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ABSTRACT

Ha, W.S., Chung, W.K. and Shin, C.S., 2012. Pseudo-Hessian matrix for the logarithmic objective
function in full waveform inversion. Journal of Seismic Exploration, 21: 201-214.

The pseudo-Hessian matrix of the /, objective function has been used in previous inversion
studies because it was observed to yield satisfactory results in both the frequency and Laplace
domains. However, there are fundamental differences between the pseudo-Hessian of the logarithmic
objective function and that of the I, objective function. In this study, we first derive the
pseudo-Hessian matrix for full waveform inversion using the logarithmic objective function. We then
compare the two pseudo-Hessian matrices in both Laplace-and frequency-domain waveform
inversions using the logarithmic objective function. A Laplace-domain inversion using the
pseudo-Hessian of the logarithmic objective function yields a better result than that obtained using
the pseudo-Hessian of the /, objective function. On the other hand, frequency domain inversion
results using the two pseudo-Hessians yield similar results. The differences originate from the
different behaviour of wavefields in the Laplace and frequency domains.

KEY WORDS: pseudo-Hessian matrix, logarithmic objective function, frequency domain,
waveform inversion.
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INTRODUCTION

Full waveform inversion is a method used to build more accurate
subsurface models required for seismic imaging. Since Tarantola’s pioneering
work (Tarantola, 1984), many authors have improved the inversion technique
(Gauthier et al., 1986; Mora, 1987; Amundsen, 1991; Pratt et al., 1998; Operto
et al., 2004; Brenders and Pratt, 2007; Ben-Hadj-Ali et al., 2008).

The objective function is one of the most important factors in a successful
seismic inversion. Many researchers have suggested various objective functions
for full waveform inversion. Claerbout and Muir (1973) suggested the [,
objective function, which is more robust to outlier noise. Amundsen (1991)
suggested the Cauchy objective function and the hyperbolic secant objective
function, both of which are also robust to noise. Bube and Langan (1997)
suggested a hybrid /,/l, objective function. Symes and Carazzone (1991)
advanced the differential semblance objective function, which exploits coherency
in the seismic wavefield.

Shin and Min (2006) proposed a logarithmic objective function for full
waveform inversion in the frequency domain. The logarithmic objective function
enables one to invert amplitude and phase separately (Shin et al., 2007). This
has been widely used, especially in the Laplace domain (Shin and Cha, 2008;
Shin and Cha, 2009; Bae et al., 2010; Chung et al., 2010; Ha et al., 2010) due
to its scaling effect between near-and far-offset wavefields.

To reduce the computational burden, Shin and Min (2006) used the
pseudo-Hessian (Shin et al., 2001) instead of the full or approximate Hessian
(Pratt et al., 1998). Because a pseudo-Hessian is an approximation of the
approximate Hessian, inversion using the pseudo-Hessian typically requires a
greater number of iterations before convergence. Nevertheless, the
pseudo-Hessian is an efficient alternative to the approximate Hessian due to the
vastly lower computational cost required to calculate the former. The
pseudo-Hessian that Shin and Min (2006) used was derived from the I, objective
function. Although the pseudo-Hessian yielded satisfactory results, we anticipate
that better results might be obtained when using the logarithmic objective
function derived from the pseudo-Hessian.

In this study, we derive a pseudo-Hessian of the logarithmic objective
function. First, we review the full waveform inversion using the logarithmic
objective function and the pseudo-Hessian of the /, objective function. Then, we
derive the pseudo-Hessian for the logarithmic objective function. We then
compare the logarithmic inversion results obtained using the pseudo-Hessian of
the /, objective function with those of the logarithmic objective function using
the Marmousi velocity model (Versteeg, 1994) in both the Laplace and
frequency domains.
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REVIEW OF THE WAVEFORM INVERSION USING A LOGARITHMIC
OBJECTIVE FUNCTION

In the frequency domain, we can define the logarithmic objective function
(Shin and Min, 2006; Shin et al., 2007) at each frequency as

N, N,
E=1%)Y Y |In@/dy)|? , )
i j

where U; is the modeled wavefield, &ij is the observed wavefield, N; is the
number of shots, and N, is the number of receivers. By differentiating the
objective function with respect to a model parameter m, , we obtain the gradient
direction as

N, N,

oE/om, = R{ Y, Y [(1/8)@T,/0m)In(G/d)1'T} 2
i

where 3% means the real part of a complex number, * denotes the complex
conjugate, and k = 1,2,...,M , where M is the number of model parameters.
To calculate the gradient direction, it is essential to compute the partial
derivative wavefield, 00;/0m,. However, the direct calculation requires
considerable computational resources. As an indirect method, the partial
derivative wavefield in the gradient direction can be obtained by the product
between the inverse of the impedance matrix and the virtual source vector (Pratt

et al., 1998) as
dt/0m, = ST [—(3S/dmY)i] = S7v, , 3)
where
S=-w™M + K , “4)
Vi = —(3S/0my)i; .
w is the angular frequency, M is the mass matrix, K is the stiffness matrix, S
is the complex impedance matrix, and v; is the virtual source vector. To apply

the adjoint method (Pratt et al., 1998), eq. (2) can be augmented by adding zero
elements. Thus, the gradient direction can be rewritten as a matrix equation:

N,
dE/dm, = R{ Z V(S Hr]} )

where
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r, = {1/ )lIn@; /d; )I" ... (1/8  In(@ n /d, 510 ... 0} . (6)

In the Gauss-Newton method, the approximated Hessian is required to
normalize the gradient direction (Pratt et al., 1998). Instead, Shin and Min
(2006) used the pseudo-Hessian (Shin et al., 2001) derived from the
approximate Hessian of the /, objective function. The approximate Hessian
matrix of the /, objective function can be expressed as (Pratt et al., 1998)

N, N,

Hy = %{ Y X [@/9m)@8,/0m)T} . ()

By substituting (3) into (7), following Pratt et al. (1998), we can obtain the
approximate Hessian matrix as a multiplication of matrices and vectors:

N,
Hy = R{ ). [[-(08/0m)a]"S™)T(S™) - (0S/6m)]']} . @®)

The term (S™)"(S™")", which is composed of the matrix multiplication of the
inverse of the complex impedance matrix and the conjugated inverse of the
complex matrix, is a diagonal dominant matrix (Shin et al., 2001). Therefore,
the pseudo-Hessian of the /, objective function can be obtained as follows:

Ny
HE, = %{ ) [~ (08/0m)a]T[—@S/omu] T} . ©)

We add a damping constant \ to the diagonal elements of the pseudo-Hessian
for stabilization (Levenberg, 1994; Marquardt, 1963). Accordingly, the k-th
model parameter at (n+ 1)-th iteration can be calculated as

m;" = my — o,[diag(HR) + N]7'(0E/6m,) 10)
using the diagonal elements of the pseudo-Hessian matrix, where a is a step
length (Shin et al., 2007).

PSEUDO-HESSIAN OF THE LOGARITHMIC OBJECTIVE FUNCTION
In the previous section, we reviewed the gradient direction of the

logarithmic objective function and the pseudo-Hessian of the [, objective
function. In this section, we will derive the pseudo-Hessian of the logarithmic



PSEUDO-HESSIAN MATRIX 205

objective function.

The Hessian of the logarithmic objective function can be obtained by
differentiating the gradient direction in (2) with respect to another model
parameter m, (/ = 1,2,...,M) as follows:

| — (1/82)(31,/0m,) (31, /6mk)[1n(uuldu)]
. N,

N,
PE/omom, =~ R1Y, Y| +(1/6,)(@%0/0mdm)[In@y/d)1" | . (1)
i

+(1/8;)(3/dmy) [(1/8;) (9T/0m,)]*

We obtain the approximate Hessian by ignoring the second derivative of the
modeled wavefield (Pratt et al., 1998) as

N, N,
H; = Z E [ (1/u2 )(au /am,)(au /amk)[ln(uu/du)]
i
+ (1/ﬁij)(aﬁij/amk)[(I/ﬁij)(aﬁij/am,)]*]} . (12)

Unlike the approximate Hessian of the /, objective function in (7), that of the
logarithmic objective function contains two terms. Generally, the second term
dominates the approximate Hessian due to the residual in the first term. When
performing a full waveform inversion, we first estimate the source wavelet
information - both amplitude and phase - by the Newton method (Shin et al.,
2007). If we estimate the amplitude of the source wavelet accurately, the first
term can be small enough to be ignored when compared to the second term.
Therefore, we omit the first term and the approximate Hessian can be
approximated as

NS N\'

H = ER{ Z E [(I/ﬁij)(aﬁij/amk)[(I/ﬁij)(aﬁij/aml)]*]} . (13)
i

We obtain the approximate Hessian as a multiplication of matrices and

vectors following the procedure we used to calculate that of the I, objective
function:

N,
HE, = %{ Y [[-08/0m ]’ (S DID}(S ™) [-@S/om)a] T} . (14)

where D; is a diagonal matrix with components:
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D = Uy . 15)

We can obtain a pseudo-Hessian matrix by an approximation suggested by Shin
et al., (2001) as

(S™HDIDi(S™)" = DID; . (16)
The resulting pseudo-Hessian matrix can be expressed as

N,

Hp, = R{ ). [[-(38/0m)]"DID][ - (38/0m,)a] ']}
N;
= %{ X [[—(@S/0m)e]"[ - (38/0m,)c] ]}

= NR[[—(@S/am)ec]"[— (38/dm)e]’] . a17)

where ¢" = [1,1,...,1]. Note that the pseudo-Hessian matrix of the logarithmic
objective function does not contain the modeled wavefield, unlike that of the /,
objective function in (8). Accordingly, the k-th model parameter can be updated
by using (10) with the diagonal elements of the pseudo-Hessian matrix in (17).

NUMERICAL EXAMPLES

We now compare the behaviour of the two different pseudo-Hessian
matrices, where the first is derived from the [/, objective function, and the
second is derived from the logarithmic objective function. We perform a full
waveform inversion using the two different pseudo-Hessian matrices in both the
Laplace and Frequency domains. The Marmousi model (Versteeg 1994) is used
for our synthetic tests; Fig. 1 shows the Marmousi P-wave velocity model.

First, we test the inversions in the Laplace domain (Shin and Cha, 2008).
In this model, 71 shots are used with 289 receivers. The interval between shots
is 128 m, whereas that between receivers is 32 m. The model grid used a 16 m
grid spacing. We inverted the data using 6 Laplace damping constants ranging
from 2 to 12 (with an interval of 2).

Fig. 2 shows the inverted P-wave velocities obtained using the
pseudo-Hessian of the /, objective function and logarithmic objective function
after 50 iterations. The results from both inversions are similar; however, the
error curve shows that the inversion using the pseudo-Hessian of the logarithmic
objective function converged faster (Fig. 3).
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Fig. 1. The Marmousi velocity model.
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Fig. 2. Inversion results obtained in the Laplace domain using (a) the pseudo-Hessian of the 1,
objective function and (b) that of the logarithmic objective function.
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Fig. 3. The error histories of the Laplace-domain inversions.

The difference in behaviour of the two pseudo-Hessian matrices in the
Laplace domain originates from the modeled wavefield in the pseudo-Hessian
of the /, objective function (9). Because the wavefield in the Laplace domain
decays exponentially as the offset between the source and receiver increases
(Table 1), the pseudo-Hessian of the /, objective function has large values only
near source locations (Fig. 4a). Conversely, the pseudo-Hessian of the
logarithmic objective shows the appropriate shape, which can scale correctly in
the gradient direction (Fig. 4b). Profiles extracted from the two pseudo-Hessians
show significantly different behaviour from each other (Fig. 5).

Table 1. Green’s functions of the 2D and 3D acoustic wave equations in the Laplace domain. s is

the damping constant, ¢ is the P-wave velocity in the media, x and x* are receiver and source
positions.

Dimension Green’s function

2D (172m)Ko[(s/e) |x — x'[]

3D (1/4w|x — x'|)exp[—(s/c)|x — x'|]
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Fig. 4. The pseudo-Hessians of the (a) /, objective function and (b) logarithmic objective function
after 10 iterations using a Laplace damping constant of 4.

We have also tested the pseudo-Hessians in the frequency domain (Shin
and Min 2006). We generated observed data in the frequency domain and
inverted the data using the logarithmic objective function. In this model, 575
shots were used in 577 receivers. The interval between both shots and receivers
was 16 m. The grid spacing size was also 16 m. We inverted the data using 25
frequencies ranging from 0.4 to 10.0 Hz (with an interval of 0.4 Hz) using the
result of the Laplace-domain inversion (Fig. 2b) as the starting model.

Fig. 6 shows the inversion results obtained using the pseudo-Hessians of
the /, objective function and logarithmic objective function after 500 iterations.
The results are very similar in both cases. The error curve shows that the
difference between the two pseudo-Hessians during convergence is not
significant (Fig. 7).
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Fig. 5. Normalized profiles of the pseudo-Hessians shown in Fig. 4. The profiles were extracted at
a location 6.4 km from the left edge.
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Fig. 6. Inversion results obtained in the frequency domain using (a) the pseudo-Hessian of the I
objective function and (b) that of the logarithmic objective function.
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Fig. 7. The error histories of the frequency-domain inversions.

Fig. 8 shows the two pseudo-Hessians in the frequency domain. Unlike
those of the Laplace domain, they show similar variations. Because the Green’s
function in the frequency domain is inversely proportional to the offset between
the shot and receiver (Table 2), the effect of the modeled wavefield in the
pseudo-Hessian of the /, objective function (9) is limited. Profiles extracted from
the pseudo-Hessians in the frequency domain show similar tendencies (Fig. 9).

Table 2. Green’s functions of the 2D and 3D acoustic wave equations in the frequency domain. w

is the angular frequency, c is the P-wave velocity in the media, x and x’ are receiver and source
positions.

Dimension Green’s function

2D (/HHP[(w/c)|x — x'|[]

3D (1/4w|x — x'expli(w/c) |x — x'|]
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Fig. 8. The pseudo-Hessians of the (a) /, objective function and (b) logarithmic objective function
after 10 iterations at the frequency of 5.0 Hz.
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CONCLUSIONS

We derived the pseudo-Hessian of the logarithmic objective function for
full waveform inversion. This can easily be applied and implemented to a
logarithmic full waveform inversion in the frequency or Laplace domains. This
workflow requires no additional computational cost for calculation when
compared with that of the [/, objective function. Numerical examples of
logarithmic inversion in the Laplace domain show that the pseudo-Hessian of the
logarithmic objective function yields a better result than that of the /, objective
function. On the other hand, the two pseudo-Hessians give similar results in the
frequency domain. The difference between the results of Laplace and frequency
domains originates from the modeled wavefield in the pseudo-Hessian of the I,
objective function.

Because the pseudo-Hessian is an approximation to the approximate
Hessian, inversion using the pseudo-Hessian requires more iterations to
converge when compared to inversions using the approximate or full Hessian.
However, the pseudo-Hessian is a more efficient choice than the approximate
or full Hessian due to the huge computational cost required to calculate the
latter. In summary, the pseudo-Hessian derived in this study can be widely and
efficiently used in inversion using the logarithmic objective function, both in the
Laplace and frequency domains.
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