Data-driven high-resolution gas-bearing prediction in tight sandstones: A case study from block L, Eastern Ordos Basin

The Upper Paleozoic Shihezi Formation in Block L of the eastern Ordos Basin harbors extensive tight sandstone gas reservoirs. However, these reservoirs exhibit strong heterogeneity, thin sand bodies, and overlapping elastic properties between gas- and water-bearing layers, which significantly limit the effectiveness of conventional pre-stack inversion methods in delineating thin sand bodies and predicting gas saturation. To address these challenges, we propose an integrated high-resolution gas prediction technique combining geostatistical inversion with deep learning. First, within a Bayesian sequential inversion framework, we jointly inverted well-log data, seismic data, and geological constraints to obtain high-resolution elastic parameters, substantially improving the identification of thin sand bodies (<5 m). Second, we employed a long short-term memory network to extract temporal features from inverted elastic parameter sequences and establish a non-linear mapping between gas/water-sensitive attributes and water saturation; this step incorporates horizon constraints and an attribute optimization strategy to enhance prediction accuracy. Field applications demonstrated that our method achieved superior performance compared to conventional approaches, with an 85% consistency rate between predicted gas saturation and drilling results. The integration of geostatistical inversion and deep learning provides a robust workflow for characterizing thin, heterogeneous tight gas reservoirs, offering significant potential for optimizing exploration and development strategies in the Ordos Basin.
- Lan C, Zhang J, Tao W, Zhang Y, Yang M, Wang J. Sedimentary characteristics and evolution of the upper carboniferous Taiyuan formation, Shenmu Gasfield, Northeastern Ordos Basin. Acta Geol Sin. 2011;85(4):533-542.
- Lan C, Zhang Y, Zhang J, Yang M, Wang J. Reservoir characteristics and controlling factors of Taiyuan Formation in Shenmu Gas Field. J Xi’an Petrol Univ (Natural Science Edition). 2010;25(1):7-11. doi: 10.11743/ogg20130105
- Zhu G, Li B, Li Z, Du J, Liu Y, Wu L. Practices and development trend of unconventional natural gas exploration in eastern margin of Ordos Basin: Taking Linxing-Shenfu gas field as an example. China Offshore Oil Gas. 2022;34(4):16-29. doi: 10.11935/j.issn.1673-1506.2022.04.002
- Zhu Y, Zhao Z, Zhang D, et al. Accumulation conditions and accumulation laws of tight gas in Shenfu area, northeast of Ordos Basin. China Offshore Oil Gas. 2022;34(4):55-64. doi: 10.11935/j.issn.1673-1506.2022.04.005
- Zou C, Zhang G, Yang Z, et al. Unconventional petroleum geology. Petrol Explor Dev. 2012;40(4):2153. doi: 10.1016/S1876-3804(13)60053-1
- Haas A, Dubrule O. Geostatistical inversion-a sequential method of stochastic reservoir modelling constrained by seismic data. First Break. 1994;12(11):561-569. doi: 10.3997/1365-2397.1994034
- Huang H, Zhang R, Wei S. Research on application of seismic nonlinear random inversion to reservoir prediction in the thin sandstone of continental deposits. Acta Petrol Sin. 2009;30(3):386-390. doi: 10.7623/syxb2009011
- Liu Z, Zhang L, Huo L, Cao M, Ding Q, Gao G. Thin coalbed methane reservoir identification by geostatistics inversion. Oil Geophys Prospect. 2012;47(S1):30-34.
- Archie GE. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME. 1942;146:54-62. doi: 10.2118/942054-G
- Barone A, Sen MK. An improved classification method that combines feature selection with nonlinear Bayesian classification and regression: A case study on pore-fluid prediction. In: 87th Annual International Meeting, SEG, Expanded Abstracts; 2007. p. 3062-3066. doi: 10.1190/segam2017-17790222.1
- Xu J, Xu L, Qin Y. Two effective methods for calculating water saturations in shale-gas reservoirs. Geophysics. 2017;82(3):D187-D197. doi: 10.1190/geo2016-0462.1
- Hu L, Chen M, Jin H. Gas prediction in tight sandstone reservoirs based on a seismic dispersion attribute derived from frequency-dependent AVO inversion. Processes. 2025;13:2210. doi: 10.3390/pr13072210
- Tao X, Cao J, Zhao L, Li H, Ren Y, Jian P. Gas-bearing prediction in tight sandstone reservoirs based on multinetwork integration. Interpretation. 2024;12(2):T177-T185. doi: 10.1190/INT-2023-0091.1
- Sun S, Nie J, Qu Z, et al. Oil saturation estimation and uncertainty evaluation by modeling-data-driven Gaussian mixture conditional generative adversarial networks. In: First International Meeting for Applied Geoscience & Energy Expanded Abstracts; 2021. p. 1691-1695. doi: 10.1190/segam2021-3577905.1
- Zong Z, Yin X, Wu G. Fluid identification method based on compressional and shear modulus direct inversion. Chin J Geophys. 2012;55(1):284-292. doi: 10.6038/j.issn.0001-5733.2012.01.028
- Zong Z, Yin X. Direct inversion of Young’s and Poisson impedances for fluid discrimination. Geofluids. 2016;16:1006-1016. doi: 10.1111/gfl.12202
- Jia L, Li L, Wang Q, Ma J, Wang H, Wang D. Fluid identification factor inversion based on generalized elastic impedance. Geophys Prospect Petrol. 2018;57(2):302-311. doi: 10.3969/j.issn.1000-1441.2018.02.016
- Yin X, He W, Huan X. Bayesian sequential gaussian simulation methodology. J China Univ Petrol. 2005;29(5):5.
- Bergen KJ, Johnson PA, De Hoop MV, Beroza GC. Machine learning for data-driven discovery in solid Earth geoscience. Science. 2019;363(6433):eaau0323. doi: 10.1126/science.aau0323
- Feng R, Mejer Hansen T, Grana D, Balling N. An unsupervised deep-learning method for porosity estimation based on post-stack seismic data. Geophysics. 2020;85(6):M97-M105. doi: 10.1190/geo2020-0121.1
- Hampson DP, Schuelke JS, Quirein JA. Use of multiattribute transforms to predict log properties from seismic data. Geophysics. 2001;66(1):220-236. doi: 10.1190/1.1444899
- Zhong Z, Carr TR, Wu X, Wang G. Application of a convolutional neural network in permeability prediction: A case study in the Jacksonburg-Stringtown oil field, West Virginia, USA. Geophysics. 2019;84(6):B363-B373. doi: 10.1190/geo2018-0588.1
- Das V, Mukerji T. Petrophysical properties prediction from prestack seismic data using convolutional neural networks. Geophysics. 2020;85(5):N41-N55. doi: 10.1190/geo2019-0650.1
- Chen W, Yang L, Zha B, Zhang M, Chen Y. Deep learning reservoir porosity prediction based on multilayer long short-term memory network. Geophysics. 2020;85(4):WA213-WA225. doi: 10.1190/geo2019-0261.1
- Smith JR, Johnson AB, Zhang L. Seismic sensitivity to water saturation in tight gas sandstones: A rock physics perspective. Geophysics. 2018;83(2):MR89-MR101.
- Zong Z, Yin X, Wu G. Elastic parameter-driven seismic characterization of gas-bearing reservoirs using hybrid inversion. Geophysics. 2020;85(3):WA1-WA12.
- Buland A, Omre H. Bayesian linearized AVO inversion. Geophysics. 2003;68(1):185-198. doi: 10.1190/1.1543206
- Journal AG, Alabert F. Non-Gaussian data expansion in the Earth Sciences. Terra Nova. 1989;1:123-134. doi: 10.1111/j.1365-3121.1989.tb00344.x
- Tai KS, Socher R, Manning CD. Improved semantic representations from tree-structured long short-term memory networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 2015. p. 1556-1566. doi: 10.3115/v1/P15-1150
- Sathasivam S, Abdullah WATW. Logic learning in Hopfield networks. Modern Applied Science, 2008, 2(3):57. doi: 10.5539/mas.v2n3p57
- Nair V, Hinton GE. Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on International Conference on Machine Learning. Haifa, Israel; Omnipress; 2010. p. 807-814.
- Zhang L, An H, Dan G, Liang G, Gao X. Geostatistical inversion application of carbonate reservoir prediction in Lungu oilfield. Petrol Geol Eng. 2016;30(2):1-4.