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ABSTRACT

Chung, W., Shin, J., Bae, H.S., Yang, D. and Shin, C.S., 2012. Frequency domain elastic
waveform inversion using the Gauss-Newton method. Journal of Seismic Exploration, 21: 29-48.

In spite of several advantages of using the Gauss-Newton method for waveform inversion,
calculating a Hessian-matrix is problematic in the current computing environment. Consequently,
many researchers have suggested a Conjugate Gradient Least Square (CGLS) algorithm to
circumvent the Hessian matrix problem in the Gauss-Newton method. There has been no attempt,
however, at using the CGLS method to perform elastic media waveform inversion. It is necessary
to consider the characteristics of elastic media because the acoustic wave equation does not
accurately simulate waveforms propagated through elastic media. Our objective is to develop a
frequency domain waveform inversion algorithm using the CGLS method for elastic media.
Numerical experiments with the Marmousi-2 model and the SEG/EAGE salt model verify
enhancement of the inversion results. We confirm that a greatly improved waveform inversion can
be carried out over a complicated layer structure with the Marmousi-2 model. We also verify that
structures containing a high velocity salt can be reproduced correctly through an inversion
experiment using the SEG/EAGE salt model. However, the improved inversion result of the
SEG/EAGE salt model is limited to use with the long wavelength initial velocity, necessitating a
method for obtaining the long wavelength velocity model.

KEYWORDS: Gauss-Newton method, conjugate gradient, CGLS, elastic, frequency domain,
waveform inversion.
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INTRODUCTION

Waveform inversion is generally derived from the least squares method
by iteratively calculating a velocity model to minimize the difference between
the observed and the modeled wavefield vector. Since Lailly (1983) and
Tarantola (1984) pioneered this field, many researchers have studied waveform
inversions with the Gradient method. In the Gradient method, the convergence
direction is defined without explicitly calculating a partial differential term that
is needed for the waveform inversion. Tarantola (1984) suggested applying the
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THEORY
Gauss-Newton method

In the frequency domain waveform inversion, the objective function can
be defined as

E = %lu - d)'(u - d)7 , (1

where the superscript T denotes the transpose of a matrix, the superscript *
denotes the complex conjugate operator, and u and d represent the modeled and
observed wavefield vectors, respectively. The aim of the waveform inversion
is to obtain the model parameter vector p that minimizes the objective function.
In this research, we develop a waveform inversion algorithm based on the
Gauss-Newton method and present more accurate solutions than those achieved
with the Gradient method.

To use the Gauss-Newton method, the modeled wavefield vector u can be
expanded to its first order Taylor series term:

E = %[(u, + JAp — d)T(u, + JAp — d) , )

In eq. (2), uy is the modeled wavefield vector using an initial velocity
model, J is the Jacobian matrix representing the sensitivity of modeled wavefield
vector matrix with respect to the modeled parameters, and Ap is a perturbation
vector of the modeled parameters such as P-wave velocity, S-wave velocity, and
density.

We differentiate eq. (2) with respect to and set it equal to zero to solve
the value of that minimizes the objective function. This can be written as

JJAp = —Tle, | 3)

where J'J" is the Hessian matrix and ¢, = d — u,. We can obtain Ap by
solving the least squares problem in eq. (3) and update each model parameter
iteratively. This is the Gauss-Newton method.

The waveform inversion using the Gauss-Newton method suggests a more
accurate solution than the Gradient method because it uses a more precise
Hessian matrix and less iteration. However, to use the Gauss-Newton method,
the approximate-Hessian should be calculated, which is computationally
prohibitive in the current computing environment. Even in an improved
computing environment, it would take an impractically long time to calculate the
approximate-Hessian.
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Implementation of the CGLS method

To use the CGLS method, eq. (3) can be rewritten as

T * Avp
Ou  Ou Ou  Ou Ou Ou Ou  Ou Ou Ou du  Ou ;1
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where m, 1, v;, Vg, and p are the total number of elements, the total number of
receivers, the P-wave velocity, the S-wave velocity, and the density,
respectively.

The frequency domain wave equation in elastic media can be expressed
as the linear equation (Marfurt, 1984):

U

S, | 2=t - )

In eq. (5), S, is the complex impedance matrix consisting of the mass matrix
and the stiffness matrix, which are constructed from the initial velocity model
in the frequency domain. We differentiate eq. (5) with respect to a certain
wavefield parameter at an arbitrary point to arrive at



CGLS FOR ELASTIC WAVEFORM INVERSION 33

o
op,
U
Ou, 5 y
S, op, |=- —3; S, :2 . (6)
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The right hand side of eq. (6) is assumed to be a virtual-source vector.
Furthermore, we can calculate the virtual-source vector in terms of each point
and obtain the Jacobian matrix, which is expressed as

Om o ow o w o ow Ow o o)
avp' avpm av-"l 6v3m p, 0p,,

R N

7 avp " av“'l avxm ap 1 6/)”,
Ou .. Ouw Ou_ 0w Bu . O
L an I ava avJ] avx,,, ap 1 a/)m

-1

= So V(Vpl) v(vp,,,) V(Vsl) o v(v.y,,,) v(pl) V(pm) . (7)

Because only surface nodes are needed for the waveform inversion, eq. (7) can
be expressed again with the matrix as follows:

J = AS;'V ®)

where A is an r Xn matrix;

1 - 00 - 0
A=':'.::'.:’ ®)
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and V is a matrix comprised of virtual-source vectors:

V=[v,) = v0,) YO o YO, V() e v(p,) ] (10)
Substituting eq. (8) into eq. (3) gives us the following equation:
(AS5'V)T(AS;'V)'Ap = (AS;'V)Te" . (11)

Because S, is a symmetric matrix for elastic media, we can use the property of
(SgHT = S;', and eq. (11) is rewritten as follow:

VIS;'ATA(S;'V)'Ap = VTS;'ATe" | 12)
which can be more simply expressed as

HAp =g , (13)
when H = VIS;'ATA(S;'V)" and g = V'S;'ATe".

The linear matrix eq. (13) minimizes the objective function using the

Gauss-Newton method, and we can solve for from the linear matrix equation by
adopting the CGLS method (Golub and Loan, 1996).

Determination of the damping factor

Because the Hessian matrix can be ill-posed, a damping factor should be
added to the diagonal elements of the Hessian matrix. To find the proper
damping factor, we should know the diagonal elements even though we do not
compose the Hessian matrix directly. Therefore, we calculate the damping factor
with the following method.

The Hessian value at a particular point can be expressed as

H, = b'Hb, . (14)
when b; is a unit vector with only a unitary i-th element.

Diagonal elements of the Hessian matrix can be calculated by eq. (14),
and the magnitude of the damping factor, \, can be determined. Then, the
damping factor A is added to each diagonal element of the Hessian matrix.

(H + \DAp = HAp + MAp . (15)

The Hessian matrix can now be calculated stably.
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NUMERICAL EXAMPLES
Marmousi-2 velocity model

We performed waveform inversions using the Marmousi-2 model (Martin
et al., 2006) to verify our inversion algorithm. The range of the Marmousi-2
model is extended to 17 km from the 9.2 km range of the previous Marmousi
model (Versteeg, 1994). The Marmousi-2 reflects more complicated subsurface
structures than the Marmousi model, and a 500 m deep layer of water has been
added.

Distance (km)
4

Depth (km})

Velocity (km/s)

(A)

I 2.5

2.0

Depth (km)
Velocity (km/s)

1.5

.1.0

(B)

Fig. 1. A velocity model for the modified Marmousi-2 model. (A) is a P-wave velocity model and
(B) is a S-wave velocity model.
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We designed the P-wave velocity model (Fig. la) by reducing the
Marmousi-2 model to 2 9.2 X 3.04 km model and removing the water layer to
speed up the calculation for correctly simulated land conditions. Additionally,
we designed a S-wave velocity model (Fig. 1b) for conditions when the Poison
ratio is 0.22 because the original S-wave velocity is low enough to cause
numerical dispersion unless the grid size is extremely small during high
frequency modeling.
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Fig. 2. A linearly increasing initial velocity model. (A) is an initial P-wave velocity model and (B)
is an initial S-wave velocity model.
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With the modified 40 m interval Marmousi-2 model (Fig. 1), we
generated synthetic data from the finite elements method modeling technique and
applied the perfectly matched layer (PML) boundary condition in the frequency
domain. The source wavelet is the first order differential of the Gaussian
function having a maximum frequency of 10 Hz. Receivers were deployed at a
40 m interval over the entire surface, and horizontal and vertical displacements
caused by 220 vertical sources were estimated. The total recording time was 6

seconds, and the lowest frequency and the length of the frequency intervals were
both 0.1666 Hz.

Distance (km)
0 2 4 [ 8

l4.5
40

T .
= 3.0 E
a L I

5 &

(A)

Distance (km)

Depth (km)

WVelocity (km/'s)

Fig. 3. An inverted velocity model of the Marmousi-2 model using a linearly increasing initial

velocity model. (A) is an inverted P-wave velocity model and (B) is an inverted S-wave velocity
model.
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An inversion method using all the frequency bands at once was applied
with a linearly increasing initial velocity model (Fig. 2). Sixty frequencies were
used from 0.1666 to 10 Hz at equally spaced interval lengths of 0.1666 Hz. In
this setting, P-wave and S-wave velocity models were used as model
parameters, and we fixed the density model without updating.
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Fig. 4. Velocity profiles of the true model and the inverted model at 3.6 km. They changes with
increasing depth. (A) is a P-wave velocity profile and (B) is a S-wave velocity profile.
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Fig. 5. Velocity profiles of the true model and the inverted model at 7.2 km. They changes with
increasing depth. (A) is a P-wave velocity profile and (B) is a S-wave velocity profile.
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Despite the fact that linearly increasing velocity models were used as
initial models, the inverted velocity models (Fig. 3) successfully identified the
complicated shallow structure (location A), and the continuity of the layer is
excellent. Furthermore, oil and gas sand cap structure (location B) is obtained,
which is a significant result for oil exploration applications.

Velocity profiles of P-wave and S-wave were used for a more accurate
analysis, and Figs. 4 and 5 show velocity profiles at 3.6 km and 7.2 km,
respectively. All the results indicated the correct inversion from the surface to
2 km, especially the boundary in the high velocity layer at the depth of 1.3 km.
At depths deeper than 2.5 km, however, although the inverted model has a
similar tendency to the true velocity model, it cannot approximate the true
velocity precisely.

SEG/EAGE AA’-line salt model

The SEG/EAGE 3D salt model (Aminzadeh et al., 1997) represents
structures containing high velocity salt structure. The presence of a high velocity
salt creates serious obstacles in waveform inversion because strong reflections
of the elastic wave make it difficult to calculate sub-salt information. We chose
the AA’ cross section in the 3D SEG/EAGE velocity model and used it as a
P-wave velocity model (Fig. 6a). Additionally, we designed a S-wave velocity
model (Fig. 6b) for conditions when the Poison ratio is 0.22 because a true
S-wave velocity does not originally exist in this model.

With the modified 40 m interval SEG/EAGE AA’-line model, we
generated synthetic data from the finite elements method modeling technique and
applied the PML boundary condition in the frequency domain. The source
wavelet is the first order differential of the Gaussian function with a maximum
frequency of 10 Hz. Receivers were deployed at a 40 m interval across the
entire surface, and horizontal and vertical displacements caused by 220 vertical
sources were estimated. The total recording time was 6 seconds, and the lowest
frequency and the length of the frequency intervals were both 0.1666Hz.

Identical to the previous test for Marmousi-2 velocity model, an inversion
method using all the frequency bands at once was applied with a linearly
increasing initial velocity model (Fig. 7). Sixty frequencies were used from
0.1666 Hz to 10 Hz at equally spaced interval lengths of 0.1666 Hz. In this
setting, P-wave and S-wave velocity models were used as model parameters,
and we fixed the density model without updating.

The inverted P-wave (Fig. 8a) and S-wave (Fig. 8b) velocity models
clearly identified the shallow layer and the upper part of the salt layer (location
A). Furthermore, the thickness of the salt and velocity inside the salt are
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calculated accurately, which have been considered a significant problem for
waveform inversion in the frequency domain. However, the velocity of the
lower part of salt layer converges into excessively low velocity, and it is highly
distorted (location B). This problem seems more serious in the inverted S-wave
velocity model.
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Fig. 6. A velocity model for the SEG/EAGE 3D salt AA'-line. (A) is a P-wave velocity model and
(B) is a S-wave velocity model.
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Velocity profiles of P-wave and S-wave velocities are used for more
accurate analysis. Figs. 9 and 10 show velocity profiles at 8 km and at 12 km,
respectively. All the results show the correct high velocity layer where the salt
is located, and the tendency of sub-salt velocity is accurately indicated.
However, the low velocity layer below the high velocity layer cannot be
approximated exactly.
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Fig. 7. A linearly increasing initial velocity model. (A) is an initial P-wave velocity model and (B)
is an initial S-wave velocity model.
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We failed to identify the velocity of the deeper layer correctly with
linearly increasing initial velocity models that were used successfully in the
Marmousi-2 velocity model inversion. Thus, smoothed true models (Fig. 11)
representing the long wavelength characteristic of true models were used as
alternative initial models. These initial models were produced using the Seismic
Unix utility smooth2 (www.cwp.mines.edu/cwpcodes/). Under the same
frequency and parameter settings, waveform inversion was carried out using all
the frequency bands at once.
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Fig. 8. An inverted velocity model of the SEG/EAGE 3D salt model using a linearly increasing
initial velocity model. (A) is an inverted P-wave velocity model and (B) is an inverted S-wave
velocity model.
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Fig. 9. Velocity profiles of the true model and the inverted model at 8 km. They changes with
increasing depth. (A) is a P-wave velocity profile and (B) is a S-wave velocity profile.
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Fig. 10. Velocity profiles of the true model and the inverted model at 12 km. They change with
increasing depth. (A) is a P-wave velocity profile and (B) is a S-wave velocity profile.

Unlike the inversion results achieved from using a linearly increasing
velocity model as an initial model, the inverted velocity model (Fig. 12)
correctly identified deep as well as shallow velocities. The sub-salt lens structure

(location A), which is the most useful information in oil exploration, is
confirmed exactly.
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Fig. 11. A smoothed initial velocity model assuming the long wavelength velocity model. (A) is a
P-wave velocity model and (B) is a S-wave velocity model.

For a more accurate analysis, velocity profiles are utilized as at an initjal
stage. Figs. 13 and 14 are velocity profiles at 8 km and at 12 km, respectively.
Inversion results inside the salt and below the salt are approximated close to the
true velocity models.

In order to demonstrate the superiority of the newly developed Gauss-
Newton method of adopting the CGLS algorithm in the SEG/EAGE 3D salt
model inversion, we compare the inversion results with those of the
conventional Gradient method. The Gradient method, which uses a pseudo-
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Hessian without calculating the approximate-Hessian explicitly, has been well
studied because of its efficiency. Fig. 15 shows inverted velocity models
obtained by the conventional Gradient method. Estimates of the upper layer
structure and of structure over the salt area are successful. However, unlike the
Gauss-Newton method, the conventional Gradient method failed to identify the
velocity model inside the salt correctly. Additionally, the layer below the salt
(location A) and the lens structure (location B) were not found by the Gradient
method inversion.
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Fig. 12. An inverted velocity model of the SEG/EAGE 3D salt model using a smoothed initial
velocity model. (A) is an inverted P-wave velocity model and (B) is an inverted S-wave velocity
model.
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Fig. 13. Velocity profiles of the true model and the inverted model at 8 km. They changes with
increasing depth. (A) is a P-wave velocity profile and (B) is a S-wave velocity profile.
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Fig. 14. Velocity profiles of the true model and the inverted model at 12 km. They changes with
increasing depth. (A) is a P-wave velocity profile and (B) is a S-wave velocity profile.

CONCLUSION

Although we find an enhanced high-resolution velocity model using the
Gauss-Newton method with less iteration, the technique has not been well
studied because of the limitations of the current computing environment for
calculating Hessian-matrices. Thus, in this study, we adopt the CGLS algorithm
to solve the problem of the Hessian-matrix indirectly and develop a frequency
domain elastic waveform inversion using the Gauss-Newton method.
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Fig. 15. An inverted velocity model of the SEG/EAGE 3D salt model using the Gradient method.
(A) is an inverted P-wave velocity model and (B) is an inverted S-wave velocity model.

We performed numerical experiments with the Marmousi-2 model and
SEG/EAGE salt models that are most frequently used for oil exploration. With
the Marmousi-2 model, we verified that an inversion of a complicated layer
structure can be performed, and with the SEG/EAGE salt model, we confirmed
the location and shape of a high velocity salt as well as the P-wave and the
S-wave velocity below the salt.

Through numerical experiments with the SEG/EAGE salt model using a
linearly increasing velocity model as an initial velocity model, we confirmed
that the shallow layer and the thickness of the salt layer could be reproduced
perfectly. However, we also detected the distortion of the velocity layer in the
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deeper part of the velocity model. Fortunately, this problem is overcome with
a different initial velocity model that contains the long wavelength characteristics
of the true velocity model. When we perform waveform inversion adopting the
CGLS method, we identify underground conditions exactly with the long
wavelength velocity model. Therefore, further research is needed to find
methods to obtain the long wavelength velocity model.
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