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ABSTRACT

Saraswat, P. and Sen, M.K., 2012. Pre-stack inversion of angle gathers using a hybrid evolutionary
algorithm. Journal of Seismic Exploration, 21: 177-200.

Inversion of pre-and post-stack seismic data for acoustic and shear impedances is a highly
non-linear and ill-posed problem. A deterministic inversion of band-limited seismic data produces
smooth models that are devoid of high frequency variations observed in well logs. The objective of
this paper is two-fold, i.e., to develop an efficient scheme to explore and exploit the model space,
and to efficiently sample broadband models statistically. We demonstrate that the use of starting
models from fractal based a priori pdfs helps us to derive elastic models of very high resolution. We
also introduce a new hybrid inversion algorithm that takes advantage of both deterministic and
stochastic methodologies. A deterministic inversion based on conjugate gradient (CG) method
produces smooth models while a stand-alone stochastic method based on differential evolution (DE)
produces high-resolution models of nearly the same accuracy. A hybrid algorithm that uses CG
solution as a starting model converges much faster than a standalone DE to very good solutions. We
demonstrate our results with application to a field seismic dataset. The hybrid algorithm can also be
used to sample the most significant parts of the model space rapidly resulting in estimates of
uncertainty.
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INTRODUCTION

Inversion of seismic data plays a vital role in reservoir characterization.
High-resolution inversion methods add significant value to the inversion results
and increase the confidence level in interpretation of seismic data. Well logs
present the most accurate information about the petrophysical properties of a
subsurface reservoir. However, a spatially continuous description of a reservoir
at the well log scale is not available due to limited well data. Results from
seismic inversion are usually integrated with well log data to derive reservoir
models in 3D. A typical deterministic seismic inversion procedure derives
blocky or coarse subsurface models well below the resolution of the well logs.
A stochastic inversion that combines well logs with seismic inversion has the
potential to estimate subsurface models at the well log resolution in 3D (Sen,
2006). It is well recognized that some of the low and high frequency parts of
the subsurface model reside in the null space of the seismic data and can only
be incorporated through a priori information (Francis, 1997). Common
stochastic inversion methods employ Gaussian probability density function to
describe prior impedance models. Most recently Srivastava and Sen (2009a,b)
made use of fractal based a priori models in post-and pre-stack seismic
inversion. They showed that geologically realistic acoustic impedance models
can indeed be estimated by this approach. Srivastava and Sen (2009a,b)
employed very fast simulated annealing, VFSA (Sen and Stoffa, 1995) in the
search for optimal models. Our approach here is very similar to that used in
Srivastava and Sen (2009a,b) in that we also use fractal based a priori pdf for
initial model generation. Unlike Srivastava and Sen (2009a,b), we employ a new
global optimization method based on a differential evolution algorithm (Storn
and Price, 1997; Mishra, 2006) and increase the computational efficiency by
using the result from a local optimization method as one of the members of the
initial population in DE.

We demonstrate the feasibility and usefulness of our method with
application to 2D field seismic data. Further, the confidence level of stochastic
model estimates is determined by a statistical analysis.

METHOD
Forward Problem

For a layered earth model, exact synthetic seismograms can be computed
using the reflectivity method (Kennett, 1983). For many practical applications,
seismograms are generated using simple wave propagation models using exact
Zoeppritz or a linearized reflection coefficient (Aki and Richards, 1980) given
below in the angle domain as these computations are extremely fast.
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R(0) = "2[(AVp/Vp) — (Ap/p)]
— 2(V{/VeI2(AV/Vg) + (Ap/p)] X sin?d + WB(AV/Vptan2d , (1)

where V; is the average P-wave velocity between two uniform half-spaces, Vg
is the average S-wave velocity, and p is the average density. The assumptions
made are that the relative changes of property (AV,/V;, AV/V, and Ap/p) are
small, such that the second-order terms can be neglected, and that 6 is much less
than 90°. Eq. (1) can be rewritten in terms of P-wave and S-wave impedances:

R@®) =~ (I + tan20)(AL/2L;) — 8(AV/Vy)2sin20(Aly/21,)
— [tan20 — 4(AV,/V,)%sin?d | (Aplp) Q)

where I, = Vpp is the average acoustic impedance, Iy = Vg is the average
shear impedance (Aly/2I;) = (AVp/Vp) + (Aplp) is the zero-offset P-wave
reflection coefficient, and (Aly/2lg) = %[(AV/Vg) + (Ap/p)] is the zero-offset
S-wave reflection coefficient. Fatti et al. (1994) suggested that the third term in
p only cancels for most V¢/V,, ratios around 0.5 and small angles and, thereby,
eq. (2) simplifies to

R(@O) = (1 + tan?0)(Alp/2L;) — 8(AV/Vp)2sin2f(Alg/2]s) . 3)

Eq. (3) has been used by Fatti et al. (1994), Goodway et al. (1997), and
Ma (2002) to extract P- and S-wave impedance reflectivities by fitting it to the
P-wave reflection amplitudes from real common-midpoint (CMP) gathers. The
problems in using the above strategy comes when there is no or improper
information on the background AVy/V, and if there are no appropriate
geological models. Then the resulting AVO inversion output may produce
unrealistic and biased information (Wang 1999). To overcome this issue, Ma
(2002) replaced average AV/V, ratios by the average I /I, ratio, so that the
reflection coefficients R(6) are only related to three parameters: I, I, and 6.
Among those, the angle of incidence 6 can be calculated using a ray-tracing
method (Smith and Gidlow, 1987) and is valid only when density changes
between adjacent layers are small. Assuming this hypothesis, we use following
equation for the reflectivity series:

RO = (1 + tan?6)(AL/2L,) — 8(Aly/L,)2sin?0(ALy/2L5) @)

Taking into account eq. (4) we propose a procedure for estimating
acoustic and shear impedances from pre-stack seismic angle gathers. The basic
assumptions made are that the earth has approximately horizontal layers at each
common depth point and that each layer is described by both acoustic and shear

impedances and, thus, a synthetic seismogram can be computed using a standard
convolution model.
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Optimization

Using eq. (4), we can calculate reflection coefficients R(f) for each angle
and at each layer boundary for an earth model defined by impedances Ii, Ii. A
synthetic angle gather, calculated by convolving the reflection coefficients R(6)
with predetermined wavelets, is then compared with the observed data to form
a misfit (usually a L,-norm) function. Inversion schemes based on stochastic
methods such as very fast simulated annealing (VFSA) (Sen and Stoffa, 1991;
Chundru et al., 1996), and genetic algorithms (Stoffa and Sen, 1991; Kennett
et al., 1992; Sen and Stoffa, 1992a,b; Sambridge et al., 1992, 1993; Jervis et
al., 1993a; Jin et al., 1993; Sen et al., 1995; Mallick, 1999; Ghazali et al.,
2010) are generally preferred over deterministic methods, since they are able to
generate multiple realizations of the model parameters and can easily incorporate
geological information with seismic to enhance the results (Contreras et al.,
2006; Varela et al., 2006).

One serious limitation of seismic data is that the resulting subsurface
models have poorer resolution than the well logs and therefore, missing low and
high frequency bands must be incorporated as a priori information. It is fairly
straightforward to incorporate such priors using global optimization methods.
Conventionally, Gaussian based priors are used to generate starting models for
inversion process which often contains white noise; this results in inclusion of
spurious and undesired frequency in model space leading to unrealistic
information about subsurface geology and its properties. Unlike this approach,
Srivastava and Sen (2009) made use of a fractional Gaussian process to generate
starting models that honor well log statistics accurately and a VESA approach
to search for an optimal model. We follow Srivastava and Sen (2009) to
generate fractal based starting models but employ a different optimization
scheme based on differential evolution which we describe next.

Differential Evolution (DE)

DE is a simple and efficient adaptive technique for global optimization
over continuous spaces, which forms the class of genetic algorithms. Differential
Evolution (DE) (Storn and Price, 1997) is a novel parallel direct search method
which utilizes NP parameter vectors, X;5,i = 0, 1,2, ... , NP—1, which is the
population for each generation G. During the optimization process NP remains
static. However, the choice of population is either random or is based on system
properties. For example, in our case the population is governed by fractional
Gaussian noise instead of a random generator.

The crux of DE lies in a new scheme for generating a trail vector using
three parent vectors. This trail vector is generated by adding a weighted
difference of randomly chosen second and third parent vector to the first parent
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(schemes will be discussed later). If the objective function attains lower value
with the trail vector as compared to the first parent, the trail vector (child) wins
and takes the place of the first parent. The comparison vector can, but need not,
be a part of the generation process mentioned above. Further, for every
generation the best parameter vector X, ¢ is computed and is evaluated. So for
every generation we have local best models computed using various schemes
and these local best are then evaluated to estimate the best of each generation,
which is further evaluated to extract distance and direction information
generating random deviations. All these properties make DE robust and self
organizing adaptive technique with excellent convergence properties. Although,
the performance of DE reduces when there is an element of randomness in the
objective function or the initial models, it is perhaps the best among the
algorithms that may be used to find out the global optimum of a nonstochastic
continuous, real-valued, multi-modal function (Mishra, 2006). A detailed
version of DE can found in Storm and Price (1997). Below we describe the
workflow for DE strategy briefly.

The general definition of an optimization problem is as follows. Given an
objective function f(x) in a D dimensional space, the minimization problem is
to find

x" € X such that f(x*) < f{x) vx € X . o)

We will discuss a method that considers a population of models at a time
and attempts to update the population with iteration (called generation here) such
that we are able to search for better models. Let us consider that we need to
optimize a function with D real parameters and the population size is N, Each
model in a generation can be represented by a column vector X, = [X;;g,
X5iG> -+ » Xpigl, Where G is the generation number and i takes a value from 1
to N. Following these notations, we briefly discuss below the algorithm for
differential evolution.

Step 1: Initialization - Here we define the upper and lower limits of our model
parameters X} < X;;, < XV. Further we randomly or strategically select initial
parameter values.

Step 2: Mutation - It expands the search space; this step involves generation of
a child vector from a parent and two other random population members, known
as donor vectors. The general algorithm of mutation follows one of the
following schemes:

Scheme 1: The first DE variant works as follows: for each vector X, i

=1, 2, 3, ..., NP—1 a donor vector is generated according to the
following criteria:
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Vici1i = Xuye + aX,6 — Xag), where ry,1,,r; € [0,NP—1] and
mutually different from each other and « is called the mutation constant
such that « > 0 and less than 2, it controls the amplification of
differential variation (X, — X,;g), Fig. 1 below shows a two
dimensional example that illustrates the different vectors which play a part
in DE1 (Storn and Price, 1997).

Scheme 2: This scheme has an additional feature; the donor vector is
generated as:

Vicii = Xug + aXne = Xne) + MXews — Xic), adding an
additional feature via scale factor \, that provides a means to increase the
greediness of the algorithm, where X, ; is the current best vector of the
results generated. Fig. 2 depicts this scheme (Storn and Price, 1997).

X NP Parameatar vactors from genaration G
9 Newly generated parameler veclorv

;

Fig. 1. An example of an objective function in two dimensions showing its contour lines and the
process for generating v in scheme DE1 (from Storn and Price, 1997). See text for details.
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X NP Parameter veclors from generalion G
O Newly generated parameter vectorv

a

%G +(KbestG-X,)

)’?H

Fig. 2. Two dimensional example of an objective function showing its contour lines and the process
for generating v in scheme DE2. (from Storn and Price, 1997).

Step 3: Recombination-incorporates successful solutions from previous
generations. The trial vector (U, s,,)is developed from elements of trial vector
Vig+1 and elements of target vector X; ;. Elements of donor vector enters trial
vector with a probability CR

Viig+ ifrand; < CRorj = I,
Uigs = { > (6)

X6 ifrand; > CRorj # I

rand

rand;; ~ U[0,1], L, is a random integer from [1, 2, 3, ..., D], ensuring Vigs1
# Xi,G'
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Step 4: Selection - The target vector is now compared with the trial vector and
the one with the lowest function value is admitted to the next generation.

Ui if f(Uig) = f(Xig)
Xi,G+1 = (7

X;c  otherwise

All these steps are performed iteratively until a stopping criterion is satisfied.

A hybrid approach

In this paper we propose a hybrid optimization algorithm which exploits
the advantages of a Gradient Search approach as well as a stochastic
evolutionary algorithm. The motivation behind using a dual approach comes
from analyzing the advantages of stochastic and deterministic approaches of
inverting seismic data. Our hybrid method incorporates standard conjugate
gradient (CG) (Scales, 1987) run along with DE. Given a good starting solution,
gradient methods that generally contain model regularization such as smoothing,
can obtain very good solutions but are generally band limited. Global search
algorithms, on the other hand, are least sensitive to the nature of the starting
model and are capable of accepting bad models occasionally; this property helps
them escape from local minima, which is a major improvement over
deterministic methods. They are, however, computationally expensive.

Hybrid search algorithms (Chunduru et al.,1997) have the potential to
make use of some of the important features of both global and local algorithms
such that they are computationally fast, work well even with poor starting
solutions, reduce randomness in the models, and final models have better
resolution for low and high frequencies. The challenge is to find an optimal way
to combine the algorithms. Here we use a hybrid model based on CG and DE
such that we apply CG as our first step in the optimization process. A starting
model based on fractional Gaussian process is used in the CG module.
However, the result from CG inversion may not generally be optimal due to
limitations of CG but it serves as a very good initial guess when used as one
member in the population of the DE (Fig. 3).

The advantages of this algorithm are listed as follows:

® It is capable of simulating characteristics of both deterministic as well as
stochastic methods of seismic inversion;

® It has better convergence properties than a single run of either of the two
methods.
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Fig. 3. Flowchart of our hybrid inversion scheme.
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Starting Models

As discussed in the preceding sections, we use fractional Gaussian noise
distribution to draw our starting models from. Fractal models account for
various geological phenomena and have been used to study various natural
features and observations. Hurst (1951) made a breakthrough discovery while
analyzing a specific phenomenon of geophysical and hydrological time series,
which illustrates tendency of wet years clustering in wet periods while dry
periods clustering in drought periods - this phenomenon was termed as the Hurst
phenomenon, which was further verified in many studies like the flow of the
river Nile, wind power variations, annual stream flow records of the continental
United States, etc. (Koutsoyiannis, 2002). The idea of fractional Gaussian noise
(fGn) was first suggested by Mandelbrot (1965). This process can be defined in
discrete time in a similar manner as in continuous time (Saupe, 1988). Thus fGn
can be simulated as a time series realization with expected auto-covariance
estimated from a sporadic coefficient known as the Hurst coefficient (H). The
auto-covariance function for fGn is given by

R(7) = 0.502[|7 + 1| = 2|7|® + (= + )] , 8)

where o represents the standard deviation.

It has been demonstrated in various studies that well-log and seismic data
follow a powerlaw relationship (Hewett, 1986; Emanual et al., 1987; Hardy,
1992; Dimri, 2000, 2005). Thus well-log data can be subjected to fractal theory.
Generating multiple realizations of well-log information over complete seismic
data using fractional Gaussian process (Caccia et al., 1997; Srivastava and Sen,
2009, 2010), requires calculations of some of the statistical parameters such as
standard deviation, mean, variance from the well log. The Hurst coefficient can
be estimated using various methods such as rescaled range analysis (Turcotte,
1997; Dimri 2005; Chamoli et al., 2007). The time series generated using
fractional Gaussian noise corresponding to each seismic trace serves as an
excellent starting solution to a seismic inversion process.

INVERSION STRATEGY
Essential steps followed in this study are as follows:

1. Interpolate and extrapolate the P-and S-wave impedances obtained from
well-log over the complete zone of interest. Thus, at each CMP location
we derive a pseudo well-log.
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2. Each interpolated well-log is used to calculate statistical parameters such
as mean, variance and Hurst coefficient corresponding to every CMP
location.

3. These statistical parameters are then used to generate well-log realizations
for every CMP location using a fractional Gaussian noise generator. To
make prior information more realistic, low frequency information is
included in form of CG estimates, the gradient results are smooth models
which serve as an excellent estimation of low frequency information (first
parent described above) in conjugation with fGn models. Thus in this way
we are able to address both low and high frequency missing bands in our
algorithm.

4. We then use this prior information to generate synthetic seismic data by
convolving reflectivity series generated using eq. (4) with pre-determined
wavelets for near and far offsets.

5. Synthetic gathers are then compared with observed data and the misfit
function is minimized using DE to generate P-and S-wave impedance data,
which is the best model satisfying the stopping criterion.

EXAMPLES

In this section we will make an attempt to analyze the proposed inversion
scheme with its application to a field pre-stack seismic data. Furthermore, we
will compare the results using various strategies for inversion followed by an
insight on the efficacy of our proposed strategy.

We use a real 2D pre-stack seismic dataset (Fig. 4), together with a well
log corresponding to crossline number 71 as shown in Fig. 5, to test our
algorithm. The data-set is obtained from the STRATA module of Hampson
Russell software. We picked two horizons; top one around 550 ms and bottom
one being around 700 ms. Fig. 6 shows the inversion result for P- and S-wave
impedance using a conjugate gradient method. As observed in these figures the
results are smooth and do not carry information about high frequency
components. For example the match between the well-log data and inversion
result between 600-620 ms is very poor. To overcome these issues we carry out
an inversion process using various methodologies including some hybrid

schemes. We show results from inversion using four different strategies listed
below.

Method I: A pure DE search using all random members (Gaussian) in the
starting population, i.e., pure DE approach (Fig. 7),
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Fig. 4. The complete pre-stack seismic dataset under considerations. (Courtesy Hampson Russell

Software Company).
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Fig. 5. Computed P- and S-wave impedance at a well location.
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Method II: A pure DE search using all fractal based models (fGn) in the starting
population (Fig. 8).

Method III: DE in which one of the members of the initial population is the
result from CG (as first parent) and others are random Gaussian models
(other population members NP—1) - A hybrid approach (Fig. 9).

Method IV: DE in which one of the members of the initial population is the
result from CG (as first parent) and others are fractal based models (other
population members NP—1) - A hybrid approach (Fig. 10).

500 500 :
from
well log
520+ Il o220 F .
GG
generated
540 F . s40 k _
__EBO} - I .
5 . 560
5 £
E £
580 : E o 580 k- 2l
G i 1Y
i }I
600 ; . 600 k _
¥ . -
” — T .l I|=I|='|.'|-!I
B20F ) - <
. 620} Z -
540 ! =2 640 1 1
4000 6000 800C 1000 2000 3000 4000 5000

P-impedance(m/secgm/cc) S-Wave Impedance(m/sc*am/cc)

Fig. 6. P- and S-wave impedances from the conjugate gradient method (green). It is evident that
models are smooth and the match with the well-log data (blue) is poor.
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Fig. 7. Inversion results from DE (red) with Gaussian based models as starting solution. The
correlation between the computed impedances (red) and well-log data (green) is poor.
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Fig. 8. DE generated P- and S-wave impedance (blue) and their match with well-log data (green).
There is a good match, especially, between high frequency parameters making fractal-based priors

as good starting solution.



192 SARASWAT & SEN

540 T T T T T T
| : . CG+DE+Rzhdom
g0l o Modzls 3
Observad Ltg
500 -
ok i
w .
£ :
2 :
E :
= B2 - ‘ et
B0~ £ .
B0 - -
&0 j i = 2 i i j
4000 4500 5000 5500 6000 B500 7000 7500 6000
P-Wave Impedance{m/sec gm/cc)
540 T T T T T T T
. CG+Randem
‘Well Log
‘; ...i..........‘......g...“..‘....... = =
£ ; :
@ i .
£ : :
—
- P g -
I i i i

3000 3500 4000 4500 5000
S-Wave Impedance(m/sec ym/fce)

Fig. 9. In this case the result from the conjugate gradient approach is the first population member
and (N-1) population members were Gaussian priors. The inversion results (red and blue) show an
imperfect match with well-log data (green).
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Fig. 10. Result from the proposed model, i.e., first population member as conjugate gradient
generated result and remaining (N —1) members as fractal based priors. Inversion results (red and
blue) show good agreement with well-log data (green). This proves the efficacy of the proposed
hybrid approach.
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Results and Discussion

Figs. 7, 8, 9 and 10 show the results at the well location - they show
comparisons between the well log and the inverted models of Z, and Zs. Careful
examination of the plots indicate that method IV, which uses CG and fractal
based initial models in a hybrid DE, produces the best results such that they are
able to resolve the details of the well logs within the target zone. Fig. 11 shows
observed and modeled gathers obtained by method IV, which are in good
agreement. Based on these results, we inverted the entire 2D line using method
IV; the results are shown in Fig. 12.

angle__gather Using Hybrid Model

lrace number Trace number

1 3 5 7F 9111315 se0 L 25 7 9111315

S50 ;
s00 =00 4;

= -

2 =

o L= &)

2 =

= = )
650 550 ;%
700 700

Observed Inverted

Fig. 11. Comparison of observed seismic data with the result of inversion using the proposed
method. A single CMP gather is shown for evaluation.
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Fig. 12. 2D color plot of P- (top) and S-wave (bottom) impedance models generated using our
hybrid inversion scheme. The results have high resolution and continuity along the picked horizons.

To further explore the algorithm we carried out in-depth analysis of the
hybrid algorithm. The stochastic methods eventually reached the best model
while accepting and evaluating various models. By analyzing the intermediate
results we can derive more useful information on the final models; a plot of all
the values (P- and S-wave impedance) generated in each generation are shown
in Figs. 13 and 14. A confidence interval can be defined using these models;
this property of DE encouraged many researchers to combine it with Monte
Carlo and Markov Chain simulation (ter Braak, 2006) which can further assist
in uncertainty analysis of output models. In our case we have shown the
envelope of estimated models from hybrid inversion scheme around the well log
data in Figs. 13 and 14.
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The computational speed of our approach depends on the number of
members in the population, number of generations required for convergence and
minimum error attained. Fig. 15 shows error vs. generation curves with 100,
300 and 650 members in the population. The figure demonstrates that using a
larger population shows better convergence properties, although, the calculation
time will also increase. Tests such as the ones shown in Fig. 15 must be
conducted at one of the locations to decide on the optimal choice of parameters
prior to inverting a volume.

CONCLUSIONS

Our research in developing a new inversion algorithm is motivated by
current research in the field of evolutionary computation and the need for
precision and speed in geophysical inversion problems. The new inversion
scheme based on differential evolution has proved to be successful in sampling
the high frequency part of seismic data which carries most of the information
of the target zone. This is improved further by the use of CG in incorporating
low frequency information into the output models. Use of fractal-based starting
models has contributed well in deriving geologically realistic models which
corroborates well with well-log data. The pre-stack seismic data inversion
scheme incorporated in this paper has been found to be satisfactory in deriving
P- and S-wave impedance models. The result shows high-resolution estimates
which were able to predict most of the realistic peaks available in the well log.

g

E

P-wave | mpadance(m/zecgmice)
-

Fig. 13. Best P-wave impedance models from every generation. Note the confidence interval around
well-log in black.
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Fig. 14. Best S-wave impedance models from each generation. Note the confidence interval around
the well-log data shown in black.

The most important features of the new inversion algorithm are as

follows:

A stochastic inversion using a fractal-based prior facilitates impedance
modeling with a realistic frequency band similar to those observed at a
well location. This is because of the fact that a fractal-based prior contains
a similar frequency band as that of the real model.

Fractal-based prior provides an intelligent initial guess to the evolutionary
inversion modeling module which facilitates faster convergence.

New hybrid optimization module which is highly efficient with DE and

CG incorporating the advantages of both stochastic and deterministic
methodologies.

High-resolution estimates of rock properties with good variations over
picked horizons.

This is the first ever application of this hybrid model in geophysical
inversion problem.
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® The inversion process was fast and results were obtained within 800
iterations.

® The techniques of DE and Hybrid Model can be applied to a wide range
of geophysical inversion problems.
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Fig. 15. Plot of the Error vs. Iterations (no. of generations), as we can see with a larger population
size the convergence achieved is better compared to a smaller population size.
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