ARTICLE

Application of improved Gabor deconvolution on zero-offset VSP data using a novel smoothing method in logarithmic spectrum

MOHAMMAD ALI RIAHI
Show Less
Institute of Geophysics, Department of Solid Earth Physics, University of Tehran, Tehran, Iran,
JSE 2021, 30(2), 147–172;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Absorption phenomenon attenuates seismic signal amplitudes, reduces the vertical resolution, and hassles the detection of thin layers. The key objective of this study is the vertical resolution enhancement of zero-offset vertical seismic profile data (ZVSP) by Gabor deconvolution. According to constant Q theory, it is reliable to apply a smoothing along hyperbolic trajectories in the time-frequency domain. In conventional hyperbolic smoothing, an empirical whitening factor is added to stabilize the process. Experiments on real seismic data show that the whitening factor can smear useful information or produce artifacts. To prevent these shortcomings, we apply a logarithmic magnitude spectrum (LMS) hyperbolic smoothing on ZVSP data. As a result, by replacing divisions with subtractions whitening factor is used. Smoothing the Gabor magnitude spectrum of seismic data along hyperbolic paths in the logarithmic spectrum can obtain the magnitude of the attenuation function, eliminate the effect of source wavelet, then, estimate the source wavelet amplitude spectrum. Applying different deconvolution methods on synthetic and real data we show that the performance of the Gabor deconvolution using the LMS is better than that of other methods including Wiener deconvolution and conventional hyperbolic smoothing method.

Keywords
Gabor transform
Gabor deconvolution
smoothing
logarithmic magnitude spectrum
vertical seismic profiling (VSP)
References
  1. Ahadi, A. and Riahi, M.A., 2013. Application of Gabor deconvolution to zero-offset VSP
  2. data. Geophysics, 78(2): D85-D91. doi:10.1190/GEO2011-0319.1
  3. Aki, K. and Richards, P.G., 1980. Quantitative Seismology: Theory and Methods. W.H.
  4. Freeman & Co., San Francisco.
  5. Anstey, N., 1976. Seismic delineation of oil and gas reservoirs using borehole geophones.
  6. Canadian Patents 1,106,957 and 1,114, 937.
  7. Cattani, C. and Rushchitsky, J.. 2007. Wavelet and Wave Analysis as Applied to
  8. Materials with Micro or Nanostructure. World Scientific Publishing Company,
  9. Singapore. doi: 10.1142/9789812709769.
  10. Chen, Z., Wang, Y., Chen, X. and Li, J., 2013. High-resolution seismic processing by
  11. Gabor deconvolution. J. Geophys. Engineer., 10(6): 065002.
  12. doi: 10.1088/1742-2132/10/6/065002.
  13. Dong, L., Margrave, G.F. and Hall, K.W., 2002. Comparison of wavelet estimates from
  14. VSP and surface data. CREWES Research Report, 14: 1-6.
  15. Erhan, E. and Nowack, R.L., 2020. Application of non-stationary iterative time-domain
  16. deconvolution. Stud. Geophys. Geod., 64: 76-99.
  17. doi.org/10.1007/s11200-019-1165-z
  18. Gabor, D., 1946. Theory of communication. IEEE Transact. Informat. Theory, 93: 429-
  19. Gaiser, J.E., Disiena, J.P. and Fix, J.E., 1984. Vertical seismic profiles: Fundamentals of
  20. the downgoing wavefield and applications that improve CDP data interpretation.
  21. In: Toks6z and Stewart (Eds.), Vertical Seismic Profiling, Part B: Advanced
  22. Concepts. Geophysical Press, Amsterdam: 87-112.
  23. Hardage, B.A., 1983. Vertical Seismic Profiling, Part A: Principles. Geophysical Press,
  24. Amsterdam.
  25. Hubbard, T.P., 1979. Deconvolution of surface recorded data using vertical seismic
  26. profiles. Expanded Abstr., 49th Ann. Internat. SEG Mtg., New Orleans.
  27. Kjartansson, E., 1979. Constant Q-wave propagation and attenuation. J. Geophys. Res.,
  28. 84: 4737-4748. doi: 10.1029/ JB0841B09p04737.
  29. Lee, M.W. and Balch, A.H., 1983. Computer processing of vertical seismic profile data.
  30. Geophysics, 48: 272-287. doi: 10.1190/1.1441467
  31. Margrave, G.F. Henley, D.C., Lamoureux, M.P., Iliescu, V. and Grossman, J.P., 2002.
  32. An update on Gabor deconvolution. CREWES Res. Rep., 14.
  33. Margrave, G.F. and Lamoureux, M.P., 2001. Gabor deconvolution. CREWES Res. Rep.,
  34. Margrave, G.F., Lamoureux, M.P. and Henley, D.C., 2011. Gabor deconvolution:
  35. Estimating reflectivity by nonstationary deconvolution of seismic data.
  36. Geophysics, 76(3): W15-W30. doi: 10.1190/1.3560167.
  37. Montana, C.A. and Margrave, G.F., 2005. Hilbert transform, Gabor deconvolution and
  38. phase corrections. CREWES Res. Rep., 17.
  39. Montana, C.A. and Margrave, G.F., 2004. Phase correction in Gabor deconvolution:.
  40. CREWES Res. Rep., 16.
  41. Montana, C.A., Margrave, G.F. and Henley, D., 2006. Surface-consistent Gabor
  42. deconvolution. CREWES Res. Rep., 18.
  43. O’Connell, R.J. and Budiansky, B., 1978. Measures of dissipation in viscoelastic media.
  44. Geophys. Res. Lett., 5: 5-8. doi: 10.1029/GL0051001p00005.
  45. Ross, W.S. and Shah, P.M., 1987. Vertical seismic profile reflectivity: Ups over downs.
  46. Geophysics, 52: 1149-1154. doi: 10.1190/1.1442379
  47. Sun, X.E., Ling, Y., Gao, J., Lin, J. and Sun, D., 2009. A deconvolution approach using
  48. statistical upgoing waves of zero offset VSP. Extended Abstr., 71st EAGE Conf.,
  49. Amsterdam.
  50. Sun, X., Sun, S.Z, Peng, T. and Wu, S., 2012. Gabor deconvolution: Hyperbolic
  51. smoothing in logarithmic magnitude spectrum. Expandd Abstr., 82nd Ann.
  52. Internat. SEG Mtg., Las Vegas.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing