matrix and stiffness matrix, as proposed
by Marfurt (1984). The grid interval is 4 m, shot interval is 24 m, and receiver
interval is 4 m. All the shots and receivers are assumed to be located 4 m below
the free surface. We assume all the shots and receivers to be present on all grid
nodes except along the boundary to apply boundary condition. Thus, we use 384
shots, with 2301 receivers for each shot, the Dirichlet boundary condition
(Officer, 1958) along the free surface, and an absorbing boundary condition
(Clayton and Enquist, 1977) along both sides and the base. The maximum
record length and sampling interval are 5 s and 0.0125 s, respectively. The
frequency ranges from 0.2 to 40 Hz, and the frequency interval is 0.2 Hz.

Fig. 2a is the common shot gather with a shot located at the center of the
surface layer. Then, we artificially add some random outliers on the seismogram
to investigate the robustness of our algorithm in the presence outliers. Fig. 2b
shows the common shot gather including outliers when a shot is located at the
center of the surface. We perform conventional and proposed reverse time
migration on both the seismogram without outliers and the seismogram
containing outliers. The background model used is the smoothed Marmousi
model shown in Fig. 1b. As we stated in the preceding section, we use a pseudo
Hessian matrix for the scaling and a first-order derivative filter for the
suppression of artifacts.
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Fig. 1. (a) The Marmousi model and (b) a smoothed version of it.
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Fig. 2. (a) A synthesized common shot gather from the Marmousi model and (b) added outliers to
the shot gather.
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Through these numerical experiments, we see the results that we
expected. First, we apply the conventional algorithm and our new algorithm to
the seismogram without outliers and find that both algorithms produce similar
results. Fig. 3a shows the migrated image obtained through the conventional
algorithm using the L,-norm whereas Fig. 3b shows the migrated image
obtained through our new algorithm using the L,-norm. We observe that these
results are almost the same. However, the results do appear to be different when
we apply the conventional algorithm and the new algorithm to seismograms to
which we added artificial outliers. The new algorithm using the L;-norm yields
far better results. Fig. 4a shows the migrated image obtained through the
conventional algorithm using the L,-norm. In this result, we can see wedge
shaped noise at the surface layer. Moreover, structures near the surface and on
both sides are blurred. Fig. 4b shows the migrated image obtained through our
new algorithm using the L;-norm. This algorithm does not generate any noise
near the surface layer. Furthermore, we see that all the structures resulting from
our algorithm are clearer and more focused than those of the conventional
algorithm; indeed, Figs. 3b and 4b are almost the same without reference to the
existence of outliers. We speculate that the effect of outliers is reduced because
measured wavefields are judged only by the signs of their real and imaginary
components when using the L;-norm. We also suspect that these results indicate
the robustness of our algorithm when using the L;-norm on synthetic data.

Field data

To examine the feasibility of using our algorithm on real seismic data, we
apply our algorithm to a dataset recorded in the Gulf of Mexico. Fig. 5 is the
100-th common shot gather from this dataset. Noise and null traces are easily
observed. The data consist of 399 shots with 407 receivers for each shot. The
shot interval and receiver interval are 50 m and 25 m, respectively. The
minimum and maximum offsets are 137 m and 10,292 m, respectively. The
maximum record length is 12 s, the sampling interval is 4 ms, the frequency
interval is 0.03052 Hz, and the frequency ranges from 0.0352 to 36 Hz. We
cannot define a source wavelet from these field data; hence, we use source
estimation to obtain source wavelet. We used a pseudo Hessian matrix and
second-order derivative to improve the results.

As we expected, our algorithm using the L,-norm yields better results than
prior methods. Fig. 6a shows the reverse time migration when using a
conventional algorithm using the L,-norm. In this result, distinct erratic artifacts
on both sides of a salt body distract from interpretation of the original structure.
Fig. 6b is the reverse time migration using our algorithm with the L,-norm. We
see fainter erratic artifacts in Fig. 6b, especially in the circled areas in each
migration section. We also notice that artifacts in the salt body, marked with
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arrows, are fainter in Fig. 6b than in Fig. 6a. And the reflectors at the top of
the salt body are more markedly distinguishable from artifacts in Fig. 6b.
Especially in the area to the right, marked with an arrow, we see a clear
distinction between Figs. 6a and 6b. Moreover, continuity of reflectors is also

Distance (km)

Depth (km)

Distance (km)
0 1 2 3 4 5 6 7 8 9

Depth (km)

(b)

Fig. 3. Migrated image of the data without outliers using (a) the conventional algorithm and (b) the
new algorithm.
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better expressed in Fig. 6b than in Fig. 6a. We mark it off with arrows and
display their close-up in the Figs. 7a and 7b, respectively. We propose that
these results indicate the effectiveness of our algorithm using the L;-norm for
real seismic data, as well as synthetic data.
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0 1 2 3 4 5 6 J 8 9
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Fig. 4. Migrated image of the data containing outliers using (a) the conventional algorithm and (b)
the new algorithm.
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Fig. 5. The Common shot gather taken from the Gulf of Mexico dataset.
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Fig. 6. Migrated image obtained by (a) a conventional algorithm and (b) the new algorithm.
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Fig. 7. Close-up of migrated image obtained by (a) a conventional algorithm and (b) the new
algorithm.

CONCLUSION

Since the L,-norm may produce a distorted image because of the
sensitivity to outliers, some studies proposed waveform inversion using the
L;-norm. Consequently, we propose to adopt the L;-norm in the reverse time
migration algorithm. We hypothesized that the L;-norm could reduce the effect
of outliers because measured data are judged by only the sings of their real and
imaginary components in our algorithm.

Through our numerical experiments, we confirm the robustness of the
new algorithm. With synthetic data, from the Marmousi model, our algorithm
yields better results than conventional algorithms on data that contains outliers,
while both algorithms yield similar results on data without outliers. With regard
to field data, as expected from the synthetic results, our algorithm yields better
results. We conclude, therefore, that the new algorithm using the -norm for
reverse time migration can be useful for field data containing considerable
outliers. Furthermore, we expect that our algorithm can reduce, somewhat, the
need for pre-processing efforts.
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