AccScience Publishing / JSE / Online First / DOI: 10.36922/JSE025330059
ARTICLE

Application of the spatial autocorrelation method incorporating damping optimization for identifying goafs in cultural heritage sites

Jiale Liu1 Xiaodong Wang1* Yanhai Liu2 Ke Ren3 Shangqing Zhang4
Show Less
1 Department of Geophysics and Information, College of Geoscience and Surveying Engineering University of Mining and Technology-Beijing, Beijing, China
2 China Energy Shendong Coal Group Co., Ltd., Ordos, Nei Mongol Autonomous Region, China
3 School of Remote Sensing Science and Technology, Aerospace Information Technology University, Jinan, Shandong, China
4 Shanxi Key Laboratory of Metallogeny and Assessment of Strategic Mineral Resources, Taiyuan, Shanxi, China
Submitted: 16 August 2025 | Revised: 16 October 2025 | Accepted: 21 October 2025 | Published: 10 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

As a World Cultural Heritage Site, the Yungang Grottoes face the risk of geological disasters caused by underground goafs. To accurately detect the surrounding void zones of the grottoes and analyze their distribution and structural characteristics, this study uniquely applied the passive-source surface wave spatial autocorrelation (SPAC) method. Four high-density linear arrays were deployed in the Yungang Grottoes area to collect microtremor signals. By extracting the Rayleigh wave dispersion curve and combining it with a non-linear least-squares inversion technique incorporating a damping regularization term, a shallow shear wave velocity profile was established, successfully identifying potential low-velocity anomalies. During the inversion process, the optimized damping factor effectively suppressed the oscillation effects under complex geological conditions, significantly improving the stability and accuracy of the imaging. The results showed that 15 typical low-velocity anomalies with wave velocities below 1,200 m/s were identified, and these anomalies were highly consistent with the locations of goaf areas in historical mining data. The imaging results revealed that the goaf exhibits multiple layers and a multi-center distribution, with the L1 and L4 survey lines being the main areas of goaf activity. With a horizontal resolution of 10–20 m and a maximum detection depth of 320 m, the method presented differences in the integrity and fragmentation of underground rock masses. The SPAC method demonstrated advantages such as high resolution, non-destructive testing capability, and imaging stability in the detection of abandoned mine areas within cultural heritage sites. By optimizing the inversion regularization parameters, this study significantly improves imaging accuracy in complex geological environments, providing effective technical support for the stability assessment of the Yungang Grottoes and for the prevention and control of geological disaster risks at cultural heritage sites.

Keywords
Spatial autocorrelation method
Damping factor
Yungang Grottoes
Goaf
Funding
This research was funded by the National Key Research and Development Project (grant number 2022YFC2903402).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Vadrucci M. Sustainable cultural heritage conservation: A challenge and an opportunity for the future. Sustainability. 2025;17(2):584. doi: 10.3390/su17020584

 

  1. Huang J, Ren J. Geophysical prospecting method applied in the preservation of Yungang Grottoes. Sci Conserv Archaeol. 2011;23(2):87-95.doi: 10.16334/j.cnki.cn31-1652/k.2011.02.007

 

  1. Galdón JM, Rey J, Martínez J, Hidalgo MC. Application of geophysical prospecting techniques to evaluate geological-mining heritage: The Sinapismo mine (La Carolina, Southern Spain). Eng Geol. 2017;138:71-78. doi: 10.1016/j.enggeo.2017.01.012

 

  1. Martinho E, Dionísio A. Main geophysical techniques used for non-destructive evaluation in cultural built heritage: A review. J Geophys Eng. 2014;11(5):053001. doi: 10.1088/1742-2132/11/5/053001

 

  1. Alao JO, Lawal KM, Dewu BBM, Raimi J. Construction of a multi-purpose geophysical test site on a lateritic clay soil. Arab J Geosci. 2024;17:238. doi: 10.1007/s12517-024-12039-72

 

  1. Alao JO, Lawal KM, Dewu BBM, Raimi J. Near-surface seismic refraction anomalies due to underground target models and their application in civil and environmental engineering. Phys Chem Earth Parts A/B/C. 2025;138:103845. doi: 10.1016/j.pce.2024.103845

 

  1. Perski Z, Hanssen R, Wojcik A, Wojciechowski T. InSAR analyses of terrain deformation near the Wieliczka Salt Mine, Poland. Eng Geol. 2009;106(1-2):58-67. doi: 10.1016/j.enggeo.2009.02.014 8. Xu PF, Li CJ, Ling SQ, Zhang YB, Hou Z, Sun YJ. Mapping collapsed columns in coal mines utilizing Microtremor Survey Methods. Chin J Geophys. 2009;52(7):1923-1930. doi: 10.3969/j.issn.0001-5733.2009.07.028

 

  1. Ling S, Ren Q, Cheng F, et al. Application of microtremor survey technology in a coal mine goaf. Appl Sci. 2023;13(1):466. doi: 10.3390/app13010466

 

  1. Martínez-Moreno FJ, Pedrera A, Ruano P, et al. Combined microgravity, electrical resistivity tomography, and induced polarization to detect deeply buried caves: Algaidilla cave (Southern Spain). Eng Geol. 2013;162:67-78. doi: 10.1016/j.enggeo.2013.05.008

 

  1. Metwaly M, AlFouzan F. Application of 2-D geoelectrical resistivity tomography for subsurface cavity detection in the eastern part of Saudi Arabia. Geosci Front. 2013;4(4):469-476. doi: 10.1016/j.gsf.2012.12.005

 

  1. Styles P, McGrath R, Thomas E, Cassidy NJ. The use of microgravimetry for cavity characterization in karstic terrains. Q J Eng Geol Hydrogeol. 2005;38(2):155-169. doi: 10.1144/1470-9236/04-035

 

  1. Li Q, Zhang H, Lei X, Li C. Imaging of upper breakpoints of buried active faults through microtremor survey technology. Earth Planets Space. 2024;76:132. doi: 10.1186/s40623-024-02080-x

 

  1. Liu Y, Xia J, Guan B, Xi C, Ning L, Zhang H. Short-term synchronous and asynchronous ambient noise tomography in urban areas: Application to karst investigation. Engineering, 2025;48:292-308. doi: 10.1016/j.eng.2025.02.001

 

  1. Alao JO, Lawal KM, Dewu BBM, Raimi J. Detection of shallow underground targets using electrical resistivity tomography and the implications in civil/environmental engineering. Discov Geosci. 2024;2:52. doi: 10.1007/s44288-024-00058-6

 

  1. Zeid AN, Corradini E, Bignardi S, Nizzo V, Santarato G. The passive seismic technique ‘HVSR’ as a reconnaissance tool for mapping paleo-soils: The case of the Pilastri archaeological site, Northern Italy. Archaeol Prospect. 2017;24(3):245-258. doi: 10.1002/arp.1568

 

  1. Schwellenbach I, Hinzen K, Petersen MG, Bottari C. Combined use of refraction seismic, MASW, and ambient noise array measurements to determine the near-surface velocity structure in the Selinunte Archaeological Park, SW Sicily. J Seismol. 2020;24:753-776. doi: 10.1007/s10950-020-09909-4

 

  1. Huang X, Guo F, Zhao L, Zhang F. Chemical weathering records in Yungang Formation, North China: Implications for stone heritage conservation. Front Earth Sci. 2025;13:1507580. doi: 10.3389/feart.2025.1507580

 

  1. Zhang Y, Shi W, Dong S, Wang T, Yang Q. Jurassic intracontinental deformation of the central North China Plate: Insights from syn-tectonic sedimentation, structural geology, and U-Pb geochronology of the Yungang Basin, North China. Tectonophysics. 2020;778:228371. doi: 10.1016/j.tecto.2020.228371

 

  1. Liu A, Xu Y, Liu C, Pang E. Geological characteristics and tectonic evolution of Datong Basin. Geoscience. 2021;35(5):1296-1310. doi: 10.19657/j.geoscience.1000-8527.2020.067

 

  1. Chen B, Yu X, Wang T, Ma F, Li S, Yang L. Lithofacies and architectural characteristics of sandy braided river deposits: A case from outcrops of the Middle Jurassic Yungang Formation in the Datong Basin, Shanxi Province. Oil Gas Geol. 2015;36(1):111-117. doi: 10.11743/ogg20150114

 

  1. Huang J. Study on the geological characteristics of the Yungang Grottoes. Southeast Cult. 2003;5:91-93.

 

  1. Guo Y, Qin Y, Chen P, Xu N. Simulation of the compaction behavior and the water permeability evolution of broken rock masses of different shapes in a goaf. Water. 2023;15(6):1190. doi: 10.3390/w15061190

 

  1. Berryman JG. Seismic waves in rocks with fluids and fractures. Geophys J Int. 2007;171(2):954-974. doi: 10.1111/j.1365-246X.2007.03563.x

 

  1. Yang H, Duan HF, Zhu J, Zhao Q. Water effects on elastic S-wave propagation and attenuation across single clay-rich rock fractures: Insights from ultrasonic measurements. Rock Mech Rock Eng. 2024;57:2645-2659. doi: 10.1007/s00603-023-03712-6

 

  1. Aki K. Space and time spectra of stationary stochastic waves with special reference to microtremors. Bull Earthq Res Inst Univ Tokyo. 1957;35:415-456.

 

  1. Xu P, Li S, Ling S, Guo H, Tian B. Application of SPAC method to estimate the crustal S-wave velocity structure. Chin J Geophys. 2013;56(11):3846-3854. doi: 10.6038/cjg20131126

 

  1. Xu P, Ling S, Li C, et al. Mapping deeply-buried geothermal faults using microtremor array analysis. Geophys J Int. 2012;188(1):115-122. doi: 10.1111/j.1365-246X.2011.05266.x

 

  1. Tarantola A, Valette B. Inverse problems = Quest for information. J Geophys. 1981;50(1):159-170.

 

  1. Tikhonov AN. Solution of incorrectly formulated problems and the regularization method. Sov Math Dokl. 1963;5:103-114.

 

  1. Phillips DL. A technique for the numerical solution of certain integral equations of the first kind. J ACM. 1962;9(1):84-97. doi: 10.1145/321105.321114

 

  1. Hansen PC, O’Leary DP. The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J Sci Comput. 1993;14(6):1487-1503. doi: 10.1137/0914086

 

  1. Castellanos JL, Gómez S, Guerra V. The triangle method for finding the corner of the L-curve. Appl Numer Math. 2002;43(4):359-373. doi: 10.1016/S0168-9274(01)00179-9

 

  1. Haney MM, Tsai VC. Perturbational and nonperturbational inversion of Rayleigh-wave velocities. Geophysics. 2017;82(3):F15-F28. doi: 10.1190/geo2016-0397.1

 

  1. Ortega-Culaciati F, Simons M, Ruiz J, Rivera L, Díaz- Salazar N. An EPIC Tikhonov regularization: Application to quasi-static fault slip inversion. J Geophys Res Solid Earth. 2021;126(7):e2020JB021141. doi: 10.1029/2020JB021141

 

  1. Okada H. Theory of efficient array observations of microtremors with special reference to the SPAC method. Explor Geophys. 2006;37(1):73-85. doi: 10.1071/EG06073

 

  1. Cheng F, Xia J, Xu Y, Xu Z, Pan Y. A new passive seismic method based on seismic interferometry and multichannel analysis of surface waves. J Appl Geophys. 2015;117:126-135. doi: 10.1016/j.jappgeo.2015.04.005

 

  1. Wang K, Qian J, Zhang H, Gao J, Bi D, Gu N. Seismic imaging of mine tunnels by ambient noise along linear arrays. J Appl Geophys. 2022;203:104718. doi: 10.1016/j.jappgeo.2022.104718

 

  1. Langston CA. Spatial gradient analysis for linear seismic arrays. Bull Seismol Soc Am. 2007;97(1):265-280. doi: 10.1785/0120060100

 

  1. Hayashi K, Asten MW, Stephenson WJ, et al. Microtremor array method using spatial autocorrelation analysis of Rayleigh-wave data. J Seismol. 2022;26:601-627. doi: 10.1007/s10950-021-10051-y

 

  1. Nishida K, Takagi R, Takeo A. Ambient noise multimode surface wave tomography. Prog Earth Planet Sci. 2024;11:4. doi: 10.1186/s40645-023-00605-8

 

  1. Haney MM, Mikesell TD, van Wijk K, Nakahara H. Extension of the spatial autocorrelation (SPAC) method to mixed-component correlations of surface waves. Geophys J Int. 2012;191(1):189-206. doi: 10.1111/j.1365-246X.2012.05597.x

 

  1. Hansen PC. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 1992;34(4):561-580. doi: 10.1137/1034115

 

  1. Yu D, Hwang C, Zhu H, Ge S. The Tikhonov-L-curve regularization method for determining the best geoid gradients from SWOT altimetry. J Geod. 2023;97:93. doi: 10.1007/s00190-023-01783-5

 

  1. Xia J, Miller RD, Park CB. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics. 1999;64(3):691-700. doi: 10.1190/1.1444578

 

  1. Mordret A, Landès M, Shapiro NM, Singh SC, Roux P. Ambient noise surface wave tomography to determine the shallow shear velocity structure at Valhall: Depth inversion with a Neighbourhood Algorithm. Geophys J Int. 2014;198(3):1514-1525. doi: 10.1093/gji/ggu217

 

  1. Cao B, Wang J, Du H, Tan Y, Liu G. Research on comprehensive detection and visualize of hidden cavity goaf. Sci Rep. 2022;12:22309. doi: 10.1038/s41598-022-26680-3

 

  1. Cao A, Dou L, Cai W, Gong S, Liu S, Jing G. Case study of seismic hazard assessment in underground coal mining using passive tomography. Int J Rock Mech Min Sci. 2015;78:1-9. doi: 10.1016/j.ijrmms.2015.05.001

 

  1. Zhou L, Jia B, Bao X, Chen H, Zheng K. Construction and experimental verification of wave velocity model for source location in goaf overlying rock strata. J Appl Geophys. 2024;230(2):105515. doi: 10.1016/j.jappgeo.2024.105515

 

  1. Arifuggaman A, Zhang C, Feng M, Chen Y, Li Q, Wang T. Mining-induced subsidence predicting and monitoring: A comprehensive review of methods and technologies. Geotech Geol Eng. 2025;43:314. doi: 10.1007/s10706-025-03271-3

 

  1. Barton N. Some new Q-value correlations to assist in site characterisation and tunnel design. Int J Rock Mech Min Sci. 2002;39(2):185-216. doi: 10.1016/S1365-1609(02)00011-4

 

  1. Ghabraie B, Ren G, Zhang X, Smith J. Physical modelling of subsidence from sequential extraction of partially overlapping longwall panels. Int J Coal Geol. 2015; 140:71-83. doi: 10.1016/j.coal.2015.01.004

 

  1. Bell FG, Stacey TR, Genske DD. Mining subsidence and its effect on the environment: Some differing examples. Environ Geol. 2000;40(1-2):135-152. doi: 10.1007/s002540000140

 

  1. Martínez-Pagán P, Navarro M, Pérez-Cuevas J, Alcalá FJ, García-Jerez A, Vidal F. Shear-wave velocity based seismic microzonation of Lorca city (SE Spain) from MASW analysis. Near Surf Geophys. 2014;12(6):412-423. doi: 10.3997/1873-0604.2014032

 

  1. Leucci G, De Giorgi L. Microgravimetric and ground penetrating radar geophysical methods to map the shallow karst network in a coastal area (Marina di Capilungo, Lecce - Italy). Explor Geophys. 2010;41(3):178-188. doi: 10.1071/EG09029
Share
Back to top
Journal of Seismic Exploration, Print ISSN: 0963-0651, Published by AccScience Publishing