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ABSTRACT

Ikelle, L.T., 2012. A numerical modeling of wave propagation that is independent of coordinate
transformation. Journal of Seismic Exploration, 21: 153-176.

It is a remarkable fact that Maxwell’s equations under any coordinate transformation can be
written in an identical mathematical form as the ones in Cartesian coordinates. However, in some
particular coordinate transformations, like the cylindrical coordinate transformations, the physical
properties becomes anisotropic, even if they are isotropic in the Cartesian coordinates. Even the
permittivity can be anisotropic. We here review these fundamental results. The remarkable
invariance of Maxwell’s equations under coordinate transformation can also extend to elastodynamic
wave equations by rewriting them in a new form. We have used this new form of the elastodynamic
wave equations to describe a numerical solution of elastic wave propagation which is independent
of coordinate transformation.

KEY WORDS: elastodynamic equations, Maxwell’s equations, curvilinear coordinates,
natural coordinates, physical coordinates, finite-difference solution.

INTRODUCTION

Now that the controlled-source electromagnetic (CSEM) acquisition
technique has taken hold as an oil and gas exploration and production tool, there
is a need to develop modeling and inversion methods to analyze CSEM data,
and even to revamp classical petroleum seismology classes to include
electromagnetic methods. These developments will greatly benefit from the
significant progress made in the last four decades in seismic modeling and
inversion and in the centuries of electromagnetic-wave studies. One important
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aspect of these developments is an understanding of the similarities of and
differences between Maxwell’s equations and elastic field equations. In Ikelle
(2012) we describe examples of these equivalences in Cartesian coordinates. The
seismology studies are not limited to Cartesian coordinates. For example, in the
study of sonic logging and of earthquake sources, we often considered the wave
propagation in cylindrical coordinates and even spherical coordinates. We here
examine the similarities in and differences between Maxwell’s equations and
elastic field equations for other coordinate systems. Our formulation is quite
general and is valid for any transformation of Cartesian coordinate systems,
including transformation from Cartesian coordinates to curvilinear coordinates.
The resulting formulas can be used to design numerical methods for simulating
data which are independent of coordinate systems. In other words, they provide
simple ways of applying numerical solutions designed for Cartesian coordinates,
for example, to other coordinate systems. Our basic derivation of coordinate
transformation is similar to Pendry et al. (2006), Milton et al. (2006), Yan et
al. (2008), and other groups involved in the metamaterial sciences, as we
discovered after our derivations.

In the Cartesian coordinate system, elastic wave propagation responses of
subsurface models containing a curved air-solid interface are known to produce
artifacts, especially diffractions, from the staircase discretization of this
interface. Fornberg (1988) proposed a pseudospectral finite-difference solution
to this problem by using a curved grid whose lines coincide with this interface.
His method consists of solving wave equations in Cartesian coordinates. It
involves first computing the spatial derivatives in the curved grid and then
applying the chain rule to calculate the required spatial derivatives in the
Cartesian coordinates. Many authors, including Tessmer el al. (1992), Carcione
(1994), Nielsen et al. (1994), Hestholm and Ruud (1994), and Tessmer and
Kosloff (1994), have extended his original solution for working in the
space-time domain and with more-complex subsurface models. Komatitsh et al.
(1996), and later Friis et al. (2001), have proposed alternative solutions to this
problem by formulating wave equations directly in the curved grid through the
use of covariant derivatives. Although the objectives in these papers are
different from the objective of this paper, there are a number of similarities to
our work in regard to the fact that we all use, in one form or another, the notion
of covariant derivatives. These similarities are even explicit with regard to the
work of Komatitsh et al. (1996) because they directly use the mathematics of
contravariants and covariants. However, none of these authors realized that
these mathematics can lead to new effective elastic parameters and to a new
form of elastic wave equations. Yet these two observations are the cornerstones
of this paper and they are also the reason why final formulas and results here
are different from those described in these papers.

The remainder of the paper is divided into five sections. In the next
section, we will review some of the basic formulas of coordinate transformations



NUMERICAL MODELING OF WAVE PROPAGATION 155

that we will need in our later derivations. In the third section, we review the
results of the invariance of Maxwell’s equations with coordinate systems. In the
fourth section, we discuss the invariance of elastic wave equations with
coordinate systems. One of the main results discussed in this section is that we
can rewrite the equations of elastic wave propagation in a form for which they
become coordinate invariant just like Maxwell’s equations. In the fifth section,
we use this form of elastic wave equations to propose a numerical solution for
simulating synthetic data which is independent of coordinate systems. In the
final section, we discuss the numerical cost of our coordinate invariant algorithm
and derivations of the mathematics in sections 3 and 4 with vector operators.

BASIC EQUATIONS OF COORDINATE TRANSFORMATIONS

In this section, we recall some basic formulas of coordinate
transformations. We consider two coordinate systems: an "old" system and a
"new" system. The position in an old coordinate system is specified by

X = [X,,%X,,%]7 . 1)

The symbol T indicates a transpose. In our definitions of elastic and
electromagnetic wave equations, the subscript notation for vectors and tensors
as well as the Einstein summation convention (also known as a summation over
repeated indices) will be used. Lowercase Latin subscripts are employed for this
purpose (e.g., Vi, T,g); they are to be assigned the values 1, 2, and 3. Boldface
symbols (e.g., v, 7) will be used to indicate vectors or tensors. The position in
the new coordinate system is specified by

x' = [xpxxl" @

with x" = x'(x), or more explicitly, x; = x{(x;). We will use the prime and tilde
symbols to indicate fields and physical properties in the new coordinate system
(e.8., Vi, Tpy B&™ OF V', 7', jip). We assume that the transformation from the
old system to a new system [i.e., x = x(x'), or more explicitly, x; = x(x))], is
uniquely defined.

Let us define the Jacobian matrix for the coordinate transformation from
the old coordinate system to the new one. We denote this Jacobian matrix as A,
and its elements are defined as follows:

Ay = 0x{/9x; . 3)

We assume that the Jacobian matrix is nonsingular. The Jacobian matrix
of the reciprocal transform is denoted A’, and its elements are (Post, 1962)
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Al = ox/0x] = dln(@)/dA; @
where
o = det(A) = Eijk(axi/axi)(aX£/an)(aXé/axk) = EijkAliAZjA?)k . (5)

and where ¢, is the Levi-Civita symbol (e = 1 if ijk is an even permutation,
e = —1if ijk is an odd permutation, and €;; = 0 otherwise). We also have the
classical identities

a/0x; = (9x;/9x;)(d/dx]) , (6)
vi = (OX}/Ox)V] = Ay O

where v; and v; are components of the vectors v and v, respectively. Note that
in some literature A’ is considered the Jacobian matrix and A as the inverse. If
we swap the labels "old" and "new" in the coordinate systems, the same
matrices will play opposite roles. Therefore we have adopted one of the two
definitions and stayed with it throughout this paper.

To add more concreteness to our definitions of Jacobian matrices, let us
consider the particular case of a transformation from Cartesian coordinates to
cylindrical coordinates. This transformation is defined as follows:

X; = rcosf
X, = rsinf 8)
X3 = Z

where X;, X,, and x; represent the old coordinate system and r, 6, and z
represent the new coordinate system. The Jacobian matrices A and A’. for this
transformation are

cosf sinf 0 cosf —rsinf O
A = | —(sinf)/r (cosf)/r O | and A’ = | sinf rcosd 0| . ©)]
0 0 1 0 0 1

The determinants of these Jacobian matrices are

o = det(A) = 1/r and det(A") = l/aa =1 . (10)
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COORDINATE TRANSFORMATION IN ELECTROMAGNETISM

Let E and B be the electric field and magnetic field vectors, respectively.
We can define them as follows:

E, H,
E,©|E,| and Hy® | H,| . 11)
E, H,

Using these fields, we can write the Maxwell’s equations as follows [e.g., de
Hoop (1995)]:

— e 0HL(x,t,x)/0x] + e (®[OE(x,t,x)/0x] = —T(x,t.x) , (12)

€amplOE,(X,6,X)/0%,,] + pS™®)[0H(x,t,x)/dx] = —K (X,t,x) , (13)
where €§?(x) and p{"™(x) are the permittivity and permeability tensors,
respectively. These equations are quite general because we have considered that
the permittivity and permeability can be anisotropic by describing them as
second-rank tensors. The quantities J and K are the volume density of the
material electric current and the volume density of the material magnetic

current, respectively. In a vacuum domain, J and K are zero. The position of
these sources is specified by x,.

Let us now show that eqs. (12) and (13) are invariant under coordinate
transformation. We will start by rewriting (12) in the new coordinate system
using the definition in (7) for vectors; i.e.,

—€x(0/9x)[(0x4/Ox)Hy (X', t,X,)]

+ eSO (X)[(0x4/x)IEL (X' t,x)/dt] = —Ji(X,1,X) , (14)
After expanding the first term on the lefthand side of (14), we arrive at

— €5(0%Xp/0X;0x)Hy (X', t,X,) — €;(0%p/0X,)(0X/0%;)0H (X' ,t,X,)/0X,

+ €§f(0[(9xg/ax)IB (X' ,t,x)/0t] = —J(X,t,%) , 15)

Notice that the first term on the lefthand side of (15) is zero. By multiplying the
remaining expression by 9x./dx;, we arrive at

— e (OX}/%) (X} 9%, (9XL/3x))IH{ (X' £, X.)/Ox.,

+ [(0x./0x)efP(x)(dx4/0x)IOEL (X' t,x)/0t = —(x./Ox)(x,t,x) . (16)



158 IKELLE

By using the definition of the determinant of the Jacobian matrix given in (5),
we can verify that

€(0%,/0%,) (9Xp /0%, )(0%;/0X)) = Ot - (17
By substituting (17) into (16), we arrive at the same form of eq. (12); that is,

€ppal OHp (X' ,t,X)/0%;] + EFV(XNIE (X' t,x)/0t = =T (X' ,t,X) , (18)
where

&) = (La)[(3x;/0x)ef”(X)(0x4/9%)]
and (19)
Ja(x't,x) = (L/o)(0x,/0x)Ji(x,t,x.) .

Thus we see that we can interpret Ampere’s law in arbitrary coordinates
as the usual equation in Euclidean coordinates, as long as we use the new
permittivity tensor and the new source term in (19). Using the elements of the
Jacobian matrix of the reciprocal transform (3) and the results of the coordinate
of second-rank tensors in (19), we can write the permittivity tensor in old
coordinates as a function of the permittivity tensor in new coordinates, as
follows:

) = alOx/Ox)EXJIELIX) 0

By using identical derivations, one can also show that eq. (13) can be
written in the transformed coordinates as follows:

eunOEL(X',1,X)/0%]] + A§*O(x)OH (X' t,x)/0t = —K{(x',t.x) , (1)

where
A9 = Ua)[(0x,/0x,)p™(x)(3x/x)]

and (22)
Kix',t,x) = (Va)(0x/0x)K, (x,t,X]) .

The results in (18) and (21) are simply remarkable. Variants of these
equations have appeared often in the literature, such as the book on the
geometry of electromagnetism by Post (1962) and the book on electromagnetic
theory by Stratton (1941). These equations show that we can use the same set
of Maxwell’s equations for the numerical simulation of electromagnetism data,
for example, irrespective of the coordinate system. We simply have to redefine
the permittivity and permeability in accordance with (19) and (22). To add more
concreteness to this observation, let us consider Maxwell’s equations for a
homogeneous isotropic medium defined by ¢, and g, in the Cartesian coordinate
system (old system).
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We can use the same Maxwell’s equations in a cylindrical coordinate
system (new system) as long as we replace the homogeneous isotropic medium
with a heterogeneous anisotropic medium defined by the following diagonal
tensors:

r 00 r 0O
& 9(r) =€ |0 1/r 0|and @) = |0 1/r 0. (23)
0O Or 0 O0r

X{, X; and x} are labeled r, 6 and z, respectively. We arrive at this description
of the heterogeneous anisotropic medium by substituting the elements of the
Jacobian matrix in (9) into (19) and (22).

COORDINATE TRANSFORMATION IN ELASTICITY

Let 7 and v be the stress field and the particle velocity, respectively.
These quantities can be defined as follows:

Tn Tz Ti3 vy
T, | Ty Tn Ty and v, e|v, | . 24)
Ti3 Tz T3 \£)

Using these quantities, the equations of elastic wave propagation can be written
as [e.g., Aki and Richards (1980), de Hoop (1995), Gangi (2000), and Ikelle
and Amundsen (2005)]

97(X,1,X.)/0t = ¢ (X)Vy(X,t,%.)/0%; — L(X,t.x) (25)
Pi(X)AV (X,t,X.)/0t — d7(X,t,%)/0%; = Fy(x,t,x) , (26)

where F is the volume-source density of external forces and I is the
volume-source density of the external stress-source rate; "external" forces and
sources here indicate the actions of external sources on the solid under
consideration. ¢ is the elastic stiffness tensor of the fourth rank, and p; is the
mass-density tensor. The stiffness tensor ¢ is symmetric at each point x; that is,
it satisfies Compq = Crnpg = Cmngp = Camgp 1N addition t0 Cpppg = Cpgmn- WE also
assume that the tensorial specific volume and the stress source are symmetric;
that is, p; = p; and I; = I;; at each point x. Notice that we have considered in
eq. (26) that the mass density can be anisotropic. Studies of composite materials
have confirmed that the mass density can indeed be anisotropic.
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Eq. (25) describes Hooke’s law. It is known as the generalized Hooke’s
law because of the presence of source term I;;. Eq. (26) is the Newton’s equation
of motion. Our objective in this section is to discuss the invariance of these two
equations under coordinate transformation.

Generalized Hooke’s law
Arbitrary coordinate system

Let us now discuss the invariance of eqs. (25) and (26) under coordinate
transformation. We will start by rewriting (25) in the new coordinate system by
using the definitions in (7) and (20) for vectors and second-rank tensors,
respectively; i.e.,

a(0%;/0%,)(9X;/0X) 0Ty (X', t,X,)/ Ot

= Cy(X)(0x3/9%,)(3/9x)[(0xX/Ix V(X' t,x)] — Ly(x,6,%) . @7)
After taking the derivative of the term in the square brackets, we arrive at

a(0%3/0%,)(0%;/ 0% ) ATy (X', 1,X)/0t

= Cy(X)(9%4/0%)(0X;/ 0%, )AV{(X’ ,t,X,)/0X]

+ C(X)(0%4/0%) (X /10X 10X IV (X' t,X.) — L(x.tx) . (28)
We now multiply (28) by
(1/0)(9x;/0%;)(3%/0%;)

to obtain

OT,(X",,X.)/0t = ¢l o(X")IVI(X',1,X.)/0X]

+ dpe(XVe(x',t,x) — Ly(x',t,x) , (29)

where
Cabea(X") = (1/0)(3%;/0%;)(04/0%;)Cyj (X)(3X /DX )(OX/OX,) (30)
dipe(x") = (1/0)(3%,/0%;)(0x4/0%;)Cij (X) (8% /X, IX) 31

I;b(xl,t9xs) = (1/a)(ax:i/axi)(axé/axj)lij(x,t’xs) . (32)



NUMERICAL MODELING OF WAVE PROPAGATION 161

By comparing (25) and (29), we see that the form of the stress-strain
relationship varies with the coordinate system because eq. (29) contains an
additional term on its lefthand side which is not present in (25). Elastic
coefficients associated with this term are captured in a third-order tensor whose

!

components are d;,(x"). When the mapping from x to x’ is such that
3’x./9x,0x, = 0 , (33)

for any indices e, k, and /, then d,.(x") = 0, and therefore the additional term

in (29) is zero. In other words, the form of the stress-strain equation is invariant

under coordinate transformations only for the transformations in which eq. (33)
holds.

We can note that the fourth-order stiffness tensor, c,,4, still satisfies the
same symmetries as Cyy; i.€.,

! — ! — i — !
Cabecd = Cabde = Cbacd = Ccdab - (34)

This means that the maximum number of independent stiffness constants in ¢, 4
is 21. The third-order stiffness tensor, d;,., satisfies the following symmetries:

d;be = dll)ae . (35)
Symmetries in (35) mean that 18 is the maximum number of independent
stiffness constants needed to describe this tensor in an anisotropic elastic

medium.

We can also write (29) as follows:

07,/0t = Cla(X)(OW/0xy) — L(x',t,xy) , (36)
where

W /0%y = OVe/0Xg + SegpedoarVy 37

Scapg = U(0X/OX{)(0%4/0X])s;5/(0X,/3X,)(0X/0X]) (38)

and where s, represents the elements of the compliance tensor in the old
coordinate system. Note that s.4,, represents the elements of the compliance
tensor in the new coordinate system. We can verify that

cellbcdsc’dpq = 1/2(621p6bq + Baqabp) . (39)
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We can see that eq. (29) can be written in the classic form of the
generalized Hooke’s law in eq. (25) by constructing the special form of the
particle-velocity gradient in (37). However, the form of the generalized Hooke’s
law in the new coordinate system in (36) is different from that of the old
coordinate system because a numerical code designed for computing (25) must
be modified in order to use it for the computation of (36). Notice that the
system in (36) is similar to the one derived by Milton et al. (2006).

An example: Cylindrical coordinate system

Let us now look at the expressions of ¢’ and d’ for the cylindrical
coordinates. The medium in the old coordinates is isotropic; that is

Cit = N0 + p(0udy + 6:u05) (40)
where §; is the Kronecker delta function notation
{O fori # j

1 fori=j

6i' =

i)

i,j = 1.2.3 (41)

and where N\ and p are the Lamé parameters. By using the elements of the
Jacobian matrix in (9), we can verify that ¢’ now describes an orthorhombic
medium; i.e.,

Cabed = (I/D)[N8p0cq + p(8,00q T 8,40hc) + ANH2p)(r*—1)5,,6,,0.,04;

+ A+2w)(r72=1)8,10,,0204 + NI?—1)(8,10510c3043 + 0230430:1041)

+ Mr2=1)(6,10010:00 + 0:20120¢10u1 + 02081203043 + 0138430:2042)

+ p(r2=1)(8,18,00104, + 0,105200204;1 + 00001002841 + 8:005,0:1042)

+ p(? = 1)(6,16,30010a3 + 02100303041 + 82305103001 + 043041001043)

+ p(? = 1)(0,20,302043 + 8:20030:300 + 8230020300 + 8,30120:0043)] - (42)
This tensorial stiffness, cj,.4, can alternatively be denoted by Cjs, where

subscripts A and B run from 1 to 6, with ab - A, according to 11; 22; 33; 23;
31; 12 « 1; 2; 3; 4; 5; 6. In the matrix form, it can be written
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[ 2wr N Ar 0O 0 O
M2 At 0 0 0
| ™ M H2wr 0 0 0 @
0 0 0 w0 0
0 0 O wur O
0 0 0 0 0 pr'l

We can see that this is a tetragonal stiffness matrix (see Ikelle and Amundsen,
2005). The third-order tensor. dj,., can also be denoted by Dj., where the
subscript A runs from 1 to 6. In the matrix form, it can be written

A 0 0]
A+2wr2 0 0
A 0 0
D' = (44)
0 0 0
0 0 0
0 —2ur~2 0 |

By substituting (43) and (44) into (29), we can write the generalized Hooke’s
law in cylindrical coordinates, as follows:

(1/)@7,/3t) = (N + 2p)(@vI/ar) + NA/r)[(1/r)(3v}/30) + v!]
+ N@v/dz) — (DL, 45)
r(3745/0t) = N@V./r) + (N + 2w)(1/r)[(1/r)(@v}/86) + v']
+ N@v./oz) — 11}, , (46)

(1/r)(a7,,/at) = N@v,/or) + N1/r)[(1/r)(dv4/36) + v!]

+ (N + 2u)(@v!/0z) — (DL, , @7
71,/8t = u(1/D[(@v4/ar) + (1r)@v'/36) — Qirwvi — Ty | 48)
d75,/0t = u(1/n)[(dv/oz) + (Bv!/30)] — L, | 49)

(1/n)dr!,/at = pl(@vi/ar) + (v'/dz)] — (1L, | (50)
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with N = N\({,0,2), v, = v(1,0,Z,t,x), 7., = 7..(1,0,2,t,%x)), I, = I/ (1,0,z,t,X),
etc. If we introduce the quantities ¥, T, and I’ as the particle-velocity vector,
the stress tensor, and the volume-source density of the external stress-source
rate, respectively, in the cylindrical coordinates and define these quantities as

2 Amr, 1y (D7,
vc < (l/r)Vé ’ Tab Aad Tl"0 rT(’)O T(’iz ’
v, M7, 7, AM7,

L

and

[RECY.5) (S (R 6V )
L, © W Tl I, , (51)
L amy, L,  A/n,

we can verify that our formulation in (45)-(50) is identical to those in the
literature [e.g., Liu (1999), Kausel (2006), and Pissarenko et al. (2009)]. Note
that we have to redefine the stresses, particle velocities, and source terms here
before comparing eqs. (45)-(50) to those encountered in this literature because
their formulations are based on orthonormalized cylindrical coordinates (also
known as physical coordinates), which are a particular case of cylindrical
coordinates (see also Table 1). By setting r = 1, we obtain the Jacobian
matrices A and A’ in (10) for orthonormalized cylindrical coordinates. The key
motivations for using orthonormalized cylindrical coordinates rather the actual
cylindrical coordinates are to avoid the indefiniteness of particle velocities,
stresses, strains, stiffnesses, and density. For example, we can see in (43) that
Ci1yp in the cylindrical coordinates does not correspond directly to stiffness,
unlike c,;;; in the Cartesian coordinates.

Notice that the equations in (45)-(50) are much more complicated than
those in the Cartesian coordinates in (25). Yet we can rearrange egs. (45)-(50)
in a form similar to those in (25) by introducing the following new tensor for
the particle-velocity gradient (strain-particle-velocity relationships):

av! _1(%+_1;M_g ) 1(av; avi) |
or 2c\ar "ra0 rY) Z\ar T 62)
aw, | Lyavy lav. 2.\ 1(ladvy , 1 (avy | 3V,
o |wla e o il w2
1(av, v 1 (3v; av;) av,
L 2(6r * 61) z?('a?*‘a? iz |

Using this tensor, we can rewrite eqs. (45)-(50) as follows:

OT/0t = Copeg@W/XY — Ly (53)
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where c,,,q represents the elements of the stiffness tensor in the Cartesian
coordinates of the isotropic media, as defined in eq. (40). In other words,
through the use of the unconventional definition of the particle-velocity gradient
in (52), we can rearrange the generalized Hooke’s law in cylindrical coordinates
for isotropic media in a form similar to the one in equation (25), with the same
stiffnesses as those in the Cartesian coordinates. Let us emphasize that, despite
the fact that the form in (53) is identical to the one in (25), we consider that the
form of the generalized Hooke’s law in the cylindrical coordinates is different
from that in the Cartesian coordinates because a numerical code designed for
computing (25) must be modified for the computation of (53). For instance, the
numerical code of dv./0x, can also be used to compute dv./0x; but not to
compute dw//0xs. We have found it necessary here to introduce the notations
in egs. (51)-(52) because most formulations of Hooke’s law in the cylindrical
coordinates for numerical computation of synthetic data in literature are in this
form [e.g., Liu (1999), Kausel (2006), and Pissarenko et al. (2009)].

Equation of motion
Arbitrary coordinate system

Let us now discuss the invariance of eq. (26) under coordinate
transformation. Again we will start by rewriting (25) in the new coordinate
system by using the definitions in (7) and (20) for vectors and second-rank
tensors, respectively; i.e.,

Pi(X)(0x(/3x,)aV.(X',t,X,)/0t

— (0%y/0x;)(3/9%;)[x(0x;/ 90X )(0X;/0x)ATpo (X 1, X)] = Fi(x,t,x) .  (54)
After taking the derivative of the term in the square brackets, we arrive at

Pi(X)(0x/0x)0vVi(X',t,Xx,)/0t

— a(0%/0%,)dT (X', t,X)/0%; — a(97X;/ 0% 0X ) T (X8, X,)

— (0x;/0xp) T (X', 1,%)(0/0%)[c(3%;/0%,)] = Fi(x,t,x,) . (55)
The fourth term on the lefthand side is zero because

(9/0x))[c(0x/0x)] = O . (56)
By multiplying the remaining term of (55) by

(1/a)(3x1/3%,) (57)
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we arrive at

Pac(XNOVI(X' t,x)/0t — 07} (X' ,t,X,)/0X]

— Aypg(X) 75X, 1X) = Fi(x',t,x) (58)
where

Pa(X’) = (1/0)(0x;/0%)pi(X)(X(/0X,) (59)

F,(x',t,x;) = (1/o)(0x,/0%)Fi(x,t,x,) , (60)

Agpg(X") = (0%,/0%;)(3%x;/0%,/0%) . (61)

Just like the stress-strain relationships, the Newton second relation is
invariant only under coordinate transformations for the particular case in which
the mapping from x to x' satisfies the condition in (33); 4;,, is zero for this
mapping. Notice also that eq. (58) can be rewritten as follows:

Pac(X)OV (X' t,X.)/0t — 0T, (x',t,X,)/0%;, = F.(x',t,x,) , (62)
where
dT o (x',t,X)/0x; = 07,,(X',t,X.)/0x%, + Appg(X) T (X', 1,X) . (63)

Again, these equations are quite similar to those of Milton et al. (2006).

An example: Cylindrical coordinate system

For mapping from Cartesian coordinates to cylindrical coordinates, the

nonzero elements of A4;,, are

Alp = -1, Ayp = Ap = 1 . (64)

Notice that the tensor A’ is symmetric with respect to its last indices, which are
p and q in eq. (61). Notice also that the density in cylindrical coordinates has
the same form as the permittivity and the permeability for the same
transformation in electromagnetics. By substituting (64) in (58) and assuming
that the density is isotropic [i.e., pii(X) = po(x)d;], we can construct the
equations of motion in cylindrical coordinates, as follows:

roo(dVLIAt) — (B7.,/3r) — (37/,/00) — (37.,/9Z) + 7)) = F | (65)
(1r)pg(@vyldt) — (3740r) — (B7480) — (374,/9Z) — /D)7, = FY . (66)

roo(dvLIat) — (B7.,/3r) — (37.,/00) — (37.,/dz) = F. . 67)
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By using the stress tensor T introduced in (51), we can rewrite these equations
in the following form:

po(dv,/0t)— (T, /0r) — (1/1)(8T4/80) — (dT,,/0z) — (L/r)(T,,—T4) = (1/1)F; , (68)
po(1/1)(0v/0t) — (0T, /01) — (1/1)(0T e/ 30) — (0Ty,/02) — (2/1) Ty, = Fy (69)
po(Av,/0t)— (0T, /dr)— (1/r)(0T,/30)— (3T, /dz)— (1/1)T,, = (1/1)F, . (70)
These are typical forms of equations of motion in cylindrical coordinates

encountered in the literature [e.g., Liu (1999), Kausel (2006), and Pissarenko
et al. (2009)].

Table 1. Definitions of stresses (r,,) and particle velocities (v,) in nonorthonormal cylindrical
coordinates [i.e., eq. (9)] and in orthonormal cylindrical coordinates [i.e., eq. (9), with r = 1]. The
nonorthonormal cylindrical coordinates are also known as natural coordinates, and the orthonormal
cylindrical coordinates are known as physical coordinates.

Orthonormal system
(Physical coordinates)

Nonorthonormal systems
(Natural coordinates)

v; = v,cos0 + v,sinf

v, = v,cosf + v,sinf

’
T

Vg = —V,sinf + v,cosf vy = (1/r)[—v,sinf + v,cosf]

vV, = V3 vV, = V3

Tre = T,,C0820 + 7,8in20 — 7,,8in(26) 7y, = I[7,,c08%0 + 7,,8in20 — 7,,8in(26)]

Tog = T1,81n20 + 7,,c0820 — 7,,8in(20) 799 = (1/1)[7,,81020 + 7,,c08%20 — 7,8in(26)]

733 T = Iy
Ty, = TpC080 — 7,38inf

Ti, = TpC080 — 738inf

Trg = Y2(7yn—7,)85in(20) + 7,,c08(26)

Tg, = Tp€080 — 7(38inf
71, = I[738in0 + 75c080]
Ty = Ya(Ty—7,)8In(20) + 7,,c08(20)

COORDINATE INDEPENDENT NUMERICAL MODELING

One of the main results discussed in the previous section is that (29) and
(58) describe the most general form of linear elastodynamic equations. Egs. (29)
and (58) are independent of the coordinate system (see the Appendix). Hence
a numerical modeling code, such as finite-difference modeling based on egs.
(29) and (58), can be used to model synthetic data in any coordinate system.
The key difference between a numerical modeling code based on egs. (29) and
(58) and the present coordinate-dependent codes is that the inputs to the
modeling code include the Jacobian matrix in addition to the stiffnesses and
specific volumes (or densities). The flowchart in Fig. 1 illustrates how one can
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model egs. (29) and (58) by using finite-difference techniques. We assume that
the Cartesian coordinate system is the old coordinate system. One can
alternatively use eqgs. (36) and (62), which are even closer to the current FDM
implementations.

Let us look at the specific case of the finite-difference modeling of eqs.
(29) and (58). Because the additional terms in egs. (29) and (58), when
compared to egs. (25) and (26), namely d,,.v. and A;,.7,,, do not involve
differentiations of the particle velocity or stresses, the standard discretization in

Input Stiffnesses, densities,
source, and Jacobians

Y

< / ! ! !
Compute: ¢, 45 dopes Phcs Aapq

Yy

timestep = 1y

vl OT)

ot _ oz,

1. Update velocities : pl,, + AvpaTrg
2. Apply boundary conditions to : v; = A;;v;

3. Compute :v; = Aj;v;

50
B,
i =
5 Y
=
= or! ov!
- 4. Update stresses : (“):b = Cf;bcda—f +d, vl
Tq

5. Apply boundary conditions to : 7;; = aA;, A%, 7.,

1
6. Compute : 7., = EAaiAbjTij

Y

timestep = timestep + 1

Fig. 1. A flowchart of the main steps of a numerical modeling code that is independent of coordinate
transformation.
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both time and space can be applied to egs. (29) and (58) without any
modifications. [See Ikelle and Amundsen (2005), Appendix C, and Ikelle
(2010), Appendix C, for examples of the discretization of elastodynamic
equations.] Notice that the implicit first step of this algorithm is to select a
reference coordinate system. The Jacobian terms involved in these computations
of (29) and (58) will be carried out with respect to the reference coordinate
system. We found it useful to select a reference coordinate system for which
analytic or/and numerical solutions to absorbing boundaries are known. As we
will see later, this choice can facilitate the application of absorbing condition
methods to any other arbitrary coordinate system. In our numerical examples,
we will use the Cartesian coordinate system as the reference frame because we
can take advantage of existing solutions to absorbing boundaries.

Fulfilling the stability and dispersion conditions is a major requirement for
accurate finite-difference modeling. The stability condition is designed to
minimize numerical errors that the timestepping (i.e., the timestep-by-timestep
recursive computation) may create. The dispersion conditions are designed to
minimize errors associated with the approximations of derivatives with respect
to spatial coordinates. These conditions do not require any finite-difference
coding; they simply requires a careful selecting of time and space sampling
intervals as input to the finite-difference modeling. Moreover, the stability and
dispersion conditions are well documented in the literature for various
coordinate systems. They can apply to the modeling of egs. (29) and (58)
without any modifications.

Another major requirement of finite-difference modeling is the
introduction of absorbing boundaries in the finite-difference code to
accommodate for the fact that the subsurface is a half-space with infinite lateral
boundaries. The absorbing boundary conditions can also be used for generating
data without free-surface multiples by replacing the free surface with an
absorbing boundary. Again, the classical solutions, such as the damping
boundary conditions proposed by Cerjian (1985) [see Ikelle and Amundsen
(2005), Appendix C, for the implementation], can be used to implement the
absorbing boundaries, especially for Cartesian system as the reference system.
The perfectly matched layer (PML) absorbing conditions described in Berenger
(1994), Chew and Weedon (1994), and Chew and Liu (1996) can be used to
implement the absorbing boundaries for arbitrary reference coordinate systems.
The basic idea is to convert the stresses and particle velocities to reference
coordinates using (7) and (19) and to apply the solution of the absorbing
boundary conditions before converting the stresses and particle velocities to the
actual domain. This method is valid for any anisotropic inhomogeneity medium
as long as the absorbing-boundary solution for such a medium is available in the
reference coordinate system. Because the damping boundary conditions proposed
by Cerjian are essentially designed for Cartesian coordinate systems, one has to
choose the Cartesian in this case. As shown in Liu (1999), the PML absorbing
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conditions can be used for Cartesian, cylindrical, and spherical coordinates.
They can actually be used in many other coordinate systems. Therefore the use
of PML absorbing conditions provides us several choices of the reference
coordinate system.

In order to demonstrate the feasibility of the algorithm in Fig. 1, we
consider a solid medium that contains a cylindrical water cavity. The source is
a radial direction force with a central frequency at 100 Hz at a distance of 500
m from the origin of the grid (Fig. 2). The velocity of the P-wave in the solid
is 2500 m/s, the S-wave velocity is 1300 m/s, the density is 2100 g/cm?, the
P-wave velocity in the liquid is 1500 m/s, and the density is 1000 g/cm’. We
propagated waves through this model using the algorithm in Fig. 1. We run this
algorithm with and without absorbing boundary conditions. Running this
algorithm without absorbing boundary conditions corresponds to ignoring steps
2,3, 5, and 6, as defined in Fig. 1. Figs. 3a and 3b show the radial and angular
particle velocity snapshots, respectively, at the same timestep for running the
algorithm in Fig. 1 without absorbing boundary conditions. Figs. 4a and 4b
show the same snapshots for running the algorithm in Fig. 1 with absorbing
boundary conditions. We can see that the absorbing boundary condition
described above and in Fig. 1 is quite effective. Notice also that the P- and
S-waves are visible in these snapshots. The two wavefronts that pass through the
water region are P-P, followed by S-P converted waves.
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-0.5 0 0.5
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Fig. 2. Configuration of the problem. The numerical grid is composed of three parts: a water cavity,
a solid medium, and an absorbing zone.
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Fig. 3. Snapshots of wave propagation at time 260 ms: (a) Radial component of the particle velocity
and (b) Angular component of the particle velocity. We use the algorithm in Fig. 1 without
absorbing boundary conditions (i.e., without steps 2, 3, 5, and 6).
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DISCUSSION
Computational cost of the coordinate independent numerical modeling

The differences in the computational cost difference between our
coordinate-invariant modeling (Fig. 1) and the classical modeling in the
Cartesian system (i.e., 4,,, and d,;. are zero) are essentially related to (i) the
computation of Cgueqs dabes Pac» and Az and (ii) the transformation of particle
velocities and stresses between Cartesian and curvilinear systems for the purpose
of applying boundary condition in the Cartesian system. Because computations
Of Capeas Aabes Paco and A,yg, are carried out outside the timestepping process, the
computation time of these parameters is negligible compared to the overall
computation time of the coordinate-invariant modeling, especially when a large

number of timesteps, say, 1000 or more, are computed.

Let us turn to the issue of the transformation of the particle velocities and
the stresses between Cartesian and curvilinear systems for the purpose of
applying boundary conditions in the Cartesian system. This issue has an effect
on the computation time of the coordinate-invariant modeling because these
back-and-forth transformations are included in the timestepping process. We are
currently developing alternative boundary conditions which do require going
back to the Cartesian coordinates for their application. Hence we expect the
computation time that is due to the back-and-forth transformations of the particle

velocities and the stresses to disappear in our next iteration of the algorithm in
Fig. 1.

In Fig. 1, we have implicitly made the assumption that our computations
are taking place in a computation system in which the storage of clycq, dlpes Ol
and A;,, is not an issue. For computers with small storage capacities, the
computation of these parameters may be included in the timestepping process to
take advantage of the classical trick for reducing the storage requirements of Cijit
and p;, in standard finite-difference modeling. In most numerical modeling, the
geological model is described as a set of homogeneous bodies. Each body is
assigned an integer so that we can describe the geometry of the geology model
by an integer array, say, N(x). So if we have n bodies, N(x) can only have
values between 1 and n. We then define the stiffnesses and densities as follows:

Cij(X) = €[N(X)] and p;(x) = p[N®)] , (71)

with n being the dimension of ¢, and ;.. The inputs to the numerical modeling
are €y, 0, and N(x) instead of c;;,(x) and p;(x). This construct of the geological
models has the advantage of significantly reducing the storage requirements of
Cijw and p;. We can still take of this construct in our coordinate independent
numerical modeling by recomputing .4, djye, P4, and A4;,, at each timestep to
reduce the memory requirements at the expense of increasing computation time.
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Fig. 4. Snapshots of wave propagation at time 260 ms: (a) Radial component of the particle velocity
and (b) Angular component of the particle velocity. We use the algorithm in Fig. 1 with absorbing
boundary conditions.
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Coordinate transformation with vector notations

The Maxwell’s equations in (12) and 13) can alternatively be written in
vector form, as follows:

-V X H(x,t,x) + ¢X)IE(X,t,x,)/0t = —J(x,t,X,) , (72)
V X Ex,t,x;) + po(x)oH(x,t,x)/0t = —K(x,t,x,) . (73)

Similarly, the equations of elastic wave propagation in (25) and (26) can
alternatively be written in vector form, as follows:

aT(x,t,x)/dt — ¢(x) : Vv(x,t,x) = —I(x,t,x) , (74)
p(x)av(x,t,x)/ot — V-7(x,t,x) = F(x,t,x) . (75)

We can see that the transformation of these equations from Cartesian
coordinates to curvilinear coordinates is essentially based on a limited number
of operations, namely the transformation operation of vectors, tensors, and
derivatives of vectors, and derivatives of tensors. So one can alternatively arrive
at the results presented in this paper by using a table of these operations like the
one in Table 2.

Table 2. Scalar, vector, and tensor representations from the old coordinate system to the new
coordinate system using the Jacobian matrix and its determinant.

Old coordinates New coordinates

Scalar field: ¥(x,t,x,) YI(XEX) = Y(x,tx) o

Vector field: E(x,t,x,) E'(x',t,x) = [(AT)'E(x,t,x)]/«
Tensor field: 7(x,t) 7'(x',t,x) = [A7(x,t,x)AT]/«
CONCLUSIONS

We have recast the elastodynamic equations in a new form for which the
mathematical structures are invariant with the coordinate system. The numerical
implementation of this new form of elastodynamic equations can be used to
derive a numerical code for simulating data which are independent of the
coordinate system. We have also described an absorbing boundary-condition
solution for coordinate invariant numerical modeling. This solution is valid for
arbitrary anisotropic inhomogeneity media and is suitable for the numerical
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simulation of elastic wave propagation by staggered-grid and pseudospectral
finite-difference methods.
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APPENDIX
COORDINATE TRANSFORMATION

We want to show that egs. (29) and (58) are invariant under a coordinate
transformation in which x’ now represents the "old" system and x” now
represents the "new" system. We will use the double prime symbols to indicate
fields and physical properties in the new coordinate system. By using identical
derivations, as described in the previous section, one can also show that egs.
(29) and (58) can be written in the transformed coordinates, as follows:

OT3p(X", X0t = Cilpea(X")IVI(X",1,X.)/0X
+ X IVe " tx) — ILE",tx) , (A-1)

Pa(X"OVI(X",t,x)/0t — o7, (X",t,X)/0X}

— A (X")7(x",t,x) = Fi(x",t,x) , (A-2)
where
Cabed(X") = (L/I)(0%3/0%{)(0%5/0X])c (X )(0x /%) (3x7/0%]) ,  (A-3)
dfpe(x") = (1/y)(9x7;/3x{)(0xy/0x])
X [ )X /0x¢0x%)) + dij(x)(9x:/0x,)] , (A-4)
pac(X") = (U/y)(0x3;/9x))p,(x")(0x1/0X]) (A-5)

A7 (x") = (9x3/9x{)[(3%x;/9x;0X )

+ A (X)(0x,/0%)(9x,/0%x7)] (A-6)
Fo(x",t,x;) = (1/y)(@x}/0x))Fi(x’,t,x) , (A-7)
Lo(x",1,x) = (1/9)(0x5/0x{)(0x/0x))I};(x',t,x.) (A-8)

and where v is the determinant of the Jacobian matrix of the coordinate
transformation from x’ to x”. We can see that the form of egs. (29) and (58) is
preserved by this coordinate transformation.





